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Abstract: Fine classification of urban nighttime lighting is a key prerequisite step for small-scale
nighttime urban research. In order to fill the gap of high-resolution urban nighttime light image
classification and recognition research, this paper is based on a small rotary-wing UAV platform,
taking the nighttime static monocular tilted light images of communities near Meixi Lake in Changsha
City as research data. Using an object-oriented classification method to fully extract the spectral,
textural and geometric features of urban nighttime lights, we build four types of classification models
based on random forest (RF), support vector machine (SVM), K-nearest neighbor (KNN) and decision
tree (DT), respectively, to finely extract five types of nighttime lights: window light, neon light, road
reflective light, building reflective light and background. The main conclusions are as follows: (i) The
equal division of the image into three regions according to the visual direction can alleviate the
variable scale problem of monocular tilted images, and the multiresolution segmentation results
combined with Canny edge detection are more suitable for urban nighttime lighting images; (ii) RF
has the highest classification accuracy among the four classification algorithms, with an overall
classification accuracy of 95.36% and a kappa coefficient of 0.9381 in the far view region, followed
by SVM, KNN and DT as the worst; (iii) Among the fine classification results of urban light types,
window light and background have the highest classification accuracy, with both UA and PA above
93% in the RF classification model, while road reflective light has the lowest accuracy; (iv) Among
the selected classification features, the spectral features have the highest contribution rates, which
are above 59% in all three regions, followed by the textural features and the geometric features
with the smallest contribution rates. This paper demonstrates the feasibility of nighttime UAV static
monocular tilt image data for fine classification of urban light types based on an object-oriented
classification approach, provides data and technical support for small-scale urban nighttime research
such as community building identification and nighttime human activity perception.

Keywords: unmanned aerial vehicle (UAV); object-oriented; machine learning; nighttime urban
remote sensing; tilt photogrammetry; urban light classification

1. Introduction

Nighttime lighting is a reflection of human activity, economic development and energy
use [1,2]. Traditional city night light images are mostly obtained by satellite remote sensing,
while small rotary-wing UAVs, as a new remote sensing platform, can provide ultra-high
resolution city night light images at the vertical level through tilt photography [3–7]. The
distribution of different types of urban lights reflects the internal structure of the city and
the intensity of human activities. Therefore, the classification and identification of urban
nighttime lights is a key prerequisite step for small-scale nighttime urban research, and
the fine classification of various types of urban lights has important research significance
and application value for community building identification, urban emergency rescue and
nighttime human activity perception.
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The study of fine classification of urban night lights needs to consider the extrac-
tion of features, the selection of classification methods and the evaluation methods of
classification accuracy, among which the most important is the selection of classification
methods. The study of fine classification of high-resolution remote sensing images, such as
UAVs, mostly adopts an object-oriented classification approach; object-orientation uses the
segmented object as the basic unit and can take full advantage of the spectral, geometric
and textural features of the object to be classified [8]. In addition, the researcher adds
various features according to the characteristics of the object under study, such as adding
vegetation indices to identify changes in urban tree cover [9], adding topographic infor-
mation to classify features [10], etc. Of course, too much feature information can lead to
redundancy. Yang K et al. [11] demonstrated that differences in feature dimensionality and
importance are the main factors contributing to variation in olive tree extraction accuracy;
Guo Q et al. [12] compared different feature combination schemes and showed that the
combination by feature elimination had the highest accuracy in urban tree classification.
Object-oriented approaches are often combined with machine learning in the selection of
classification algorithms. In order to explore the most suitable machine learning algorithm,
Cao J et al. [13] compared the accuracies of support vector machine (SVM) and K-nearest
neighbor (KNN) algorithms for mangrove species classification, and the result was that
SVM was more accurate than KNN; Ye, Z et al. [14] compared the accuracy of random
forest (RF), support vector machine (SVM) and K-nearest neighbor (KNN) algorithms in
extracting urban impervious surfaces and concluded that RF had the highest extraction
accuracy. LIANG, L et al. [15] compared the accuracy of five machine learning algorithms
for extracting permafrost hot thaw slip boundaries and concluded that SVM had the highest
accuracy; Pádua L et al. [16] compared the fine classification results of support vector ma-
chines (SVM), random forests (RF) and artificial neural networks (ANN) for vineyards and
concluded that the overall classification performance of ANN was better. It can be seen that
the most suitable machine learning algorithms will vary when conducting object-oriented
classification studies on different research objects. Additionally, from the viewpoint of
the previous research on image time, the research on the combination of object-oriented
and UAV images mainly focuses on daytime images, there is less research on the fine
classification of city lights at night and there is no research on the fine classification of urban
nighttime UAV images using object-oriented approaches.

Therefore, this paper uses a small rotary-wing UAV as a new nighttime urban remote
sensing platform, takes the captured static monocular tilted images as the data source,
adopts an object-oriented classification method and explores the classification effect of the
object-oriented method on urban nighttime lights by comparing the classification accuracy
of four machine learning algorithms—random forest (RF), support vector machine (SVM),
K-nearest neighbor (KNN) and decision tree (DT)—fills the gap of fine classification research
using ultra-high resolution urban nighttime light images captured by UAV, and expects to
provide new data and technical references for smaller-scale urban nighttime light research.

2. Materials and Methods
2.1. Study Site and Data Acquisition

The study area is located in Meixihu Street, Yuelu District, Changsha City, Hunan
Province, China, mainly including Meixihu Jinmaoyue, Baijiatang, Longqin Bay, Zhenye
City and Jiajing, etc. The area has uniform and regular distribution of building height and
high community management level, and is a typical urban center community. The images
were acquired during the period of 20:00–20:30 at night in May 2022, which is the peak of
human nocturnal activity and is representative. Some of the parameters of the UAV were
set as shown in Table 1, and the monocular shooting method with fixed vertical takeoff and
landing was used to obtain the city night tilt image containing red, green and blue bands
(Figure 1). A clear time without wind and clouds was chosen for the shooting to ensure
the accuracy.
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Table 1. UAV parameter settings.

Sensor Flight Altitude Resolution Tilt and Turn ISO Aperture Size Exposure

CMOS 300 m 0.25472 × 3648 −20◦ 800 2.8 1/15
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Figure 1. The study area.

2.2. Research Methods

In this study, a classification method of urban night lights based on static monocular
tilted UAV visible images is proposed which uses object-oriented approaches and machine
learning algorithms. The classification process mainly consists of the following four steps
(Figure 2): (1) pre-processing of UAV images; (2) image segmentation and extraction of
feature information; (3) image classification, using RF, SVM, KNN and DT classifiers to
classify urban nighttime lights; (4) classification accuracy evaluation, selecting the four
indexes of OA, kappa coefficient, UA and PA to evaluate the classification accuracy and
analyze the accuracy of different machine learning algorithms and light types.
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2.2.1. Image Pre-Processing

From Figure 1, it can be seen that the urban nighttime UAV images mainly included
five types of lights: window light, neon light, road reflective light, building reflective light
and background, and compared with the daytime images, the nighttime UAV images had
problems such as low contrast and noise pollution in the dark light areas of the images.
In addition, the spatial resolution of the image field of view direction was constantly
changing due to the angle of monocular tilt image capture. For the above problems, three
pre-processing operations, namely contrast enhancement, bilateral filtering denoising and
view field division, were used to solve them.
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(1) Contrast enhancement
To solve the problem of low contrast, this paper used the image enhancement module

in the PIL library to pre-process the images, such as for contrast enhancement. The process
is as follows: first, the original image is converted to grayscale and the arithmetic mean
of its grayscale is found; then, a new image is created with the same size and number of
channels as the original image, and the value of each channel for each pixel of the new
image is the grayscale mean calculated earlier; finally, the new image is created by merging
the original image and the new image, and the parameter a determines the weight of the
two when they are merged.

imgnew = img1 ∗ (1.0 − a) + img2 ∗ a (1)

where img1 is the converted grayscale image, img2 is the original image and imgnew is
the new image after enhancement. a is the ratio that controls the two images when they
are combined; when a < 1, the image contrast is reduced; when a = 1, the image remains
unchanged; and when a > 1, the image contrast is enhanced.

(2) Bilateral filtering denoising
Bilateral filtering is a nonlinear filter based on the principle of representing the intensity

of a pixel by a Gaussian-weighted average of the luminance of the surrounding pixels,
making it effective not only in removing image noise but also in better preserving the edge
information of the object [17]. Its application in low luminance environments has been
demonstrated [18]. In this paper, after several comparison tests, a 50*50 window was finally
used for bilateral filtering of the captured urban nighttime UAV images. The processed
images effectively removed noise and retained the edge information of various types of
lights intact, which was more conducive to the later image segmentation and classification
operations.

(3) View field division
Static monocular tilt image is a single-view tilt image taken at a certain height using

a single-lens UAV with a fixed vertical takeoff and landing, which has the problem of
continuous variable scale, where the spatial resolution of the image becomes gradually
smaller along the direction of the field of view and the size of the same type of light
in the image varies very much, which has a certain impact on image segmentation and
classification. Therefore, in this paper, before image segmentation, the images were equally
divided into three images in the near, middle and far view regions according to the view
direction (Figure 3), which effectively alleviated the continuous variable scale problem.
The subsequent image segmentation and classification operations were based on the near,
middle and far view regions.
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2.2.2. Multiresolution Segmentation

Image segmentation is a key step in object-oriented classification, and the degree of
segmentation directly affects the subsequent classification results. In this paper, the mul-
tiresolution segmentation (MRS) algorithm in eCognition 9.0 software was used for image
segmentation operation. Multiresolution segmentation is a bottom-up iterative algorithm
based on region merging under different scale conditions with a certain image element as
the starting point, and the final segmentation objects follow the principle of maximum local
heterogeneity among them. The parameters to be set in the multiresolution segmentation
process include band weights, scale parameters, shape factors and compactness, among
which the scale parameters are mainly determined with the aid of an ESP2 plug-in, which
reflects the homogeneity of the segmentation results by introducing the local variance (LV)
index and finds the potential optimal segmentation scale by rate of change (ROC) [19].

The light types, such as window lights, in urban nighttime UAV images as small
targets are prone to over-segmentation using multiresolution segmentation directly [20–22].
In this paper, we finally chose to combine Canny edge detection to alleviate the over-
segmentation phenomenon. As a comprehensive algorithm with good performance, Canny
edge detection has been tried by many scholars in combination with multiresolution
segmentation algorithm [23,24], and the final segmentation results can effectively alleviate
the over-segmentation phenomenon and the edge information of the segmented object is
more consistent with the real object edge contour.

2.2.3. Features Extraction

Based on the image segmentation results, the spectral, textural and geometric features
of the lighting object were extracted. According to the characteristics of different types of
night lighting objects, this paper extracted a total of 24 kinds of feature information. Spectral
features include mean, standard deviation, maximum brightness difference and brightness
in the visible band; textural features include correlation, homogeneity, contrast, standard
deviation, angular second moment, dissimilarity, entropy and mean value extracted using
gray level co-occurrence matrix (GLCM); geometric features include area, length/width,
compactness, density, main direction, roundness, shape index and asymmetry of the
lighting object. In order to facilitate subsequent writing, each feature was added with a
number for simplified representation, and the specific feature information is shown in
Table 2.

Table 2. Feature information and number.

Feature Category Feature Name (Number) Number of Features

Spectral features
Mean_Red (S1), Mean_Green (S2), Mean_Blue (S3),

SD_Red (S4), SD_Green (S5), SD_Blue (S6),
Max_diff (S7), Brightness (S8)

8

Textural features

GLCM_Correlation (T1), GLCM_Homogeneity (T2),
GLCM_Contrast (T3), GLCM_StdDev (T4),

GLCM_Ang_2nd (T5), GLCM_Dissimilarity (T6),
GLCM_Entropy (T7), GLCM_Mean (T8)

8

Geometric features
Area (G1), Length/Width (G2), Compactness (G3),

Density (G4), Main_direction (G5), Roundness (G6),
Shape_index (G7), Asymmetry (G8)

8

2.2.4. Sample Selection

In this paper, based on the three regions divided, different sample sizes were selected
according to the actual distribution of each category of light, and a total of 2440 samples
were selected. Since there was no road reflective light in the far view region, only the
four light types other than road reflective light were available for sample selection. The
selected sample data were normalized before model training. To ensure the stability of
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the classification model and prevent overfitting, a stratified sampling method was used to
randomly divide each category of light sample into training and validation sets in the ratio
of 7:3 (Table 3).

Table 3. Number of training and testing samples for different light types.

Light Category Total Samples Training Samples Validation Samples

Window Light 550 385 165
Neon Light 530 371 159

Road Reflective Light 300 210 90
Building Reflective Light 530 371 159

Background 530 371 159

2.2.5. Classifier

In this paper, based on the synthesis of previous classification algorithms used in
object-oriented classification and combined with the lighting objects in this study, we finally
determined that four classification algorithms, namely random forest, support vector
machine, K-nearest neighbor, and decision tree, were used for comparative analysis to find
the most suitable classification algorithm for UAV nighttime urban lighting objects.

Random forest (RF) is a supervised classification algorithm based on integrated learn-
ing [25], which is constructed by combining multiple decision trees. The final classification
result is obtained by averaging or voting the results of each decision tree. The random forest
model has the advantages of high accuracy, robustness and resistance to overfitting, and
has better performance in dealing with high-dimensional nonlinear classification problems
and is widely used in high-resolution image classification [26–28].

Support vector machine (SVM) is a supervised machine learning algorithm based
on statistical learning theory with powerful nonlinear and high-dimensional processing
capability and high recognition accuracy for small samples [29,30]. The core idea of SVM is
to map low-dimensional space to high-dimensional space through kernel function, search
for the optimal separation hyperplane in high-dimensional space, maximize the distance
between samples and this plane, and thus realize sample classification [31].

The K-nearest neighbor algorithm (KNN) is a nonparametric classification algorithm.
The KNN algorithm classifies data based on the nearest or adjacent training examples in
a given region, and for a new input, its K-nearest neighbor data are computed, and the
majority type of its nearest neighbor data determines the classification of the new input [32].
The K-nearest neighbor algorithm is a simple but highly accurate lazy learning algorithm.

Decision tree (DT) is a supervised learning algorithm that uses a tree structure to
construct a classification model, where each internal node of a decision tree is a set of
category attributes [33]. DT has the advantages of fast computing speed and high accuracy
and can work effectively on relatively small data sets [34], making it widely used in remote
sensing image classification.

In this paper, we used Python 3.9 as the runtime environment for machine learning
models. When modeling the classifiers, all used the ten-fold cross-validation method to
ensure the accuracy of the models when training, and the grid search method was used to
select the best parameters for each type of model.

2.2.6. Accuracy Evaluation Methods

In order to accurately analyze the classification accuracy of different machine learning
models for UAV nighttime city light images, this paper used the calculation of confusion
matrix and employed overall accuracy (OA), kappa coefficient, producer accuracy (PA) and
user accuracy (UA) as quantitative metrics to evaluate the classification results.

OA =

n
∑

i=1
Tii

Tsum
× 100% (2)
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Kappa =

Tsum
n
∑

i=1
Tii −

n
∑

i=1
Ti+T+i

Tsum2 −
n
∑

i=1
Ti+T+i

(3)

PA =
Tii
T+i

× 100% (4)

UA =
Tii
Ti+

× 100% (5)

where Tsum is the total number of samples, Tii is the number of correctly classified samples,
n is the total number of categories, Ti+ is the predicted number of samples in category i,
and T+i is the number of true samples in category i.

3. Results
3.1. Comparison of Segmentation Results

In this study, the band weights were set to one. The specific segmentation process was
as follows: firstly, keeping the scale parameter constant, the shape factor and compactness
were segmented in steps of 0.1 and iterated through 0.1–0.9 for multiple segmentation
experiments to determine the optimal parameters of both; secondly, the ESP2 plug-in was
used to determine the potentially suitable scale parameter (Figure 4), and the final scale
parameters were determined by visual interpretation; finally, the optimal segmentation
parameter settings for different regions were obtained (Table 4).
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Table 4. Optimal segmentation parameters for near, middle and far view regions.

Region Name Scale Parameter Shape Factor Compactness

Far view region 32 0.2 0.5
Middle view region 42 0.4 0.7

Near view region 52 0.3 0.8

In this paper, we incorporated Canny edge detection results based on multiresolution
segmentation to alleviate the over-segmentation phenomenon of some lighting types. From
comparing the segmentation results before and after combining Canny edge detection
(Figure 5), it was difficult to segment all light types perfectly using only the multiresolution
segmentation algorithm, and there was over-segmentation of a window light into multiple
window lights (e.g., in the near view region of Figure 5 using only the area marked by circle

1©, 2© and 3© in MRS), the existence of a halo around the window light (e.g., in the near view
region of Figure 5 using only the area marked by circle 4© in MRS) and over-segmentation
of the building reflective light and background into multiple objects (e.g., in the middle
view region of Figure 5 using only the area marked by circle 4© and 5© in MRS). The Canny
edge detection can detect the edge contours of all kinds of lights with a low error rate
and as much as possible, so the combination of the two makes the extraction results more
consistent with the real contours of all kinds of lights. As can be seen from the selected 1©
2© 3© region in Figure 5, after combining Canny, the over-segmented window light was

re-segmented into a complete window light, making the interior of individual window
lights more complete and more homogeneous. Additionally, from the 4© 5© region selected
in Figure 5, we can see that after the combination of the two, the segmentation result of the
building reflective light and background was more regular and smoother, which is more
in line with the actual situation. The segmentation results in this paper further validate
the feasibility of the combination of the two types of algorithms for the application of UAV
nighttime urban lighting images.
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3.2. Classification Results
3.2.1. Results of Fine Classification of Urban Nighttime Lighting

Based on the segmentation, four classification algorithms, RF, SVM, KNN and DT,
were used to classify the lighting objects, and the classification results are shown in Figure 6.
In general, RF had the best classification results, and its classification results reflected the
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distribution of various types of urban lights more accurately; in particular, the window
lights and backgrounds in the near, middle and far view regions are perfectly identified.
The classification results of SVM and DT were the second best, and the two types of
algorithms classified window light and building reflective light better; but, compared with
RF, the SVM algorithm had more sticky recognition phenomena of identifying neon light
periphery as window light in the mid- and far-view regions, there was the phenomenon
of identifying multiple window lights as one window light, and more misclassification of
road reflective light in the near- and mid-view regions. DT had more misdistribution of
window light and road reflective light than RF. The KNN had the worst classification results,
with a particularly high number of misclassifications and sticky recognition phenomena,
especially for road and building reflective lights.
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Figure 6. Fine-grained classification results of four machine learning algorithms for urban nighttime
lights in near, middle and far view regions.

3.2.2. Accuracy Assessment of Fine Classification of Urban Nighttime Lighting

In this paper, the confusion matrices for different regions and algorithms were calcu-
lated separately based on the validation samples, and this was used to obtain the classifica-
tion accuracy for each type of light, as well as the OA and kappa (Tables 5–7). Collectively,
the OA of all three regions was above 80% and the kappa was above 0.75, among which
the OA and kappa of the far view region were the largest, both above 90%, with the best
classification effect.

The classification accuracy shows that the OA and kappa of RF were higher than those
of SVM, KNN and DT in all three regions (Tables 5–7), among which the OA and kappa
were the highest in the vision region with 95.36% and 0.9381, respectively. Therefore, the
RF algorithm performed better than the other three algorithms in the fine classification of
urban nighttime lights.
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Table 5. Far view region classification accuracy table (%).

Light Category
RF SVM KNN DT

UA PA UA PA UA PA UA PA

Window Light 97.30 98.63 95.95 92.21 100.0 96.10 90.54 98.53
Neon Light 93.24 97.18 90.54 100.0 89.19 100.0 93.24 93.24

Building Reflective Light 95.46 88.73 90.91 85.71 93.94 81.58 95.46 86.30
Background 95.46 96.92 96.97 96.97 87.88 95.08 95.46 96.92

OA 95.36 93.57 92.86 93.57
Kappa 0.9381 0.9142 0.9047 0.9143

Table 6. Middle view region classification accuracy table (%).

Light Category
RF SVM KNN DT

UA PA UA PA UA UA PA UA

Window Light 93.48 95.56 95.65 86.27 89.13 83.67 84.72 79.59
Neon Light 90.00 85.71 85.00 91.89 77.50 83.78 72.50 78.38

Road Reflective Light 80.85 90.48 74.47 94.59 85.11 80.00 78.72 80.44
Building Reflective Light 88.24 78.95 88.24 73.17 76.47 81.25 82.35 75.68

Background 100.0 100.0 100.0 96.88 96.77 100.0 93.55 100.0
OA 89.90 87.88 84.85 81.82

Kappa 0.8732 0.8480 0.8090 0.7712

Table 7. Near view region classification accuracy table (%).

Light Category
RF SVM KNN DT

UA PA UA PA UA UA PA UA

Window Light 93.02 93.02 95.35 75.93 95.35 82.00 83.72 75.00
Neon Light 91.67 88.00 81.25 86.67 81.25 90.70 75.00 76.60

Road Reflective Light 85.71 88.89 80.36 88.24 85.71 73.85 83.93 82.46
Building Reflective Light 90.48 89.06 84.13 91.38 60.32 84.45 80.95 87.93

Background 97.78 100.0 100.0 95.74 97.78 84.62 97.78 97.78
OA 91.37 87.45 82.35 83.92

Kappa 0.8916 0.8428 0.7793 0.7983

In the classification accuracy of each light type in the far view region (Table 5), the
types of light with the best classification accuracy were window light and background,
with neon light and building reflective light being relatively poor. The UA of all light types
was higher than 87%, and the PA of all except KNN for road reflective light was lower than
85%, indicating that these four algorithms have lower misclassification rates and omission
rates for all types of urban lights in the vision area.

In the classification accuracy of each light type in the middle view region (Table 6), the
classification accuracy of the background was the highest, followed by the window light,
and the lowest accuracy was the road reflective light. The PA and UA of each light type in
the middle view region were higher than 72%, and the lowest UA was the classification
accuracy of DT for neon light, which was only 72.50%, with a high misclassification rate;
the lowest PA was the classification accuracy of SVM for building reflective light, which
was 73.17%, with a high omission rate.

In the classification accuracy of each light type in the near view region (Table 7), the
classification accuracy of background was the best, and the classification accuracy of road
reflective light was the worst. The lowest result in UA was the classification result of
KNN for building reflective light, only 60.32%, with a very high misclassification rate,
and the highest was the classification of background by SVM, with 100% accuracy and
all correct classification; the lowest in PA was the classification accuracy of KNN for road
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reflective light, which was only 73.85% with a high omission rate, and the highest was the
classification of RF for background with 100% accuracy and no omission.

In summary, the classification accuracy of each light type is ranked as follows: back-
ground > window light > neon light > building reflective light > road reflective light.
The classification accuracy of background and window light was the highest, and the
classification accuracy of road reflective light was the lowest.

3.3. Feature Contribution Analysis

To further explore which specific features had the greatest degree of influence on the
fine classification of nighttime urban lighting, the RF algorithm was used to obtain the
ranking of feature contributions in different regions (Figure 7). Among the three regions,
the feature with the highest contribution was the spectral feature, and the total contribution
of the spectral feature was 59.63% in the near view region, 63.49% in the middle view
region and 66.09% in the far view region; the proportion of the region increased gradually
from near to far, indicating that the smaller the classification object was, the higher the
contribution of the spectral feature was. Among them, Mean_Red (S1), Mean_Green (S2)
and Brightness (S8) account for the top three of the three regional features, accounting
for 32.19%, 36.92% and 44.34% from near to far, respectively, indicating that the cities are
more sensitive to the red and green bands at night compared with the blue band. The
contribution of geometric features was the smallest, 17.43% in the near view region, 14.77%
in the middle view region and 14.67% in the far view region, and the contribution decreased
gradually from near to far, indicating that the smaller the classification object was, the
smaller the proportion of geometric features was, and the same went for textural features.
It can be seen that the contribution of spectral features was the largest and the contribution
of geometric features was the smallest in the nighttime urban lighting images captured by
UAVs, and the smaller the classification object was, the larger the contribution of spectral
features was, while the contribution of geometric and textural features was smaller.
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3.4. Offsite Application Comparison

The research area selected in this paper is a typical mature community in urban
construction in Changsha. Community buildings are mainly high-rise buildings, dense
buildings, and rich in nighttime lighting types, providing a very good research area for fine
classification of urban lighting at night. However, there are differences in the characteri-
zation of nighttime urban lights on UAV images in different regions. In order to explore
the performance of this paper’s method in other areas of Changsha City and further verify
the feasibility and accuracy of the object-oriented method in the fine classification of static
monocular tilted urban nighttime light images captured by UAV, the old urban area of
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Changsha City, represented by Guanshaling (Figure 8), was selected as the research area for
the comparison of different applications in this paper. The RF with the highest classification
accuracy in the Meixi Lake area was used as the classification algorithm, and the method of
this paper was used for classification.
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As can be seen from the classification accuracy (Table 8), the classification accuracy
in Guanshaling was similar to that of Meixi Lake. The overall classification accuracies of
the three regions of near, middle and far view of Guanshaling were all above 85%, and
the kappa were above 0.8. The feasibility and accuracy of the classification method of
this paper in the fine classification of static monocular tilted urban nighttime light images
captured by UAV were verified in different study areas.

Table 8. Classification accuracy of Guanshaling.

Accuracy Index Near View Region Middle View Region Far View Region

OA 86.67% 91.11% 93.02%
Kappa 0.8320 0.8889 0.9124

4. Discussion

The classification accuracy shows the highest classification accuracy in the far view
region, because the various light types in the far view region are smaller, the internal
features of the object are more homogeneous and fluctuate less, and it is easier to distinguish
between different types of lights. At the same time, in the tilt image, the more distant the
region from the shooting point, the higher the probability that the road reflective light is
blocked. The selected far view region in this paper directly without the road reflective
light as a light type, correspondingly reducing part of the misclassification phenomenon.
The classification accuracy of the middle view region was the lowest, the OA of the RF
algorithm was 89.9%, and the kappa was 0.8732. Compared with the near view region,
the object resolution of the middle view region was lower, and in the upper-right position
of the middle view region (Figure 6), various lights were interspersed together, which
increased the difficulty of classification. Additionally, the results from the offsite application
comparison show that the accuracy of the middle view region was higher than that of the
near view region, because the light types in the middle view region in the offsite application
were not as complex as in Figure 6, so the classification accuracy of urban lights in different
regions was ultimately affected by both the image resolution and the complexity of lights.

Our study indicated that RF had the highest classification accuracy in the three regions
(Tables 5–7), which is in line with the findings of many classification studies of daytime
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UAV images [12,35–37]. The RF algorithm integrates multiple decision trees with good
high-dimensional data processing capability and can effectively avoid noise interference. In
this paper, more types of lighting features were selected, so the RF classification algorithm
with better high-dimensional data processing capability had better classification results,
especially in the near-field region where the accuracy difference with other classifiers
was the largest, and OA was 3.92% higher than that of the second-ranked SVM. SVM
had the second highest classification accuracy, and, as can be seen from Table 5, the OA
difference with RF in the far-field region was the smallest at 1.79%, indicating that SVM had
some advantages in dealing with small target object recognition, but was less capable of
handling high-dimensional data and resisting noise than RF. KNN and DT had the lowest
classification accuracy because KNN is a lazy classifier, and the nighttime light objects in
this paper are more complex and more prone to misclassification and omission of lights;
similarly, DT has a simple calculation process, which is difficult to cope with the task of
fine classification of urban nighttime light types.

In the fine classification results of each light type (Tables 5–7), there were significant
differences in the classification accuracy of each type of light. Taking the classification
results of RF in the near view region as an example, the UA of road reflective lighting was
only 85.71%, and the UA of other light types were above 90% (Table 7). The reasons for
this phenomenon mainly include the following three points: (1) different types of street
lights lead to huge differences within road reflective lighting; (2) more noise points in road
reflective lighting, such as cars, pedestrians and traffic signs such as zebra lines; (3) vehicles
and store lights also lead to different characteristics of road reflective lighting. Therefore,
the classification accuracy and results of road reflective lighting were poor in both the
near and medium view regions. The lighting types with the best classification results were
window lighting and background, as both have more homogeneous internal properties
and do not fluctuate much.

This study shows that spectral features occupy a greater contribution in the classifi-
cation of urban nighttime low-brightness images, which is in line with the conventional
perception that the brightness increases almost gradually from low to high from back-
ground, building reflected light, road reflected light, window light to neon light. The
contribution of spectral features in the near, middle and far view regions was above 59%,
and the proportion was gradually increasing, mainly because the smaller the classification
object was, the less obvious its texture and geometric features were. For example, in the
far view region, the window light directly became a small rectangle with uniform size and
shape, which greatly reduced the separability of the window light in terms of texture and
geometric attributes.

5. Conclusions

In this paper, based on static monocular tilted urban nighttime light images captured
by UAVs, we qualitatively and quantitatively analyze the classification results and accu-
racy of different machine learning algorithms for common urban lights, and analyze the
contribution of various types of features in fine classification, using an object-oriented
classification method. The main conclusions are as follows:

(1) The resolution of the static monocular tilt image captured by the UAV is not a
fixed value, and the variable scale problem will affect the subsequent segmentation and
classification operations. In this paper, we propose the solution of dividing the image into
three regions equally according to the visual direction, which can alleviate the variable
scale problem, and use the segmentation method combining Canny edge detection and the
multiresolution segmentation algorithm to alleviate the over-segmentation phenomenon
generated when using multiresolution segmentation algorithm only.

(2) By comparing the accuracy of four classification algorithms, RF, SVM, KNN and
DT, it was found that RF has the highest classification accuracy, including the highest
classification accuracy in the far view region, with OA of 95.36% and kappa of 0.9381.
SVM is the second, and KNN and DT have the worst classification accuracies, indicating
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that the RF model based on the integrated learning algorithm is more suitable for object-
oriented UAV urban nighttime lights fine classification. Additionally, the OA of RF in
off-site applications were above 85%, and kappa were above 0.8, which further verifies the
feasibility and portability of the method in this paper.

(3) In the fine classification results of light types, window light and background have
the highest classification accuracy, and their UA and PA in the RF classification model were
above 93%, neon light and building reflective light were second, and road reflective light
had the lowest accuracy.

(4) In the feature importance ranking, the contribution rate of spectral features was
the highest, with the three regions of near, middle and far view all above 59%, among
which the highest was 66.09% in the far view region; the contribution rate of geometric
features was the lowest, with the three regions of near, middle and far view all below 18%,
among which the lowest was 14.67% in the far view region. It indicates that the smaller
the classification object is, the higher the sensitivity to spectral features and the lower the
sensitivity to texture and geometric features in urban nighttime lighting images.

This paper demonstrates that the classification method combining object-oriented and
traditional machine learning algorithms is applicable to the fine classification of urban
nighttime light images captured by UAV static monocular tilt. This study makes up for the
lack of traditional nighttime lighting at the vertical level of cities and smaller-scale urban
studies, and provides a practical research idea for using finer-scale urban nighttime lighting
images for related studies. Overall, the results of urban nighttime lighting classification
obtained by this method can meet the needs of further research and provide methodological
and data support for nighttime urban research. However, there are some parts to be
improved in this paper: for example, only visible images are used, and hyperspectral and
LiDAR images are not involved; for the variable scale problem, it is only solved by simply
dividing it into three regions, and no finer solution is proposed. Therefore, future research
will further improve these two parts.
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