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Abstract: In this study, a snapshot-based hyperspectral imaging (HSI) algorithm that converts RGB
images to HSI images is designed using the Raspberry Pi environment. A Windows-based Python
application is also developed to control the Raspberry Pi camera and processor. The mean gray
values (MGVs) of two distinct regions of interest (ROIs) are selected from three samples of 100 NTD
Taiwanese currency notes and compared with three samples of counterfeit 100 NTD notes. Results
suggest that the currency notes can be easily differentiated on the basis of MGV values within
shorter wavelengths, between 400 nm and 500 nm. However, the MGV values are similar in longer
wavelengths. Moreover, if an ROI has a security feature, then the classification method is considerably
more efficient. The key features of the module include portability, lower cost, a lack of moving parts,
and no processing of images required.

Keywords: hyperspectral imaging; fake currency; mean gray value; Raspberry Pi; region of interest

1. Introduction

Counterfeit currency notes are being rapidly circulated in every economy in recent
years [1,2]. In the last decade, more than 3.53 lakh cases were reported due to banknote
counterfeiting [3]. In the USA alone, a loss of more than 20 billion USD has been projected
due to counterfeit checks [4]. With recent developments in counterfeiting technology,
the human eye has lost the ability to differentiate between original and counterfeit ban-
knotes [5].

To prevent counterfeiting of banknotes, every monetary authority has its own se-
curity features. For example, the national central banks of the euro system use micro-
perforations [6]. In the hologram patch of the euro, the “€” symbol is formed by micro-
perforations, or micro-holes. The Reserve Bank of India (RBI) uses the Omron anti-
photocopying feature, which appears in yellow circles on either side of the text “Reserve
Bank of India” [7]. In 1996, the USA added a few security features, including a 3D security
ribbon and a color-shifting bell in the ink [8]. When the currency is tilted, the bell and “100”
will change their positions.

Even with many anti-counterfeiting techniques, the amount of counterfeit currencies
has still increased in recent years [5,9] due to technological evolutions, such as color printing,
duplication, and scanning [10]. Current commercially available techniques use ultraviolet
(UV) light to detect ink marks that are invisible to the human eyes [5,11]. However, this
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process is slow and taxing. In contrast with other techniques, it requires a human operator
who knows exactly where a security feature is located on a banknote to verify authenticity,
and thus is prone to human error.

Even though hyperspectral imaging (HSI) systems have previously used in many other
counterfeit detection protocols, one optical method that has not been widely studied for
counterfeit currency detection is HSI [12–15]. In one study, a non-destructive analysis and
authentication of written and printed documents was performed with a VIS-HSI imaging
technique [16]. In another study, near-infrared hyperspectral imaging (NIR-HSI) was
developed to detect fraudulent documents [17]. HSI acquires the spectrum for each pixel in
an image [18–21]. It has been used in many applications, such as cancer detection [22–25],
air pollution monitoring [26,27], nanostructure identification [28–31], aerospace [32–34],
food quality maintenance [35], verification [36–38], military [39], remote sensing [40–42],
and agriculture [43].

Automatic recognition is a prerequisite for any counterfeit-currency detection method.
In the past, many counterfeit-currency-note detection techniques have been developed,
including UV light detection [44], image processing [11,45,46], deep learning [47,48], bit-
plane slicing [49], and artificial neural networks [50]. However, most of these techniques
have remained within laboratories because they require complex preprocessing. More-
over, HSI is not currently employed in counterfeit currency detection. Therefore, in this
study an automatic counterfeit-currency detection application based on HSI is designed
and developed.

In the current study, a portable low-cost HSI is designed to capture an image of a
Republic of China (ROC) banknote and classify it by extracting three regions of interest
(ROIs) from the banknote and measuring the mean gray value (MGV). The Section 2
explains the security features of a Taiwanese banknote, the module designed in this study,
and the HSI algorithm built to convert an RGB image into a spectral image. The Section 3
describes the extracted ROIs and compares the MGVs of counterfeit and original banknotes.
The Section 4 discusses the advantages, limitations, and lessons learned from this study.

2. Materials and Methods
2.1. Security Features of a Taiwanese Banknote

The national currency of the ROC (also known as Taiwan), called the new Taiwan
dollar (NTD), has eight security features, including intaglio printing, optically variable
ink (OVI), watermarks, and latent texts, as shown in Figure 1 [51–53]. The left side of
the Taiwanese 100 NTD banknote has watermarks of orchids and the Arabic numeral
of the denomination [54]. In addition, when the note is tilted at an angle of 15◦, the
Arabic numerical value of the denomination appears to have two different shades. OVI
is also used on the bottom left corner of the note, wherein the Arabic numerical value of
the denomination appears in two distinct colors (green and purple) when viewed from
different angles. Apart from these features, intaglio printing is also added at five separate
locations. However, all the aforementioned security features are implemented on the same
side of the note.
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Figure 1. Security features of the 100 NTD banknote.

2.2. Experimental Setup

One of the challenges in designing a machine that can detect counterfeit banknotes by
using HSI is that it must be portable and low-cost. Most hyperspectral and multispectral
machines built thus far are fixed and expensive because they require components, such as a
spectrometer, an optical head, and multispectral or hyperspectral lighting systems [55–59].
The novelty of the current study is all the expensive and heavy components are replaced
with low-cost and portable units by developing an HSI algorithm that can convert an RGB
image, captured by a digital camera, into a hyperspectral image.

In any optical detection and classification technique, lighting conditions must remain
constant, specifically when measuring MGV. Therefore, the second challenge is to design a
module such that lighting conditions remain constant while reducing all surrounding light.
In such a case, the module must have its own lighting and processing units.

The schematic of the module designed to capture the image is presented in Figure 2.
The whole module is comprised of only six components. Raspberry Pi 4 Model B is used
as the microprocessor. Raspberry Pi camera version 2 is used to capture an image of
the currency. The camera is connected to Raspberry Pi through a Raspberry Pi mobile
industry processor interface, camera serial interface, and camera pinout (see Supplementary
Materials, Section S1 for all the components used in this study). An Adafruit thin-film
transistor (TFT) display, with 320 × 240 16-bit color pixels in a touch screen measuring
2.8 inches, is added to the module to control Raspberry Pi. In addition, a 3000 K chip on-
board (COB) light-emitting diode (LED) strip is fixed along the inside border of the module
to provide light for the module. The COB LED strip has a uniform spectral response (no
cyan dip) across the blue, green, and red color spectrums. However, this lighting system
is not even, but is rather a pointed light source. Therefore, a white opal profile diffuser is
used to distribute light evenly. The COB LED strip is also connected to an LED dimmer
switch to adjust brightness. The final module is shown in Figure 3.
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Figure 2. Schematic of the HSI system.

Figure 3. (a) Front view and (b) side view of the 3D printed design.

2.3. Visible Snapshot-Based RGB to HSI Conversion Algorithm

The goal of this research is to develop a snapshot-based VIS-HSI imaging algorithm
that can convert an RGB image, captured by a point-and-shoot-based image capturing
system, into a VIS spectral image. In order to attain this goal, it is necessary to ascertain the
connection that exists between the colors included in an RGB image and a spectrometer.
A Macbeth chart with 24 basic colors, including red, green, blue, cyan, magenta, yellow,
medium light human skin, medium dark human skin, blue sky, foliage, blue flower, bluish
green, orange, purplish blue, moderate red, purple, yellow green, orange yellow, white,
black, and four different shades of gray, is used as the target colors in order to obtain
this relationship. For the purposes of this investigation, the Macbeth chart was selected
because it contains the colors that are found in natural settings the most frequently and
in the greatest abundance. Due to the fact that a significant amount of research has been
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conducted using this camera in recent years for the purpose of target color calibration,
the Raspberry Pi camera was chosen for the calibration process. The Raspberry Pi camera
settings are modified such that any image that is taken will be saved in the sRGB (0–255)
color space using the 8-bit JPG file format. To make things easier to understand, the values
are first turned into a more compact function ranging from 0 to 1, and then, using the
gamma function, they are translated into a linearized RGB value. After that, the values are
converted into the color space defined by the CIE 1931 XYZ standard using the conversion
matrix (M). On rare occasions, the camera may be subject to a variety of faults, including
color shift, nonlinear response, dark current, erroneous color separation of the filter, and
other similar issues (see Supplementary Materials, Section S3 for all the conversion formulas
used in this study). The individual conversion formulas to convert the 24-color patch image
and 24-color patch reflectance spectrum data to XYZ color space on the Raspberry Pi camera
side are shown in Equations (1)–(4).X

Y
Z

 = [MA][T]

 f (RsRGB)
f (GsRGB)
f (BsRGB)

× 100 , 0 ≤
RsRGB

GsRGB
BsRGB

≤ 1 (1)

[T] =

0.4104 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505

 (2)

f (n) =

{
( n+0.055

1.055 )
2.4

, n > 0.04045( n
12.92

)
, otherwise

(3)

[MA] =


XSW
XCW

0 0

0 YSW
YCW

0
0 0 ZSW

ZCW

 (4)

On the spectrometer side, to convert the reflection spectral data to XYZ color gamut
space, Equations (5)–(8) are used.

X = k
∫ 700nm

400nm
S(λ)R(λ)x(λ)dλ (5)

Y = k
∫ 700nm

400nm
S(λ)R(λ)y(λ)dλ (6)

Z = k
∫ 700nm

400nm
S(λ)R(λ)z(λ)dλ (7)

k = 100/
∫ 700nm

400nm
S(λ)y(λ)dλ (8)

The nonlinear response of the camera can be corrected by a third-order equation, and
the nonlinear response correction variable is defined as VNon-linear, as shown in Equation (9).

VNon-linear =
[

X3 Y3 Z3 X2 Y2 Y2 X Y Z 1
]T

(9)

In the dark current part of the camera, the dark current is usually a fixed value and does
not change with the amount of incoming light, so a constant is given as the contribution of
the dark current, and the dark current correction variable is defined as VDark, as shown in
Equation (10).

VDark = [a] (10)

Finally, VColor is used as the base, as shown in Equation (11), and is multiplied by the
nonlinear response correction of VNon-linear; the result is standardized within the third order
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to avoid excessive correction, and finally, VDark is added to obtain the variable matrix V as
shown in Equation (12).

VColor = [XYZ XY XZ YZ X Y Z]T (11)

V =
[

X3 Y3 Z3 X2Y X2Z Y2Z XY2 XZ2 YZ2 XYZ X2 Y2 Y2 XY XZ YZ X Y Z a
]T

(12)

As stated in Equations (13) and (14), these mistakes can be rectified by making use of
a variable matrix, denoted by the letter V. This allows one to retrieve the X, Y, and Z values
that have been corrected (XYZCorrect).

[C] =
[
XYZSpectrum

]
× pinv([V]) (13)

[XYZCorrect] = [C]× [V] (14)

The same Macbeth chart, under a controlled lighting environment, is also supplied to
an Ocean Optics QE65000 spectrometer to find the reflectance spectra of the 24 colors. The
brightness ratio (k) is obtained from the standardized value of brightness directly from the
Y value of the XYZ color spectrum (XYZSpectrum). In addition, XYZSpectrum is converted into
the CIE 1931 XYZ color space. The construction process of this algorithm is illustrated in
Figure 4.

Figure 4. Snapshot-based VIS-HSI algorithm.

The root-mean-square error (RMSE) of all 24 colors, compared with XYZSpectrum and
XYZCorrect, is only 0.19, which is such a small value that it is essentially negligible. In
addition to multiple regression analyses, the first six principal components are computed
by performing a principal component analysis (PCA) on the reflectance spectrum (RSpectrum)
data acquired from the spectrometer. In order to establish the nature of the connection
that exists between XYZCorrect and RSpectrum, the dimensions of RSpectrum were reduced.
Following completion of the study, the first six principle components were determined to
be the primary components, which account for 99.64% of the variation in the data. In the
process of conducting a regression analysis on XYZCorrect, the variable VColor was selected
as the dependent variable because it contains all of the feasible combinations of XYZ values.
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Utilizing Equation (15), we were able to extract the analog spectrum, denoted by SSpectrum,
of the 24-color block, which we then contrasted with RSpectrum. Converting XYZCorrect and
XYZSpectrum from the XYZ color space to the CIELAB color space is required prior to making
use of CIE DE2000 for the calculation of color difference. The following formula should be
used for the conversion:

L∗ = 116 f
(

Y
Yn

)
− 16

a∗ = 500
[

f ( X
Xn

)− f ( Y
Yn
)
]

b∗ = 200
[

f ( Y
Yn
)− f ( Z

Zn
)
] (15)

f (n) =

{
n

1
3 , n > 0.008856

7.787n + 0.137931, otherwise
(16)

The RMSE value of the 24 colors in the Macbeth chart is calculated individually, and
the average deviation is 0.75. This value indicates that the reproduced reflectance spectrum
is indistinguishable, and the colors are replicated accurately.

[SSpectrum]380–700nm = [EV][M][VColor] (17)

The aforementioned method can be used to accurately reproduce a hyperspectral
image from an RGB image captured by a Raspberry Pi camera, eliminating the need for
expensive and heavy components, and making the module low-cost and portable.

2.4. Classification Method

In this study, to classify the currency notes, first the Raspberry Pi module is used
with the help of the Windows-based Python application to capture the currency note from
the Raspberry Pi camera. A ROI is cropped out from the currency notes. Secondly, the
wavelength at which the currency should be analysed is selected. Then, the MGV of the
ROI at that specific wavelength is measured. Since MGV is an average intensity of all the
pixels in the ROI, the orientation or alignment of the ROI does not make a difference in the
output value. Based on the MGV value, the currency note is classified as either counterfiet
or original.

3. Results

In this study, two ROIs are selected for further analysis. These ROIs are cropped
from the original image by using the template matching function. The first ROI is a
symbol of a cherry blossom. It has a surface area of 1 cm2. The second ROI is the number
“1” found on the left bottom corner, as shown in Figure 5. ROI 2 has a surface area of
0.336 cm2. ROI 1 does not have any specific security feature, while ROI 2 is printed using
OVI. Therefore, the sensitivity of the method developed in this study can be compared
with the security features of the banknote (see Supplementary Materials, Section S2 for the
entropy measurement of ROI 1).

Since this study represents a pilot study, three counterfeit and three original 100 NTD
banknotes are selected for analysis. For both ROIs, the MGV is found in the visible band
between 400 nm and 500 nm. The MGV is the average measure of brightness of every pixel
in an image; it has been used in various image classification and measurement methods
in the past [60–64]. Figure 6 shows the MGV of ROI 1, while Figure 7 shows the MGV of
ROI 2 (see Supplementary Materials, Section S5 for the MGV mean of the duplicate and
original samples).
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Figure 5. ROI selection: (a) cherry blossom symbol and (b) Arabic numeral “1”.

Figure 6. MGVs of the duplicate and original samples in ROI 1.

Notably, even though the VIS-HSI algorithm can calculate MGVs up to 700 nm, all the
original and counterfeit banknotes have similar MGVs after 500 nm (see Supplementary
Materials, Figures S12 and S13 for MGVs in the range of 400–700 nm). Hence, we can
conclude that the most suitable wavelength region for this application is between 400 nm
and 500 nm. The other reason is that the UV wavelength is the most sensitive region for
detecting counterfeit banknotes. Given that 400–500 nm corresponds to the violet and
blue spectra, these bands are efficient. The average RMSE in this band is 8.008 in ROI
1 and 14.079 in ROI 2. Therefore, we can conclude that ROI 2 exhibits better classification
sensitivity because ROI 2 has security features, such as OVI and intaglio printing, whereas
ROI 1 does not have any specific security feature.

The 90% confidence interval (CI) is calculated around the average MGV of the original
and counterfeit banknotes in ROI 1. The original and counterfeit banknotes are classified
into two different classes. The 90% CI around the average of each class represents the
range in which the MGV value of the banknotes belonging to that specific class will fall
in that specific wavelength. Notably, in ROI 2, 95% CI is calculated and the original and
counterfeit banknotes are classified into two different classes within this 5%.
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Figure 7. MGVs of the duplicate and original samples in ROI 2.

To capture the image of a banknote through the designed module, the Raspberry Pi
web-camera interface is installed on the Raspberry Pi operating system. In this study, a
Python-based Windows application is also developed to capture and analyze images. This
application can directly control the Raspberry Pi camera by using the “Start” and “Stop”
buttons to start and stop the live feed, respectively. The “Capture” button is used to capture
an image. The narrowband wavelength values in which the banknote must be analyzed,
and the gain value specified for each wavelength, are the input. Once the “Analyze” button
is clicked, the template-matching function crops the selected ROI and converts it into the
specified wavelength. The snapshot-based VIS-HSI algorithm developed in this study
is applied to the image, and the MGV of the image is measured. Finally, the banknote
is classified as either original or counterfeit based on the CI value, and the results are
displayed at the bottom of the application, as shown in Figure 8.
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Figure 8. Python-based Windows application for detecting counterfeit currency.

4. Conclusions

As a point of reference for identifying and categorizing counterfeit banknotes, this
study made use of three authentic polymer 100 NTD banknotes, as well as three counterfeit
versions of the same note. It was decided to design and 3D print a module that would
be capable of housing a Raspberry Pi 4 Model B, a Raspberry Pi camera, a 2.8-inch TFT
touch screen, and an LED strip. It was possible to develop a snapshot-based VIS-HSI
algorithm that, when applied to an RGB image, could transform it into a hyperspectral
image. This image could be taken by the Raspberry Pi camera housed within the module.
The mean gray value (MGV) was determined after choosing two ROIs from the banknotes.
The 90% confidence interval (CI) was also calculated around the MGVs for both classes,
and the samples were categorized based on the range provided by this CI. In addition, a
Python-based Windows application was developed for the purpose of analyzing the sample
and capturing the image of a hologram. This application could manage the interface of
the web camera used by the Raspberry Pi computer. The findings indicated that the MGV
values of the various classes were within the range of the 90% confidence interval (CI).
The important novelty of this study is the usage of HSI to detect counterfeit currency by
converting an RGB image to an HSI image, without the usage of any moving components
or an expensive spectral imager. This study has the potential to be expanded further
by taking into consideration additional polymer banknotes as well as different ROIs. In
addition, using this research to collect reflectance spectra allows for the construction of a
spectral library.



Sensors 2023, 23, 2026 11 of 14

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/s23042026/s1: Figure S1. Entropy of two samples of original and duplicate
in the ROI 1 at the wavelength of 400 nm. Entropy of Duplicate sample 1 (Top left corner), Entropy of
Duplicate sample 2 (Top right corner), Entropy of Original sample 1 (Bottom left corner), Entropy of
Original sample 2 (Bottom right corner); Figure S2. Entropy of two samples of original and duplicate
in the ROI 1 at the wavelength of 450 nm. Entropy of Duplicate sample 1 (Top left corner), Entropy of
Duplicate sample 2 (Top right corner), Entropy of Original sample 1 (Bottom left corner), Entropy of
Original sample 2 (Bottom right corner); Figure S3. Entropy of two samples of original and duplicate
in the ROI 1 at the wavelength of 500 nm. Entropy of Duplicate sample 1 (Top left corner), Entropy of
Duplicate sample 2 (Top right corner), Entropy of Original sample 1 (Bottom left corner), Entropy of
Original sample 2 (Bottom right corner); Figure S4. Entropy of two samples of original and duplicate
in the ROI 1 at the wavelength of 550 nm. Entropy of Duplicate sample 1 (Top left corner), Entropy of
Duplicate sample 2 (Top right corner), Entropy of Original sample 1 (Bottom left corner), Entropy of
Original sample 2 (Bottom right corner); Figure S5. Entropy of two samples of original and duplicate
in the ROI 1 at the wavelength of 600 nm. Entropy of Duplicate sample 1 (Top left corner), Entropy of
Duplicate sample 2 (Top right corner), Entropy of Original sample 1 (Bottom left corner), Entropy of
Original sample 2 (Bottom right corner); Figure S6. Entropy of two samples of original and duplicate
in the ROI 1 at the wavelength of 650 nm. Entropy of Duplicate sample 1 (Top left corner), Entropy of
Duplicate sample 2 (Top right corner), Entropy of Original sample 1 (Bottom left corner), Entropy of
Original sample 2 (Bottom right corner); Figure S7. Entropy of two samples of original and duplicate
in the ROI 1 at the wavelength of 700 nm. Entropy of Duplicate sample 1 (Top left corner), Entropy of
Duplicate sample 2 (Top right corner), Entropy of Original sample 1 (Bottom left corner), Entropy of
Original sample 2 (Bottom right corner); Figure S8. Spectral reflectance of the three original and three
duplicate banknotes between 400 nm and 700 nm in ROI 1; Figure S9. Spectral reflectance of the three
original and three duplicate banknotes between 400 nm and 700 nm in ROI 2; Figure S10. Mean of the
duplicate and original MGVs of the original and duplicate samples in ROI 1; Figure S11. Mean of the
duplicate and original MGVs of the original and duplicate samples in ROI 2; Figure S12. Mean of the
duplicate and original MGVs of the original and duplicate samples in ROI 1; Figure S13. Mean of the
duplicate and original MGVs of the original and duplicate samples in ROI 2; Table S1. Components
used to build the module; Table S2. Instrument Specification; Table S3. MGVs of the RGB image.
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