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Abstract: Value chain collaboration management is an effective means for enterprises to reduce
costs and increase efficiency to enhance competitiveness. Vertical and horizontal collaboration
have received much attention, but the current collaboration model combining the two is weak in
terms of task assignment and node collaboration constraints in the whole production-distribution
process. Therefore, in the enterprise dynamic alliance, this paper models the MVC (multi-value-chain)
collaboration process for the optimization needs of the MVC collaboration network in production-
distribution and other aspects. Then a MVC collaboration network optimization model is constructed
with the lowest total production-distribution cost as the optimization objective and with the delivery
cycle and task quantity as the constraints. For the high-dimensional characteristics of the decision
space in the multi-task, multi-production end, multi-distribution end, and multi-level inventory
production-distribution scenario, a genetic algorithm is used to solve the MVC collaboration network
optimization model and solve the problem of difficult collaboration of MVC collaboration network
nodes by adjusting the constraints among genes. In view of the multi-level characteristics of the
production-distribution scenario, two chromosome coding methods are proposed: staged coding
and integrated coding. Moreover, an algorithm ERGA (enhanced roulette genetic algorithm) is
proposed with enhanced elite retention based on a SGA (simple genetic algorithm). The comparative
experiment results of SGA, SEGA (strengthen elitist genetic algorithm), ERGA, and the analysis of
the population evolution process show that ERGA is superior to SGA and SEGA in terms of time
cost and optimization results through the reasonable combination of coding methods and selection
operators. Furthermore, ERGA has higher generality and can be adapted to solve MVC collaboration
network optimization models in different production-distribution environments.

Keywords: multi-value-chain collaboration; optimal planning; high-dimensional decision space;
production-distribution; genetic algorithm

1. Introduction

As global markets become more efficient, competition no longer occurs between in-
dividual firms, but it instead occurs across the entire value chain [1], and more and more
firms seek to enter the market as an organization in pursuit of greater efficiency in sourcing,
production, and distribution. As value chains become larger and more complex in a global-
ized world, it is important to work efficiently with partners along the chain [2–4]. Higher
levels of business performance will be achieved by companies that can fully integrate
value and supply concurrent streams [5]. In this context, collaboration by two or more
companies that create competitive advantage and higher profits than acting alone has been
studied by scholars. Ref. [6] divided the collaboration approaches proposed by scholars
into vertical collaboration, horizontal collaboration, and lateral collaboration. In [7], it is

Sensors 2023, 23, 2242. https://doi.org/10.3390/s23042242 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23042242
https://doi.org/10.3390/s23042242
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s23042242
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23042242?type=check_update&version=3


Sensors 2023, 23, 2242 2 of 24

proposed that lateral collaboration includes the ability of horizontal and vertical collab-
oration overcoming their limitations, which still requires a lot of research. Besides, the
effect of inventory strategy on collaboration was studied in the lateral collaboration model
in [7]. Ref. [8] developed a framework based on scenarios designed for collaborative supply
chains and then suggested novel models of lateral collaboration to optimize 3BL (triple
bottom line) sustainability-related objectives. Ref. [9] modeled the MNE (multi-national
enterprise) as a complex adaptive system and investigates the effects of lateral collabora-
tion on performance at both the MNE and subsidiary level. It is found that the existing
lateral collaboration models are weak in terms of resource and task allocation and node
collaboration constraints in the whole production-distribution process.

In MVC collaboration networks, there is both vertical cooperation on the same chain
and horizontal cooperation on different chains, so it is necessary to study the MVC collabo-
ration mechanism and construct an optimization model. Actually, when the value chains
operate in collaboration, more collaboration constraints arise and higher requirements are
imposed on the collaboration mechanism.

In the MVC collaboration network, there are intersecting nodes between multiple
value chains. These nodes represent the enterprises that undertake the tasks of multiple
value chains. With the influence of enterprise capacity, warehouse inventory capacity, and
other uncertain factors during the operation of the MVC collaboration network, there are
many constraints on the intersecting nodes. Such constraints include the time to deliver
goods to agents cannot exceed the specified time; production tasks assigned to enterprises
in the collaboration network cannot exceed the enterprise capacity; and the number of
products stored in the warehouse cannot exceed the upper limit of the storage capacity
of the transit warehouse. Therefore, it is necessary to construct a collaboration model
to effectively coordinate resources; coordinate the division of labor and the cooperation
between enterprises of the value chains; meet the constraints of value chain collaboration;
and reduce the internal friction caused by the unreasonable assignment of tasks or resources.

The production-distribution decision optimization problem of a MVC collaboration
network model is a combinatorial planning problem with constraints, while existing research
shows that metaheuristic algorithms can solve it effectively. For example, Ref. [10] proposed
a service selection model based on collaboration effects and designed an improved GSA
algorithm to solve it. Ref. [11] proposed an enhanced multi-objective gray wolf optimizer to
solve the manufacturing service optimization combination problem. Therefore, considering
the effectiveness and superiority of heuristic algorithms [12–14], this study uses genetic
algorithms to optimize the production-distribution strategy of MVC collaboration networks.

In summary, there are few existing studies on resource management and task assign-
ment in MVC collaboration networks. Therefore, the purpose of this paper is to investigate
how to adjust the inter-node constraints in value chains after the partners of a MVC have
been identified, and to effectively conduct production-distribution planning with the aim
of reducing the total production-distribution cost of the collaboration network. To this end,
this paper makes the following contributions and innovations:

(1) Taking the definition of collaboration relationship among value nodes in a MVC as
the entry point, the collaborative process of the MVC is modeled in the production-
distribution scenario of multi-task, multi-production end, multi-distribution end
with multi-level inventory in dynamic alliances of manufacturing enterprises. A
MVC collaboration network optimization model is constructed with the lowest total
production-distribution cost as the optimization objective and with delivery lead time
and task quantity as constraints.

(2) A genetic algorithm is used to solve the optimization model, which maps the collaboration
constraints of nodes in the value chain to the constraints among genes and solves the
conflict problem of MVC collaboration network nodes. In view of the multi-level char-
acteristics of the production-distribution scenario, two chromosome coding methods are
proposed in this paper: staged coding, which is applicable to the high requirements for the



Sensors 2023, 23, 2242 3 of 24

distribution quantity and time of each stage; and integrated coding, which is applicable to
the pursuit of lower cost of the whole production-distribution process.

(3) This paper proposes an ERGA with enhanced elite retention based on SGA. The
comparative experiment results and population evolution process show that ERGA
outperforms SGA and SEGA in terms of time cost and optimization results through
the reasonable combination of coding schemes and selection operators. Besides,
ERGA has higher generality and can be adapted to the solution of MVC collaboration
network optimization models in different production-distribution environments.

2. Related Work
2.1. Research Status of Value Chain Collaboration

Along with the internationalization of markets and the enhancement of communica-
tion technologies, scholars have proposed a variety of collaboration models. The first is the
proposal of a collaboration framework used to build collaboration and partner selection.
Ref. [15] developed a virtual e-chain model that presents a supply chain collaboration
framework in a virtual environment for classifying the roles of partners, identifying the
key capabilities for building each collaboration, and assessing the readiness of partners for
collaboration. Ref. [16] developed a theoretical framework on value chains and outlined a
value chain process model. To address the multi-cycle and multi-stage problem, ref. [17]
proposed an integrated framework to identify effective collaboration mechanisms in a
MVC throughout its life cycle. To investigate the collaboration process, scholars have
proposed vertical collaboration, horizontal collaboration, and lateral collaboration models.
Vertical collaboration can be defined as collaboration when two or more organizations,
such as manufacturers, distributors, operators, and retailers, share their responsibilities,
resources, and performance information to serve relatively similar end customers. Ref. [18]
focused on the process of vertical collaboration between hotels and their food and beverage
suppliers, revealing the impact of trust on transaction costs. Ref. [19] developed three
different simulation models based on a simple vertical supply chain with one retailer and
one operator to investigate the impact of CTM (collaborative transportation management)
on total dealer costs and service levels. Horizontal collaboration refers to the collaboration
between two or more companies at the same level in a network to facilitate the achievement
of common goals, and it can also be referred to as external collaboration. A horizontal
collaboration model is proposed using hierarchical analysis to comprehensively assess
the degree of collaboration with a single horizontal collaboration program to check the
feasibility of meeting customer needs [20]. Lateral collaboration refers to the combination of
vertical and horizontal collaboration to obtain increased flexibility and improved resource
sharing [21]. Vertical collaboration in supply chains has been investigated intensively in re-
cent years. However, relatively few studies have focused on the horizontal or lateral modes
of collaboration [8]. Among them, even less work has been done on lateral collaboration
models in terms of resource and task allocation and node collaboration constraints in the
whole production-distribution process. However, in the MVC collaboration network for the
manufacturing industry, there are often cross nodes between multiple value chains, and the
enterprises represented by these nodes undertake multiple tasks division of multiple value
chains and have both horizontal and vertical collaboration with other enterprises, so it is
necessary to study the MVC collaboration mechanism and construct an optimization model.

2.2. Research of Genetic Algorithms

The value chain network design problem in the optimization model is a combinatorial
planning problem with multiple constraints, and the metaheuristic algorithm has been
proven to be an effective tool to solve the combinatorial planning problem with good
performance in many scenarios [22–27]. Besides, in recent years, some scholars have
combined genetic algorithms into other fields and achieved good results [28–31].

GAs (genetic algorithms) are a special class of bionic methods that mimic Darwin’s
theory of evolution and natural selection, which are well-known population-based meta-
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heuristic algorithms [32,33]. When implementing GAs, the definition of a chromosome,
i.e., a string representing a possible solution to a problem, is a key issue that strongly
influences the performance of the algorithm in terms of the quality of the optimal solution
and the speed of convergence [34]. Encoding strategies are widely used today, such as real-
valued encoding, Prufer encoding, and priority-based encoding [35]. The most important
operator in genetic operators is the selection operator, which is the key factor affecting
the performance of GAs [36]. For common selection operators, such as the roulette wheel
operator and the tournament selection operator [37,38], they cannot guarantee that the
best-performing individuals can be left in each evolution, while the advantage of the elite
retention strategy is that the best individuals of a certain generation cannot be destroyed
by genetic operations during the search process, which can guarantee the convergence of
genetic algorithms [39]. Therefore, to improve the convergence of the algorithm, the elite
retention strategy has been combined with the selection strategy [40]. Genetic operators,
including crossover and mutation, are then applied with some probability to the chro-
mosomes to create new and potentially better solutions. The main purpose of crossover
operations is to enable the algorithm to explore the search space more efficiently and to
produce better individuals in the next generation [41]. However, for some specific problems,
the crossover may produce infeasible solutions, so the crossover operator needs to be se-
lected for specific problems, such as the cryptography problem [42]. In conclusion, genetic
algorithms need improvement in specific application scenarios, so this paper investigates
the combination of coding and operators in a MVC collaboration optimization model.

3. Optimization Model of MVC Collaboration Network
3.1. Model Mathematical Symbols

The meanings of mathematical symbols used in the paper are shown in the following
Table 1.

Table 1. Symbol table.

Symbol Description Symbol Description

VC Collection of value chains MaxQtwi The maximum storage quantity of transit warehouse twi
VCi The i-th value chain Tai The maximum lead time of agent ai

nj
i

The j-th value node on the i-th value chain TC The total cost of the MVC collaboration network
P Collection of products TPC The total production cost of the MVC collaboration network

Ptol Total number of products TFC Total fixed cost of the MVC collaboration network
pi The products of the i-th category, pi ∈ P TTC Total transportation cost of the MVC collaboration network

E Collection of enterprises Cpi
ei

Daily capacity of enterprise ei
to produce product pi

Etol Total number of enterprises Tpi
ei

Time for enterprise ei
to complete the order of product pi

e The e-th enterprise, e ∈ E Tei
twi

The time it takes for products to be distributed from
enterprise ei to transit warehouse twi

TW Collection of transit warehouses Ttwi
ai

The time it takes for products to be distributed from transit
warehouse twi to agent ai

TWtol Total number of transit warehouses F1 Mapping function between variable cost and product quantity

twi The i-th transit warehouse, tw ∈ TW F2
Mapping function of distribution cost, product quantity,
and path length

A Collection of agents L Matrix of path length
Atol Total number of agents l j

i
The path length from node i to node j

ai The i-th agent, ai ∈ A f it Fitness function

Dpi
1

Distribution solution in the first stage of
product pi

Qpi
ei

Number of product pi produced by enterprise e

d
twj
ei

Total number of the products distributed
from enterprise ei to transit warehouse twj

Qpi
twi

Number of product pi stored in transit warehouse twi

Dpi
2

Distribution solution in the second stage
of product pi

Qpi
ai

Quantity of product pi purchased by agent ai

d
aj
twi

Total number of the products distributed
from transit warehouse twj to agent aj
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3.2. Value Node Collaboration Definition

The essence of MVC collaboration is the collaboration among value nodes, and the
collaboration strategy is the central issue of value chain collaboration, including the col-
laboration of the division of labor of each link in the value chain, such as production
collaboration strategy, sales collaboration strategy, logistics collaboration strategy, and so
on. To better construct a model of the MVC collaboration network, the following value-node
collaborative relationship definitions are given.

Definition 1. Collaboration between multiple value chains. Define the value chain set VC =
{VC1, VC2, . . . , VCn} as n value chains that operate collaboratively. Each value chain is composed
of multiple value nodes, the value node can be an enterprise, a production line, a workshop, and other
units that can complete value-added activities. If VCi =

{
n1

i , n2
i , . . . , nm

i
}

, VCi ∈ VC denotes
that the i-th collaborative value chain consists of m nodes. n1

i and nm
i respectively represent the

starting point and ending point of the value chain VCi. If VCi ∩ VCj =
{

n1
i , n2

i , . . . , n1
j , n2

j

}
,

VCi, VCj ∈ VC , then value node n1
i , n2

i , . . . , n1
j , n2

j simultaneously undertake the labor of the value
chain VCi and VCj, which are the intersection nodes of the value chains.

Definition 2. Collaboration within the value chain. There are many mixed relationships in the
product production process. The value chain composition includes parallel, selection, loop, and
other mixed link structures, so there are also collaboration relationships on the same value chain.
CRv(ni

l , nj
l) = 1 means the i-th and the j-th value node of the l-th value chain have a collaboration

relationship. Inversely, CRv(ni
l , nj

l) = 0 means they do not have collaboration relationship.

Definition 3. Collaboration relationship between nodes of multiple value chains. ni
a and nj

b are
value nodes of value chain VCa and VCb , respectively, and the corresponding types of value-added
services are sa and sb . When sa = sb, the node ni

a and the node nj
b belong to the same value-added

service type, i.e., their capabilities are similar, so they have the basis of collaboration. That is, with
certain conditions, they can cooperate. The synthetic relation can be described as CRv(ni

a, nj
b) = 1.

When there is no collaboration relationship between nodes, CRv(ni
a, nj

b) = 0. Extend this relation

to the whole network, CRv
{

ni
a, nj

b, . . . , nk
c

}
= 1 means the node ni

a, nj
b, . . . , nk

c have collaboration

relationship among them. ni
a, nj

b, . . . , nk
c are different value nodes in different value chains.

The essence of MVC collaboration lies in the collaboration between value chain nodes
to achieve win-win results. Through the above definition, the collaboration relationship
between nodes on the same chain and the collaboration relationship between nodes on
different chains are described.

3.3. Description of Collaboration Network Scenario

The MVC collaboration network as shown in Figure 1 consists of enterprises, transit
warehouses, logistics, and agents. There are three kinds of products in Figure 1, so there
are three value chains (VC1, VC2, and VC3) operating collaboratively.
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Taking VC1 and VC2 as an example, the process of obtaining the solution can be
divided into three steps. Firstly, the agents order the products, then the task-issuing
platform summarizes the order information. Next, according to the order information,
the platform chooses ni

1, nj
1, . . . , nk

2 from the value nodes with collaborative basis, i.e.,

CRv
{

ni
1, nj

1, . . . , nk
2

}
= 1, on L1 and L2 to complete the orders. Then, based on the infor-

mation of each node, the solution with the minimum total cost of the collaboration network
is formulated. The solution can be divided into two parts, the first part is the production
solution, and task issuing platform generates task sets for enterprises according to pro-
duction capacity. The other part is the distribution solution. Enterprises will produce the
specified products within a certain period. If each enterprise directly transfers the products
to the nearest transit warehouse, it may not be able to store the products due to the limited
storage capacity of the warehouse, which will lead to a conflict between manufacturing
nodes and transit nodes. Therefore, it is necessary to find a product distribution solution
on the premise of not exceeding the upper limit of each warehouse capacity and meeting
the order quantity and time required by agents. The distribution solution includes two
stages, that is, the first stage of distribution solution (D1) from the enterprises to the transit
warehouses, and the second stage of distribution solution (D2) from the transit warehouses
to the agents.

The overall distribution route of the product is shown in Figure 1. The products
produced by enterprises are distributed to the corresponding transit warehouses for storage
according to the distribution solution D1. The products stored in the transit warehouses
are then distributed to the designated agents according to the distribution solution D2 and
complete a transaction.

3.4. Assumptions and Descriptions

The MVC collaboration network model is constructed based on the following assump-
tions:

(1) The types and quantities of products produced by the enterprise alliance are equal to
the types and quantities in the orders of the agents.

(2) The total time of production and distribution shall not exceed the maximum lead time
(Tai ) of the order.

(3) The tasks assigned to the enterprise shall not exceed the upper limit of the production
capacity of them, and the number of goods distributed by the enterprises to the transit
warehouses shall not exceed the upper limit of the storage capacity of the transit
warehouses.

(4) The distribution cost and time of a single item from the enterprise to the transit
warehouse are known and fixed; the delivery cost and delivery time of a single item
from the transit warehouse to the agent are also known and fixed.
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(5) There is no secondary processing of manufactured products. The route from the
warehouse of enterprises to the transit warehouse and then to the warehouse of agents
only has three links: the warehouse of enterprises, the transit warehouse, and the
warehouse of agents. Each link only goes through once and there is no loop.

(6) The selected enterprises can meet the product production requirements put forward
by agents.

(7) Each value chain of the collaboration network is represented by the value incre-
ment process of each product, and there are inter-value-chain and intra-value-chain
collaborations in the network.

(8) To meet the customized requirements of agents, the manufacturing of products often
involves specific parameter requirements, so the production is not in advance.

3.5. Decision Variables

In the MVC collaboration operation, there is a decision space composed of the pro-
duction solution and the distribution solution, which has a decisive influence on the
production-distribution cost. There are Ptol types of products, Etol manufacturers, and Ctol
agents in the MVC collaboration network model. The production solution of enterprise i is
represented as shown in Equation (1).

mqei =
(

Q1
ei

, Q2
ei

, . . . , Qp
ei

)
(1)

The overall production solution of the MVC collaboration network is represented as
shown in Equation (2).

MQ =

Q1
e1
· · · Qp

e1
...

. . .
...

Q1
em · · · Qp

em

 (2)

The distribution solution Dp
1 of product p in the first stage of the MVC collaboration

network is shown in Equation (3).

Dp
1 =


dt1

e1 · · · d
tj
e1

...
. . .

...

dt1
ei · · · d

tj
ei

 (3)

The distribution solution Dp
2 of product p in the second stage of the MVC collaboration

network is shown in Equation (4).

Dp
2 =


dc1

t1
· · · d

cj
t1

...
. . .

...
dc1

ti
· · · d

cj
ti

 (4)

3.6. Optimization Objective Function

The MVC collaboration network is optimized mainly from the perspective of cost
based on the actual production-distribution situation. Therefore, the minimum total cost TC
is select as the optimization objective function, which is composed of the total production
cost and total distribution cost.

The total cost in the collaboration model should include the cost of PSs (production
sites) and DCs (distribution centers), etc., and the cost of PSs includes the operating and
manufacturing cost [8]. But this paper main focus of study is the optimization of production-
distribution strategy, so the total production cost (TPC) is divided into total variable cost
and total fixed cost, and the formula is shown in Equation (5). The total fixed cost represents
the sum of the fixed inputs produced during a period, such as a series of expenses incurred
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in the operation of a production plant, which does not vary with the number of products
produced. The total variable cost will increase with the increased number of products
produced by the enterprises. The expression is shown in Equation (6).

TPC = TVC + TFC (5)

TVC = F1(Q) (6)

Total distribution cost (TTC) consists of two parts: one is the distribution cost gen-
erated by shipping from the enterprises to the transit warehouses, and the other is the
distribution cost generated by shipping from the transit warehouses to the agents. To
simplify distribution cost calculation, batch pricing is adopted, and distribution cost is
positively correlated with distribution route length and product quantity [35], as shown in
Equation (7).

TC = F2(Q, L) (7)

The matrix of path length L is shown in Equation (8).

L =


l1
1 · · · l j

1
...

. . .
...

l1
i · · · l j

i

 (8)

In the MVC collaboration network model, the quantity and variety of manufactured
products are determined by the orders of agents. Therefore, when the quantity of products
is fixed, the distribution route solution is the decisive factor affecting the distribution cost
and the production solution is the decisive factor affecting the production cost. Therefore,
the optimization objective function of total production cost and total distribution cost can
be obtained as Equation (9).

minTC = min(TMC + TTC)

TPC = ∑p∈P ∑e∈E F1

(
Qp

e

)
+ TFC

TTC = ∑Ptol
k=1 ∑Ttol

j=1 ∑Etol
i=1 F2

(
Dpk

1 ij, l
tj
ei

)
+ ∑Ptol

k=1 ∑Ctol
j=1 ∑Ttol

i=1 F2(Dpk
2 ij, l

cj
ti
)

(9)

3.7. Constraint Condition

In the operation of the MVC collaboration network, there are many constraints: the
capacity of enterprises; the inventory capacity of transit warehouses; and uncertain factors.
According to our assumptions in Section 3.4, the important constraints set in the model are
as follows:

1. The enterprises in the MVC collaboration network cooperate to complete all the agents’
orders, and the variety and quantity of the products must meet the agents’ order
requirements.

∀p ∈ P, ∑Mtol
i=1 Qp

ei = ∑Ctol
j=1 Qp

cj (10)

2. In Equation (10): ∑Mtol
i=1 Qp

ei represents the sum of the quantity of product p produced

by enterprises; ∑Ctol
j=1 Qp

cj represents the agents’ total need of the quantity of product p.

3. The agent’s order has a maximum lead time (Tai ), that is, the time taken from produc-
tion to delivery to the agents has to less than Tai . Enterprises are limited by site scale,
human resources, production equipment, and other resources, and each enterprise
has a limit of daily production capacity. Therefore, the production tasks assigned
to enterprises in the collaboration network cannot exceed their production capacity.
Production time is positively correlated with daily production capacity, and the dis-
tribution time is positively correlated with the distribution route length. Since agent
orders cannot be split, products required by agent ai will be uniformly sent out after
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each enterprise finishes production and delivery to the designated transit warehouse,
and the following time constraint (Equation (11)) will be imposed on each agent’s
order: (

Tpi
e + Te

tw + Ttw
ai

)
≤ Tai (11)

4. Limited by the scale and supporting resources, the storage capacity of the transit
warehouses is limited, and the number of stored products cannot exceed the upper
limit of the storage capacity of the transit warehouses Equation (12).

∀tw ∈ TW, ∑Ptol
i=1 Qpi

tw ≤ MaxQtw (12)

5. The quantity of products sent by the transit warehouse to the agent, i.e., the export of
the transit warehouse, depends on the number of products sent by the enterprise to
the transit warehouse Equation (13), i.e., the import of the transit warehouse.

∑Etol
i=1 d

twj
ei = ∑Atol

k=1 dak
twj

(13)

Therefore, the constraints existing in the MVC collaboration network are shown in
Equation (14).

S.T.



∑Etol
i=1 Qpi

ei = ∑Atol
j=1 Qpi

aj(
Tpi

e + Te
tw + Ttw

ai

)
≤ Tai

∀tw ∈ TW, ∑Ptol
i=1 Qpi

tw ≤ MaxQtw

∑Etol
i=1 d

twj
ei = ∑Atol

k=1 dak
twj

(14)

The MVC collaboration network scenario is described in this chapter. Based on the
analysis of the collaboration relationship and the production-distribution business scenario
of MVC in enterprise dynamic alliance, the optimization model of the MVC collaboration
network is constructed.

4. Algorithm for Optimizing the MVC Optimization Model

The above model is a single objective optimization problem with constraints. In the
model constructed, the scale of solution space will increase exponentially with the increase
of decision variables caused by the increased number of product types, enterprises, ware-
houses, and agents. It is difficult to solve the problem with conventional solution methods,
so the evolutionary algorithm is adopted to solve it. Evolutionary algorithms (EAs) have a
long history of successfully solving COPs (constrained optimization problems) [43]. One of
the EAs, the GA, is a probability-based random search algorithm [44], which can search
for the optimal solution or sub-optimal solution in the solution space, and is an effective
method to solve the optimization problem with a high-dimensional solution space [45].

4.1. Algorithm Flow

The process of the genetic algorithm adopted is shown in Figure 2. After setting the
node collaboration relationship and constraint conditions of the model, the production-
distribution solution that minimizes the total cost of the MVC collaboration network model
can be obtained by the algorithm. To select the appropriate encoding scheme and selection
operator, the encoding scheme and selection operator will be determined after comparative
experiments.
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4.2. Chromosome Encoding

Chromosome encoding is designed to match genes with solutions. There are several
chromosome encoding methods, such as binary encoding and real-value encoding. To
improve the encoding feasibility and expansibility [33], real-value encoding is adopted.

Considering the characteristics of the product solution and distribution solution, the
high-dimensional decision variable matrix composed of production decision variables
and distribution decision variables shown in Equations (2)–(4) is converted into a one-
dimensional matrix, which is represented by integer encoded chromosomes. Since multiple
products on multiple value chains are involved, and the logistics part of this scenario is
a two-stage distribution problem, before the encoding of the logistics solution of the two
stages, the following two issues need to be taken in account: (1) how to meet the constraints
of the two stages; (2) whether the encoding method used has high solving efficiency and
high-quality solution. According to these, two encoding methods are proposed: staged
encoding and integrated encoding.

Method (1): staged encoding, that is, the genetic algorithm is used to obtain the
optimal distribution solution of the first stage firstly, and the solution of the first stage
is used as conditions to obtain the solution of the second stage. Three products, three
enterprises, four transit warehouses, and three agents were taken as conditions to build an
MVC collaboration network model. The possible values of each group of decision variables
MQ and D1 of the first stage were represented by one-dimensional decimal chromosomes,
as shown in Figure 3.
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In the MVC collaboration network model, there are 3 enterprises and 4 transit ware-
houses in the distribution process of the first stage. The genes in the chromosome represent
the number of products delivered from the enterprise to the transit warehouse, the sub-
script represents the serial number of the corresponding enterprise, and the superscript
corresponds to the serial number of the transit warehouse.

In Figure 3: dj
i is part of the distribution solution of the i-th enterprise for illusion, in

other words, it is the number of products distributed from the i-th enterprise to the j-th
transit warehouse. ∑TWtol

j=1 dj
i is the total number of products produced by enterprise i, i.e.,

the production solution of enterprise i.
The second stage decision variable consists only of D2, and the possible values for

each group of D2 are represented by the one-dimensional decimal chromosomes, as shown
in Figure 4.
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In the MVC collaboration network model, there are 4 transit warehouses and 3 agents
in the second stage of the distribution process. The genes in the chromosome represent the
number of products transferred from the warehouses to the agents, the subscript represents
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the serial number of the corresponding transit warehouse, and the superscript corresponds
to the serial number of the agent manufacturer.

In Figure 4: dj
i is the distribution solution of the i-th transit warehouse, in other words,

it is the total number of products distributed from the i-th transit warehouse to the j-th
agent. ∑TWtol

j=1 dj
i is the total number of products distributed by transit warehouse i. ∑Atol

i=1 dj
i

is the total number of products received by agent j.
Method (2): integrated encoding, that is, the distribution strategies of the two stages are

encoded into one chromosome. The production solution of the enterprises, the production-
distribution solution of the first stage, and the distribution solution of the second stage, are
generated simultaneously according to the constraint conditions when the chromosome is
randomly initialized. The relationship between the output and input of transit warehouses
is maintained by constraints. The relationship is: the quantity of product p shipped from
warehouse i to agents in the second stage is equal to the quantity of product p shipped
to warehouse i in the first stage. The MVC collaboration network model is built with the
experimental parameters in Section 5.3. The possible values of each group of decision
variables (MQ, D1, and D2) are represented by one-dimensional decimal chromosomes as
shown in Figure 5.
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According to the preliminary analysis of the encoding method, since the staged
encoding and solving method minimizes the total cost by stages, there are fewer decision
variables and a smaller solution space ranges in each stage, so the optimization effect of the
total cost is not as good as the integrated encoding method in theory. However, because of
fewer decision variables and more constraints, the solution speed of the staged encoding is
faster. In Section 5, a comparative experiment and analysis of these two encoding methods
are conducted.

4.3. Fitness Function

The fitness function is the standard used to distinguish the advantages and disadvan-
tages of individuals. Because the research is about the optimization effect, the objective
function is the total cost of the MVC collaboration network, that is, the sum of the to-
tal production cost and the total distribution cost. The calculation formula is shown in
Equation (15).

f it = F1(Q) + F2(Q, L) (15)

4.4. Selection Operator

The selection operator simulates the survival of the fittest in the natural biological
evolution process, selecting individuals with high fitness and eliminating individuals with
low fitness. The candidate selection operators are the widely used operators: the enhanced
elite tournament selection operator and the roulette selection operator.

The roulette operator can make it possible for all individuals to be selected. While
valuing the elite, it also leaves little chance for non-elite to survive, therefore the diversity
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will be better than the elite championship. However, at the same time, it will lead to slow
population convergence. In Section 5, a comparative experiment of these two operators is
conducted.

4.5. Crossover Operator

The crossover operator is one of the core elements of the genetic algorithm. By
randomly selecting the chromosomes of parents to carry out allelic cross-exchange, the
excellent genes of the parents can be passed on to the offspring in a certain probability, to
produce excellent offspring in the crossover process. Since the proposed encoding methods
have few requirements on crossover operator and the research focus is encoding method
and selection operator, a simple two-point crossover-based partial matching crossover
operator is adopted, randomly generates matching regions on the alleles of the paternal
chromosomes, and exchanges genes of two paternal matching regions according to the
crossover probability [46]. The partial matching crossover strategy is shown in Figure 6.
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4.6. Mutation Operator

Mutation refers to the mutation of genes on individuals’ chromosomes, thus generating
new individuals. Mutation operation is one of the important means of genetic algorithms
to produce excellent individuals. The reversal mutation operator [47] is used to randomly
generate two reversal points on chromosome individuals, and the gene fragments between
the two points are arranged in reverse order to generate new individuals, as shown in
Figure 7.
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According to the characteristics of production-distribution decision space, a genetic
algorithm is used to solve the MVC collaboration network optimization problem. Moreover,
according to the specific scenario of production-distribution, two chromosome encoding
methods are proposed: staged encoding and integrated encoding. The selection operator,
crossover operator, mutation operator are used to solve the problem, and specific methods
of chromosome encoding are introduced in this chapter.
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5. Experiment and Analysis
5.1. Experiment Environment

The experiment environment and device configuration are as follows: operating
system: Windows 10; processor: Intel Core (TM) i5-7300HQ CPU @ 2.50 GHz; language:
Python 3; integrated development environment: JetBrains PyCharm Community Edition.

5.2. Data of Experiment

Based on the household appliance industry and combined with the production, distri-
bution, and sales data of a dynamic enterprise alliance, a MVC collaboration network of
multiple production ends, multiple agents, and multiple products is constructed. There
are 3 enterprises, 4 transit warehouses, and 3 agents in the network, and the simulation
experiment is carried out for 3 kinds of products. Specific simulation data are shown in
Table 2 of enterprises; Table 3 of transit warehouses; and Table 4 of agents.

Table 2. Information of the enterprises.

Enterprise No. MC (¥ Per Piece) FC (Million ¥)
Cp

e , (Daily Production)

Product 1 Product 2 Product 3

1 1550 0.5 1000 900 1100
2 1650 0.7 1100 700 1000
3 1600 0.6 1200 1000 900

Table 3. Information of the transit warehouses.

Warehouse No. MaxQt (Pieces)
De

t (km)

Enterprise 1 Enterprise 2 Enterprise 3

1 4000 100 2500 2300
2 3500 2200 800 2000
3 3000 2000 1400 1800
4 3500 1500 1600 1500

Table 4. Information of the agents.

Agent No. Tc Per Day
Qp

c , (Pieces) Dt
c, (km)

Product 1 Product 2 Product 3 Ware-
House 1

Ware-
House 2

Ware-
House 3

Ware-
House 4

1 15 1000 2100 800 500 2300 2400 850
2 15 2000 600 600 3000 900 1800 1800
3 15 700 800 1800 3600 1700 700 2870

5.3. Experiment Parameters
5.3.1. Experiment Parameters for Encoding Methods

To ensure the objectivity of the comparison experiment, the algorithm, selection,
crossover, and mutation operators used in the experiment are the same except for the
encoding method. The algorithm parameters are shown in Table 5.

Table 5. Experiment parameters for the encoding methods.

Encoding Method Population Size Algorithm Evolutionary
Generations

Crossover
Probability

Mutation
Probability

Staged encoding 5000 SEGA 20,000 90% 20%
Integrated encoding 5000 SEGA 20,000 90% 20%
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5.3.2. Experiment Parameters of Algorithms

The compared algorithms are SGA with the roulette operator and SEGA with the elite
tournament operator. To ensure the objectivity of the comparison experiment, the two
algorithms adopted unified parameters. The algorithm parameters are shown in Table 6.

Table 6. Algorithm parameters.

Algorithm Population Size Evolutionary
Generations

Crossover
Probability

Mutation
Probability

SGA 5000 20,000 90% 20%
SEGA 5000 20,000 90% 20%

5.4. Analysis of Experiment Results
5.4.1. Analysis of the Results Obtained by Different Encoding Methods

For the staged encoding and integrated encoding, the SEGA algorithm with the same
experiment parameters is used to solve the same problem 10 times. The best fitness
and solution time of the last generation in ten experiments with different methods were
recorded respectively for comparison. The results of different encoding methods are shown
in Table 7.

Table 7. Experiment data of the encoding methods.

Best Fitness, fmin (¥) Time Cost (s)

Staged
Encoding

Integrated
Encoding

Gap of
Best Fitness

Staged
Encoding

Integrated
Encoding

21,034,179 19,249,951 8.48% 609.305 1033.66
21,072,627 19,969,750 5.23% 610.713 1035.62
21,083,618 20,041,390 4.94% 617.838 1051.23
21,155,280 19,345,940 8.55% 588.161 1088.91
21,987,913 19,460,975 11.49% 592.410 1052.95
21,037,718 19,950,505 5.17% 608.124 1033.63
21,020,710 19,109,735 9.09% 583.551 1039.44
20,958,410 19,771,720 5.66% 572.628 1048.78
21,063,779 20,025,090 4.93% 566.634 1051.49
21,143,800 19,870,990 6.02% 579.786 1037.93

1. Comparative analysis of experiment results

As can be seen from the above results, the optimal fitness of the staged encoding is
lower than that of the integrated encoding, because the overall process is divided by the
staged encoding into two staged planning problems as shown in Figures 8 and 9.
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In the scenario of Section 3.3, on the premise that the constraint conditions of Section 
3.6 are satisfied, and the experimental data of Section 5.2 are taken as an example, the 
distribution strategy with the minimum distribution cost in the first stage of the product 
is set as shown in (16). In (16), the left matrix is the distribution strategy of product 1, the 
middle matrix is the distribution strategy of product 2, and the right matrix is the distri-
bution strategy of product 3. 𝑑ଶଷ means 𝑑 pieces of products shipped from enterprise 2 
to transit warehouse 3. 

൥1251 46 0 00 2403 𝑑ଶଷ 00 0 0 0อ 2092 24 315 00 601 0 0468 0 0 0 อ1 0 0 1190 0 1996 00 0 573 511൩ (16)

The distribution solution of the second stage is shown in (17). Matrices (16) and (17) 
are staged solutions with the lowest cost of each stage as the optimization objective func-
tion. The integrated method takes the total cost of the entire MVC collaboration network 
as the optimization objective function. Therefore, there is a solution 𝐷 in this method in 
theory: the production and distribution cost of the first stage of 𝐷 is higher than that of 
(16), but the total cost of 𝐷 is lower than the summary cost of (16) and (17). 

Figure 8. The first stage of production-distribution.
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The distribution solution of the second stage is shown in (17). Matrices (16) and (17)
are staged solutions with the lowest cost of each stage as the optimization objective function.
The integrated method takes the total cost of the entire MVC collaboration network as the
optimization objective function. Therefore, there is a solution D in this method in theory:
the production and distribution cost of the first stage of D is higher than that of (16), but
the total cost of D is lower than the summary cost of (16) and (17).
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2. Comparative analysis of the evolution process

In terms of the speed of the solution, because the optimization is carried out in stages,
each stage has more constraints, fewer decision variables, and a smaller solution space, so
the speed of the solution is faster. This feature is more prominent in the comparison of the
evolution process in the first and second stages (Figure 10).
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Based on the experiment results and the images of the evolution processes (Figures 10
and 11), it can be concluded that staged encoding is faster than integrated encoding because
of more constraints, smaller optimization space, and fewer decision variables, so it is
more suitable for the MVC network with multiple products where the time cost is longer.
Besides, it is easy to assign different constraints to the MVC network in different stages
according to the requirements of nodes, so the staged encoding is suitable for complex
scenarios that have many requirements on the distribution quantity and time at each stage.
However, in terms of the optimization, the staged encoding is inferior to the integrated
encoding, because the integrated encoding is used to optimize the entire production and
distribution process, which has more decision variables and larger optimization space.
Although integrated encoding needs longer solving time, the cost of the optimization result
is 7% lower on average than that of the staged encoding. So, integrated encoding is suitable
for scenarios where cost reduction is given priority and there are no strict requirements for
each stage of the value chain.
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5.4.2. Comparative Analysis of Solving Algorithms

1. Comparative analysis of SGA and SEGA

With the above algorithm parameters and the integrated encoding method adopted,
the same problem is solved 10 times by both the SEGA algorithm, which adopts the elitist
tournament operator, and by the SGA algorithm, which adopts the roulette operator. The
worst fitness, optimal fitness, algorithm time cost, and fitness standard deviation of the
last generation in ten experiments of different algorithms were recorded respectively for
comparison. The results of different algorithms are shown in Table 8 and Figure 12.

Table 8. Experiment results of SGA, SEGA, and ERGA.

Best Fitness,
f_min (¥)

Worst Fitness,
f_max (¥) Time Cost (s) Standard Deviation of Fitness, f_std

SGA SEGA ERGA SGA SEGA ERGA SGA SEGA ERGA SGA SEGA ERGA

20,030,187 19,849,478 19,651,383 21,285,757 20,086,978 19,888,883 935.75 1065.37 1228.26 134,024.43 23,494.22 21,038.63
19,907,146 19,809,604 19,703,741 21,233,376 20,147,104 19,941,241 928.36 1059.46 1221.01 139,240.78 25,064.57 24,736.33
19,954,510 19,803,118 19,912,110 21,387,070 19,974,908 20,151,510 958.66 1093.96 1244.24 136,504.67 18,943.18 27,164.67
19,992,657 19,892,734 19,760,671 21,328,307 20,130,234 19,998,171 913.71 1098.42 1297.24 137,321.44 24,284.71 24,668.79
19,913,814 19,909,604 19,657,517 21,422,150 20,147,104 19,883,767 899.18 1059.46 1296.35 147,413.45 25,064.57 17,993.85
19,971,522 19,849,478 19,756,053 22,569,942 20,086,978 19,981,053 908.85 1065.37 1287.20 141,977.68 23,494.22 22,493.11
19,992,806 19,882,079 19,868,010 21,844,706 20,119,579 20,093,010 933.69 1044.54 1267.65 150,292.57 23,112.23 19,900.79
19,949,906 19,944,644 19,764,781 21,389,986 20,182,144 20,002,281 875.98 1100.74 1253.51 151,597.91 24,861.79 25,712.40
19,965,013 19,943,682 19,743,073 21,567,413 20,122,282 19,980,573 881.38 1074.60 1270.67 139,943.68 19,186.87 24,335.14
19,954,700 19,955,039 19,887,158 21,304,590 20,177,539 20,124,658 867.82 1073.79 1267.19 141,423.25 20,093.23 20,301.43

Figure 12a shows the images of the population evolution process of SGA and SEGA,
with the horizontal coordinate as the number of iterations, and the vertical coordinate as
the minimum value of population fitness value, i.e., the minimum value of total cost. Since
the minimum value of each generation is close to the mean value, the optimal value curve
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covers the mean curve. From the solution results, it can be seen that the cost of SEGA is
lower than that of SGA in nine out of ten experiments, and the standard deviation of SEGA
is lower than that of SGA each time, indicating that the stability of SEGA is better and
the diversity of SGA is better; from the comparison of the solution process images, it can
be seen that SGA has not reached the convergence state at 20,000 generations, and SEGA
has reached the local convergence state at the 12,000th generation. It can be concluded
that SEGA has a better convergence speed compared with SGA but is more likely to fall
into local convergence. Since SEGA has an elite retention after merging the pre-variant
population with the post-variant population, the computation time of each generation of
SEGA is longer, but SEGA converges faster. The reason for the transient fluctuations in
the optimal target value curve of SGA is that the roulette selection operator unnecessarily
selects the optimal individual.
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2. Comparative analysis of ERGA and SGA

Since the tournament operator combined with elite retention performs better than the
roulette operator, this section will further study the influence of elite retention strategy on
the roulette operator based on the scenario above and compare the performance of ERGA
and SGA, which is enhanced by elite retention. The experimental results of ERGA and SGA
are shown in Table 8 and Figure 12b.

According to the evolution process images in Figure 12 and the experimental results
in Table 8, it can be concluded that compared with the original SGA, ERGA reserves more
elite individuals, and has a faster convergence rate. However, at the same time, because
dominant individuals will be copied and quickly spread to the population, the diversity
of SEGA will be reduced, and it is easier to fall into local convergence. Also, because of
the extra time needed to join the parent population and sort it, ERGA would be more
time-consuming than the original SGA.

3. Comparative analysis of ERGA and SEGA

Finally, ERGA and SEGA, both of which combine the elite retention strategy, are
compared and analyzed. The experimental results of ERGA and SEGA are shown in
Table 8 and Figure 12c. According to the evolutionary process images in Figure 12c and
the experimental results in Table 8, after being enhanced by the elite retention strategy the
performance of the SGA algorithm has been significantly improved. The quality of the
optimization solution obtained with the same evolutionary generation has changed from a
big gap with SEGA to a small gap or even better than SEGA. It can be concluded that the
elite retention strategy improves the convergence speed of ERGA and the diversity of the
roulette operator is not significantly reduced due to the low percentage of elite retention.
Therefore, ERGA explores the solution space more fully and optimizes better. However,
ERGA is required to score and rank the fitness of all individuals, while SEGA only needs to
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rank the individuals selected for tournament play, so ERGA is larger than SEGA in terms
of time cost.

5.4.3. Analysis of the Solution

As can be seen from the above comparative analysis, the elite retention strategy can
improve the convergence of the algorithm by retaining more elite individuals, but it also
reduces the diversity of the algorithm and makes it easier to fall into local convergence.
Compared with SEGA, which also combines an elite retention strategy, ERGA performs
better in terms of global convergence with little time difference.

In the scenario of Section 3.3, the primary goal of the MVC collaboration optimization
network is to reduce the total cost of production and distribution. Therefore, according to
the above conclusion, the ERGA algorithm combined with the integrated encoding method
should be selected. The production solution is shown in Figure 13.
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Figure 13. Optimization results of production and distribution solution.

Specifically, the first stage of the solution is shown in Table 9, and the second stage of
the solution is shown in Table 10. Taking enterprise 1 as an example; enterprise 1 produced
1566 pieces of product 1, then delivered 1000 pieces to transit warehouse 1, 334 pieces to
warehouse 3, and 232 pieces to warehouse 4. Enterprise 1 produced 1373 pieces of product
2, then delivered 607 pieces to transit warehouse 1, 377 pieces to warehouse 3, and 389
pieces to warehouse 4. Enterprise 1 produced 1061 pieces of product 3, then delivered 130
pieces to transit warehouse 1, 179 pieces to warehouse 2, 97 pieces to warehouse 3, and 655
pieces to warehouse 4.
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Table 9. The first part of the solution.

Product 1 Product 2 Product 3

Warehouse
1

Warehouse
2

Warehouse
3

Warehouse
4

Warehouse
1

Warehouse
2

Warehouse
3

Warehouse
4

Warehouse
1

Warehouse
2

Warehouse
3

Warehouse
4

Enterprise 1 1000 0 334 232 607 0 377 389 130 179 97 655
Enterprise 2 0 778 0 0 0 626 0 0 0 1000 0 0
Enterprise 3 158 0 494 704 442 0 584 475 589 54 373 123
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Table 10. The second part of the solution.

Product 1 Product 2 Product 3

Agent 1 Agent 2 Agent 3 Agent 1 Agent 2 Agent 3 Agent 1 Agent 2 Agent 3

Warehouse 1 632 511 15 757 207 85 300 23 396
Warehouse 2 193 409 176 148 148 330 248 363 622
Warehouse 3 172 375 281 813 103 45 166 132 172
Warehouse 4 3 705 228 382 142 340 86 82 610

From Figure 13, Tables 9 and 10, it can be concluded that the ERGA algorithm, which
combines the integrated coding approach, yields a multi-product production-distribution
solution that meets the requirements of the manufacturers, transit warehouses, and agents
in each value chain without node conflicts.

In this chapter, based on the background of the household appliance industry and com-
bined with the production, distribution, and sales data of a dynamic enterprise alliance, an
MVC collaboration network of multiple products, multiple production ends, and multiple
agents is constructed. Due to the multi-stage characteristic of the production-distribution
scenario, two chromosome coding methods are proposed in this paper: staged coding
and integrated coding. The comparative experimental results and evolutionary process of
the coding methods show that staged coding is more suitable for complex scenarios with
requirements on the number of distributions and distribution time at each stage. Integrated
coding is more suitable for scenarios where cost reduction is a priority and there are no
strict requirements for each stage of the value chain.

Since the tournament operator combined with elite retention performs better than
the roulette operator, the influence of elite retention strategy on the algorithm has been
further studied. A comparative experiment analysis for SGA and SEGA genetic algorithms
is conducted and it shows that the elite retention strategy can improve the convergence of
the algorithm by retaining more elite individuals, but it also reduces the diversity of the
algorithm and makes it more likely to fall into local convergence. Based on this, a roulette
algorithm ERGA combined with the elite retention strategy is proposed. The comparative
experiment results and the analysis of the population evolution process show that ERGA
has the best combined effect in terms of time cost and optimization compared with SGA
and SEGA.

6. Conclusions

In the enterprise dynamic alliance, an analysis of the essential characteristics of the
MVC collaboration network has been conducted. An MVC collaboration network opti-
mization model aiming at the optimization demand of the MVC collaboration network
in production-distribution is proposed. It takes production-distribution solutions as the
decision space, the total cost as the optimization objective, and the time limit and capacity as
constraints. For the high-dimensional characteristics of the decision space in the multi-task,
multi-production end and multi-distribution end scenario, a genetic algorithm is used to
solve the MVC collaboration network optimization model. The collaboration constraints of
nodes in the chains are mapped as constraints among genes of chromosomes, and the prob-
lem of difficult collaboration or even conflicts among nodes in MVC collaboration networks
is solved by adjusting the constraints among genes. In view of the multi-level characteristics
of the production-distribution scenario, two chromosome coding methods are proposed
in this paper: staged coding and integrated coding. The comparative experiments show
that the staged coding is more suitable for complex scenarios with high requirements on
distribution volume and time at stages; the integrated coding is more suitable for the
optimization scenarios pursuing lower costs in the whole production-distribution pro-
cess. Finally, this paper proposes a roulette algorithm ERGA, which was combined with
the elite retention strategy. The comparative experimental results and the analysis of the
population evolution process show that ERGA outperforms SGA and SEGA in terms of
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time cost and optimization, and that ERGA is more generalized. By reasonably combining
coding methods and selection operators, the MVC collaboration network optimization
model can be made more adaptable to different production-distribution environments
and help the dynamic alliance of enterprises to solve the optimal solution under different
production-distribution high-dimensional environments.

In future research, the influence of the fullness of the TEU (transmission extension
unit) on the transportation cost could be introduced into the optimization model, and the
matching modeling analysis of the fullness and the shipping volume could be conducted so
that the scenario is more in line with the actual transportation cost, since this paper does not
consider the influence of the fullness of the TEU on the transportation cost. Secondly, based
on the research scenario of product production-distribution in this paper, which involves
product manufacturing, warehousing, logistics, etc., it could be further extended to carry
out research on the scenario of the MVC of the whole product process, including raw
material supply, product manufacturing, warehousing, logistics, marketing, and sales, etc.,
involving the whole process of the MVC collaboration planning of suppliers, manufacturers,
distributors, and customers.
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