
Citation: Angulo, E.; Márquez, J.;

Villanueva-Polanco, R. Training of

Classification Models via Federated

Learning and Homomorphic

Encryption. Sensors 2023, 23, 1966.

https://doi.org/10.3390/

s23041966

Academic Editors: Stefano Giordano,

Periklis Chatzimisios and Mike

Oluwatayo Ojo

Received: 27 November 2022

Revised: 1 February 2023

Accepted: 7 February 2023

Published: 9 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Training of Classification Models via Federated Learning and
Homomorphic Encryption
Eduardo Angulo, José Márquez and Ricardo Villanueva-Polanco *

Department of Computer Science and Engineering, Universidad del Norte, Barranquilla 081007, Colombia
* Correspondence: rpolanco@uninorte.edu.co

Abstract: With the rise of social networks and the introduction of data protection laws, companies are
training machine learning models using data generated locally by their users or customers in various
types of devices. The data may include sensitive information such as family information, medical
records, personal habits, or financial records that, if leaked, can generate problems. For this reason,
this paper aims to introduce a protocol for training Multi-Layer Perceptron (MLP) neural networks
via combining federated learning and homomorphic encryption, where the data are distributed in
multiple clients, and the data privacy is preserved. This proposal was validated by running several
simulations using a dataset for a multi-class classification problem, different MLP neural network
architectures, and different numbers of participating clients. The results are shown for several metrics
in the local and federated settings, and a comparative analysis is carried out. Additionally, the
privacy guarantees of the proposal are formally analyzed under a set of defined assumptions, and
the added value of the proposed protocol is identified compared with previous works in the same
area of knowledge.

Keywords: training; federated learning; homomorphic encryption; classification models

1. Introduction

Machine learning techniques may solve data science problems via training models
for prediction and classification. Thanks to the increase in the use of cloud resources, the
training of these models is carried out on remote servers [1,2]. Consequently, data must be
transferred remotely, which has increased concerns regarding its privacy since data may be
leaked or misused [3]. Due to these concerns, multiple entities have introduced laws for
data protection [4].

Advanced techniques (mainly cryptographic ones) are required to mitigate the risks
related to data privacy; therefore, to securely perform the training of machine learning
models, e.g., by making each participant only have access to a portion of the data or making
the model not save sensible data. This set of techniques is enclosed within a new field
known as private machine learning [5]. In practice, these techniques are combined since
each has pros and cons, and a set of techniques can be adequate for a particular setting but
not for any other.

Two widely known privacy-enhancing technologies are federated learning [6], which
is a distributed machine learning approach that uses decentralized data and seeks to
generate a model from data stored on multiple remote devices or clients, and homomorphic
encryption [7,8] that is a form of cryptography in which mathematical or logical operations
can be performed on encrypted data. In this work, both technologies are used to introduce
a protocol to train multilayer perceptrons for classification while preserving data privacy
during training.

This paper is organized as follows. Section 2 presents a literature review of the recent
advances in private machine learning, concretely federated learning, and homomorphic
encryption. Section 3 describes the approach and explains the problem to be solved by

Sensors 2023, 23, 1966. https://doi.org/10.3390/s23041966 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23041966
https://doi.org/10.3390/s23041966
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0400-5020
https://orcid.org/0000-0002-8682-4830
https://doi.org/10.3390/s23041966
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23041966?type=check_update&version=2

Sensors 2023, 23, 1966 2 of 18

introducing the proposal. In addition, it defines the assumptions made, the hyperparame-
ters, and the inner workings. Section 4 describes the methodology of the simulations and
scenarios to validate the proposal. Section 5 analyzes the results of the experiments and
provides an analysis of the privacy guarantees of the proposal. Finally, Section 6 provides
conclusions and describes future research lines for continuing this work.

2. Previous Work

This section describes the recent works and advances made in the areas of federated
learning and private machine learning.

Aono Y. et al. [9] present a method to perform the training of logistic regression on a
server using data encrypted with a homomorphic cryptosystem with additive properties,
under the assumption that such a server is honest but curious, with the aim of protecting
the client’s training and test data.

To achieve their objective, the authors transform the logistic regression into an equiv-
alent approach in which the previously mentioned homomorphic cryptosystem can be
used. For training, the server receives the data encrypted with the client’s public key and
performs the calculations to obtain the optimal values (minimizer) of the logistic regression.
Finally, the server sends the minimizer to the client, who decrypts it using its private key.

The authors perform their solution experiments using two datasets from the UCI
repository [10] and compare their performance against a logistic regression trained on
unencrypted data based on accuracy, AUC, and F1 score metrics.

The first dataset used is Pima diabetes, where the approximation model trained with
encrypted data presents the best performance in the three metrics. The second and last
dataset is SPECTF heart disease, where the conventional model trained with unencrypted
data performs better in the three metrics. It is followed by the approximation model trained
with encrypted data. These results demonstrate that it is possible to train logistic regression
models with encrypted data that present better or similar results than those trained while
maintaining the security and privacy of the data used.

Hardy S. et al. [11] propose a solution to train a logistic regression model in a federated
learning setup between two data providers and a coordinator, where data privacy is
maintained. The data used are vertically partitioned, i.e., by features, and distributed
between the two data providers.

To develop their solution, the authors assume a security scheme where the participants
are honest but curious. Additionally, they use a homomorphic encryption technique with
additive properties, specifically, the Paillier cryptosystem [12], to maintain the data privacy.

Due to the above, the authors need to adapt the training and the logistic regression
model to work with the previously mentioned techniques. For this purpose, they approxi-
mate the logistic loss using the Taylor series (Taylor loss).

Several datasets from the UCI repository [10] are used during the experiments, con-
verting them into binary classification problems if necessary. It is shown that the models
trained with Taylor loss present, in most cases, equal or superior performance than those
trained using logistic loss based on the accuracy and area under the curve (AUC) metrics.

Finally, the authors experiment with a quasi-real scenario using Kaggle’s “Give me
some credit” dataset [13]. This proves that their solution can be scaled. In the same way,
they demonstrate that the training performed using their solution is as good as or even
better than conventional methods, with the disadvantage of requiring more resources
(processing and time) during the training time.

Zheng H. et al. [14] perform the deployment of trained models using the federated
learning (FL) technique to solve classification problems in mobile device scenarios by
evaluating their performance, privacy, CPU consumption, and bandwidth consumption.

To achieve their goal, clients receive a set of training parameters, download the current
model from the server, modify their local data to bring it into the correct form for their
model input, and obtain the corresponding round update. Then, the server takes those

Sensors 2023, 23, 1966 3 of 18

updates and combines/averages them, thus obtaining the final updates; this process is
repeated in a defined number of rounds.

The authors perform the experiments with three public datasets where they train a
neural network with two hidden layers of 30 neurons, each with ReLU activation function
and softmax output layer to perform classification. The datasets used are NYC Taxi [15],
BR2000 [16] and Adult [10].

From the experiments, the authors conclude that the models trained using FL perform
better with few clients, in addition to high CPU consumption on mobile devices where
updates are calculated locally. However, they show low bandwidth consumption during
communication with the server. Finally, concerning privacy, they conclude that the updates
sent to the server are vulnerable to inferences, so they propose that this can be improved by
applying secure aggregation methods.

Bonawitz K. et al. [17] propose a secure, low-cost-per-communication, robust-to-
failure aggregation protocol in a mobile device configuration. This protocol uses various
cryptographic systems for the necessary processes, including cryptographic key agreement,
shared secret exchange, and authenticated encryption.

The authors present two variants: a more efficient one that is secure against attacks
from an honest but curious adversary and a less efficient one that is secure against attacks
from active adversaries. It is demonstrated by a security analysis that is performed on
both variants.

From the analyses performed, the authors conclude that the proposed protocol is
secure and maintains the privacy of the information since the server can only learn from
the data after the aggregation process and not from the clients’ data.

3. Approach

This section describes the proposed approach and is organized as follows. Concretely,
this section presents the description of the problem, the assumptions that guided the
development of the approach, the hyperparameters used, and the methodology followed.

3.1. Problem Statement

Given a multi-class classification problem C and dataset D distributed among n_clients
clients, the problem is to develop a protocol P by which the clients perform the joint training
of MLP neural networks while preserving the data privacy. Preserving data privacy is
meant that a participant in the protocol can only learn what it is intended to learn.

To verify the learning capability of an MLP neural network trained by the proposed
protocol, a series of simulations training the model locally and distributively using the
protocol P are performed. Then, a comparison between the resulting models is carried out,
and an analysis of the privacy guarantees provided by the protocol is presented.

3.2. Assumptions

To develop the approach, the following assumptions are made:

• There is a main server S and clients C1, . . . , Cn_clients, with n_clients ≥ 1. The server
will serve as an aggregator and distributor of some data. In contrast, the clients will
serve as computational endpoints, i.e., each client will train models over local data
combined with some extra data received from other participants.

• All participants have the computational capacity to perform all the necessary operations.
• The main server can establish a communication channel with any other client Ci,

1 ≤ i ≤ n_clients (via TCP, for example). Similarly, any client Ci can establish a
communication channel with any other client or the server S (via TCP, for example).

• The participants are assumed to form a ring topology, i.e., the client C1 connects with
C2, which connects with C3, and so on to the last client Cn_clients. This last client
connects with the main server S, which may connect with any other client.

Sensors 2023, 23, 1966 4 of 18

Additionally, the assumed threat model is the honest but curious model, a well-known
and accepted model in the multiparty computation (MPC) literature [18]. Concretely, the
following is assumed:

• The participants (server and the clients) are assumed to be honest but curious.
• Each client has access to a portion of a specified dataset and uses it on the same number

of features. Note that, for our experiments, each client uses a portion of a specified
dataset divided equally by rows on the same number of features.

• After establishing a communication channel via TCP, for example, any two participants
build a secure channel via an appropriate cryptographic protocol (such as TLS) over
which they further exchange messages.

3.3. Hyperparameters

Before training a neural network, a set of hyperparameters is defined. These hyperpa-
rameters will be used by both the clients and the server:

• Number of input features (n_features).
• Number of output classes (n_classes).
• Number of neurons per hidden layer (hidden_layers_size).
• Activation Functions per hidden layer (activations).
• Initialization method for weights and biases (initialization).
• Learning rate γ (learning_rate).
• Number of epochs (epochs).
• Method for preprocessing input data (standardization / normalization)
• Codification of the output (encoding).
• An additively homomorphic encryption scheme E = (G, E, D) that consists of a triple

of efficient algorithms: a key generation algorithm G, an encryption algorithm E, a
decryption algorithm D [7,19].

– G is a probabilistic algorithm that is invoked as (pk, sk) R←− G(λ), where λ is a
security parameter, pk is called a public key and sk is called a secret key.

– E is a probabilistic algorithm that is invoked as c R←− E(pk, m), where pk is a public
key (as output by G), m is a message, and c is a ciphertext.

– D is a deterministic algorithm that is invoked as m ← D(sk, c), where sk is a
secret key (as output by G), c is a ciphertext, and m is either a message or a special
reject value (distinct from all messages).

– It is required that decryption undoes encryption, specifically for all possible
outputs (pk, sk) of G, and all messages m,

Pr[D(sk, E(pk, m)) = m] = 1.

holds.
– Messages are assumed to lie in some finite message spaceM, and ciphertexts in

some finite ciphertext space C. So E = (G, E, D) is defined over (M, C).
– Homomorphic Property: there is a binary operator � such that for ciphertexts

c0
R←− E(pk, m0) and c1

R←− E(pk, m1), c← c0 � c1 is an encryption of m0 + m1 (the
sum of the underlying plain texts).

The implementation of the proposed protocol uses the Paillier encryption scheme:
• List of all domain names or IP addresses of the clients and the server.
• The security parameter λ is configured only on the server to let it generate the key

pair (pk, sk) for the homomorphic encryption scheme; pk is published so each client
has access to it, while sk is securely stored in the main server.

3.4. Inner-Working of the Approach

This section describes the inner workings of the proposal.

Sensors 2023, 23, 1966 5 of 18

1. Each client performs the data preprocessing locally and instantiates its neural network
based on the configured hyperparameters, resulting in each client having the same
neural network architecture. Each client then initializes the neural network’s weights
and biases according to the configured method.

2. Simultaneously, the main server uses the security parameter to generate a key pair, i.e.,
the public key and the corresponding private key, for the configured homomorphic
encryption scheme. The public key is published so that each client has access to it.

3. The client C1 proceeds with training its neural network over its local data as per the
configured number of epochs. This process consists of performing the forward and
backward propagation and obtaining the gradients for the weights and biases. These
gradients are encrypted with the server’s public key and then are sent to the next
client C2. Consequently, C2 proceeds with training its neural network over its local
data as per the configured number of epochs. Once this process ends, C2 will obtain
the gradients for the weights and biases, which are encrypted with the server’s public
key and aggregated (homomorphic summed) to the encrypted gradients received
previously. This aggregate is then sent to the next client, C3. The remaining clients fol-
low the same rules, except the last one, Cn_clients, which sends its encrypted aggregate
(containing the sum of all gradients) to the main server, S.

4. The main server decrypts the received aggregate with its private key, then calculates
the average for each gradient and sends all of them to the clients. Each client then
updates its corresponding neural network’s trainable parameters with the aggregate
sent by the server, i.e., Xn+1 = Xn − γ∇F(Xn), n ≥ 0, for each trainable parameter X.

5. The steps 3 and 4 are repeated as per the number of epochs. This process is depicted
in Figure 1.

Figure 1. Inner-working of the proposed protocol.

4. Experiments
4.1. Simulation

The validation of the protocol is achieved by performing a series of simulations. As a
remark, the number of samples per client (m_client) is given by Equation (1).

m_client =
⌊
(1− test_size)×m

n_clients

⌋
(1)

Sensors 2023, 23, 1966 6 of 18

where m = |D| is the number of samples of the dataset used, and test_size is the portion of
the data taken to validate the MLP network.

4.1.1. Dataset Selection and Analysis

Based on the problem of this research, the dataset used was the “Optical Recognition
of Handwritten Digits Dataset” sample from UCI [10] since data represent a multiclass clas-
sification problem that can be solved by using MLP networks and on which the proposed
protocol can be applied. These data were provided by the scikit-learn library [20] using
the load_digits function that gives us the data as Numpy arrays. This dataset has a total of
m = 1797 samples, where each sample has 64 input features, and the values they take are
integers in the range [0, 16]. Each of these values represents the color of a pixel of an 8 × 8
grayscale image, with zero (0) being the color black and sixteen (16) being the color white.
Figure 2 shows a sample of the images representing the data.

Figure 2. Dataset images sample.

No NaN values or outliers were found in the data obtained since they were all within
the range mentioned above. Their distribution can be seen in Figure 3.

The target variable defined for this dataset corresponds to the digits (from 0 to 9) of
the input data/images, indicating ten output classes. The distribution of these classes can
be seen in Table 1.

Table 1. Output classes distribution.

Class Occurrences in the Dataset Percentage of Total

0 178 9.905%
1 182 10.128%
2 177 9.850%
3 183 10.184%
4 181 10.072%
5 182 10.128%
6 181 10.072%
7 179 9.961%
8 174 9.683%
9 180 10.017%

Sensors 2023, 23, 1966 7 of 18

Figure 3. Feature distribution of the original dataset.

4.1.2. Data Preproccessing

Since the dataset has no NaN values or outliers, it is not necessary to remove any of
the samples from it. Therefore, the subsequent processes will be carried out with all the
previously mentioned samples, i.e., 1797.

The model to be developed is an MLP neural network for multiclass classification.
Therefore, the target variable is encoded by using the One Hot technique to take the values
to several columns equal to the number of classes, where the value in a column is one (1) if
it represents the corresponding class or zero (0) in any other case. This method was selected
because the output layer has a softmax function and requires the data in this form for its
correct operation. The method to perform this encoding was provided by the scikit-learn
library [20].

Subsequently, preliminary tests were performed to verify the correct operation of the
MLP networks. Then, it was necessary to scale the data because, in some tests, the model
diverged. This work was carried out by applying the Standard scaling method, which uses
the features’ mean and standard deviation to perform the features’ scaling. The method to
perform this scaling was provided by the scikit-learn library [20].

Applying the scaling and performing the same preliminary tests resulted in the previ-
ous models that diverged coming to converge. Those that converged showed better results

Sensors 2023, 23, 1966 8 of 18

because the range of the characteristics was the smallest. The expected behavior is evident
after applying the standard scaling method since the data distribution remains the same
within the corresponding data ranges.

Finally, and as shown by Table 1, the classes of the target variable are sufficiently
balanced, where the class with the highest number of samples has 183 and the one with the
lowest number of samples has 174, showing a difference of nine samples between them.
Therefore, applying any method for balancing the classes is optional.

4.1.3. Hyperparameters Selection and Design of Scenarios

In addition to the preliminary tests for selecting data preprocessing methods, tests
were performed with different numbers of clients (n_clients), training only with data locally,
to determine the most appropriate set of hyperparameters to use in the simulations.

The following constant values are set to non-varying hyperparameters per test:

• The size of the test set, test_size, was set to 0.1, meaning that 10% of the dataset
samples are taken to perform the model validations.

• The homomorphic cryptosystem is set to the Paillier cryptosystem. Its implementation
is provided by the python-paillier library [21].

• The length in bits to generate the cryptographic keys for the Paillier cryptosystem
key_length was set to 1024 bits.

• The learning rate learning_rate was set to 0.01 since preliminary tests confirmed that
it is a good value for training purposes.

• The number of iterations epochs was set to 120, which was confirmed similarly as
learning rate was.

Some tests are performed to adjust the number of hidden layers and the number of neu-
rons in them (hidden_layers_size), the activation functions of the hidden layers (activations),
and the initialization method of the trainable parameters (weights and biases). Note that
the number of trainable parameters for the defined networks is given by Equation (2).

nparams =

nlayers−1

∑
i=1

n[i] ×
(

n[i−1] + 1
)

(2)

where nlayers is the total number of layers of the neural network, n[i] is the number of
neurons in layer i, and n[0] is the number of features in the dataset.

As a result of running these tests, three scenarios, described below, were set up to
measure the impact of the number of clients and the number of tractable parameters on
the training and execution times of the proposed protocol, as well as the efficiency of the
protocol under the various configurations to verify that the protocol works in a generalized
way for MLP networks.

Scenario 1
The network has no hidden layers for this scenario, so the only varying hyperparam-

eter is the initialization method. At first, some tests were performed with five clients to
infer that the best method for initializing the trainable parameters is zero initialization. The
results of the tests using zero initialization outperformed the results of the tests using the
random and initialization methods according to the metrics obtained from the test data.
The resulting MLP neural network can be seen in Figure 4.

Sensors 2023, 23, 1966 9 of 18

Figure 4. Graphical representation of the MLP neural network of scenario 1.

Scenario 2
This scenario consists of a neural network having a single hidden layer. For this

scenario, the varying hyperparameters are the initialization method, the number of neu-
rons, and the activation function of the hidden layer. By doing a hyper-parameter explo-
ration with four clients for initialization ∈ {random, zero, he}, hidden_layers_size ∈
{2, 4, 6, 16, 32} and activation ∈ {tanh, sigmoid, relu}, the combination consisting of
initialization = he, hidden_layers_size = 16 and activation = tanh outperformed
the others. The resulting MLP neural network can be seen in Figure 5.

Figure 5. Graphical representation of the MLP neural network of scenario 2.

Scenario 3
For this scenario, the neural network has two hidden layers. The varying hyperpa-

rameters are the initialization method, the number of neurons, and the activation func-
tion of the hidden layers. By performing a hyper-parameter exploration with with three
clients for initialization ∈ {random, zero, he}, hidden_layers_size ∈ {2, 4, 6, 16, 32}
and activation ∈ {tanh, sigmoid, relu}, the combinations outperforming the others
resulted to be those with initialization = he, hidden_layers_size = {16, 32} and
activation = tanh. The resulting MLP neural network can be seen in Figure 6.

Figure 6. Graphical representation of the MLP neural network of scenario 3.

Scenarios Summary
Table 2 shows a summary of the relevant information and hyperparameters of the

three scenarios defined.

Sensors 2023, 23, 1966 10 of 18

Table 2. Summary of scenarios parameters.

Scenario n_features n_classes hidden_layers_size

1 64 10 ()
2 64 10 (16)
3 64 10 (32, 16)

activations initialization output_activation trainable_parameters

() zeros softmax 650
(tanh) he softmax 1210

(tanh, tanh) he softmax 2778

cryptosystem key_length n_clients training_size

Paillier 1024 5 90%
Paillier 1024 4 90%
Paillier 1024 3 90%

samples_per_client learning_rate epochs test_size

323 0.01 120 10%
404 0.01 120 10%
539 0.01 120 10%

5. Results Analysis

This section will describe the environment in which the simulations were run for the
scenarios defined in the previous section, show the results of these runs using the metrics
of accuracy, loss (given by cross-entropy), sensitivity, precision, and ROC-AUC and analyze
them from the federated learning point of view.

5.1. Scenarios Evaluation

All simulations for the protocol verification were executed on a single computer whose
specifications are mentioned in Section 5.1.1. The computer simulates a computer network
where data is passed directly between the simulated entities (clients and central server)
without using sockets. The above means that the communication overhead is considered to
be negligible.

For each proposed scenario, two experiments are performed. The first experiment
refers to training the neural networks of the clients using only their local data (a portion
of the dataset) without sharing any information (data, parameters, gradients of the pa-
rameters) with the other entities. In contrast, the second experiment uses the proposed
protocol to train the neural networks in each client, after which the encrypted gradients are
transmitted to the other clients in series, carrying out their aggregation until they reach the
server. Finally, the server can decrypt it and calculate the updates of the parameters of the
corresponding epoch.

5.1.1. Execution Environment

The simulations of the previously defined scenarios were run on a Dell computer
with Ubuntu 18.04.5 LTS operating system, 8 GB of RAM, a 1.80 GHz Intel Core i7-10510
processor with eight cores, and 512 GB of solid state hard disk (SSD).

The simulations were performed using the Python programming language in version
3.8.13, where a jupyter notebook was used to record the results. Additionally, numpy, scikit-
learn, python-paillier, matplotlib, and seaborn libraries were used during the development of
the simulations.

5.1.2. Scenario 1

The scenario was run using the specifications mentioned in the previous section. The
execution times per epoch and total protocol are evidenced in Figure 7.

Sensors 2023, 23, 1966 11 of 18

Figure 7. Protocol execution times in scenario 1.

Table 3 shows the metrics (accuracy, loss, precision, recall, and ROC-AUC) for the
five clients in this scenario when training using the local data and applying the proposed
federated learning protocol, as well as their average across both training sessions.

Table 3. Model training results for scenario 1.

Client Train Accuracy Loss Precision Recall ROC-AUC

1 Local 0.9167 1.0591 0.9265 0.9167 0.9935
Federated 0.9167 0.8699 0.9244 0.9167 0.9949

2 Local 0.8722 1.0349 0.8873 0.8722 0.9929
Federated 0.8778 0.8539 0.8914 0.8778 0.9944

3 Local 0.8833 1.0723 0.9140 0.8833 0.9928
Federated 0.9111 0.8831 0.9322 0.9111 0.9938

4 Local 0.9000 1.0552 0.9047 0.9000 0.9929
Federated 0.9222 0.8655 0.9285 0.9222 0.9949

5 Local 0.9000 1.0463 0.9104 0.9000 0.9932
Federated 0.9056 0.8612 0.9143 0.9056 0.9946

Average Local 0.8944 1.0536 0.9086 0.8944 0.9931
Federated 0.9067 0.8667 0.9182 0.9067 0.9945

As can be seen in the results presented in Table 3, all the metrics improve (increase in
the case of accuracy, precision, sensitivity, and ROC-AUC or decrease in the case of loss) or
remain the same when training using the proposed protocol, except precision for client 1.

These results for the metrics obtained are within the expected since the training,
through the protocol, is performed using information from all clients, thus increasing the
number of samples used in training.

The accuracy for the predictions is very high for all the classes belonging to the dataset,
except for class 9, where the highest number of failures is found for all the clients.

5.1.3. Scenario 2

The scenario was run using the specifications mentioned in the previous section. The
execution times per epoch and total protocol are evidenced in Figure 8.

Figure 8. Protocol execution times in scenario 2.

Table 4 presents the metrics (accuracy, loss, precision, recall, and ROC-AUC) for the
four clients in this scenario when training using the local data and applying the proposed
federated learning protocol, as well as their average for both training sessions.

As can be seen in the results presented in Table 4, all the metrics obtained by running
the proposed protocol for clients 1 and 4 show an improvement for training with local data,
while for client 2, all the metrics improve except the ROC-AUC. However, for client 3, all
metrics worsen when running the proposed protocol, although the average of each of the
metrics for the proposed protocol is better than the corresponding average for the training
where only local data was used.

The results obtained for client 3 are because this client outperforms the other clients
(given by the metrics) when only local data is used during training. When the protocol is
run, the noise generated by the other clients is introduced, thus resulting in the training
and metrics for this client getting worse.

Sensors 2023, 23, 1966 12 of 18

Table 4. Model training results for scenario 2.

Client Train Accuracy Loss Precision Recall ROC-AUC

1 Local 0.5167 1.7511 0.5032 0.5167 0.8612
Federated 0.6167 1.6268 0.6047 0.6167 0.8963

2 Local 0.4944 1.7007 0.4857 0.4944 0.8852
Federated 0.5056 1.6987 0.4992 0.5056 0.8846

3 Local 0.6556 1.5534 0.6747 0.6556 0.9356
Federated 0.6167 1.5548 0.6333 0.6167 0.9328

4 Local 0.5167 1.6077 0.4927 0.5167 0.9145
Federated 0.5889 1.4931 0.5366 0.5889 0.9354

Average Local 0.5458 1.6532 0.5391 0.5458 0.8991
Federated 0.5820 1.5934 0.5684 0.5820 0.9123

It is worth noting that the metrics are worse than those presented in the first scenario.
The above suggests that the architecture used in this scenario could be better for this dataset.
However, results are obtained about the calculated metrics within the expected range due
to the use of information from all clients, i.e., increasing the number of samples used in
training through the protocol.

The degree of accuracy of predictions is high for most of the classes belonging to the
dataset. However, some classes present high levels of prediction failure, and these differ
from client to client; for client 1, they are classes 0 and 8; for client 2, they are classes 4, 8,
and 9; for client 3, they are classes 1 and 8 and; for client 4, they are classes 1, 4 and 9, where
they tend to improve on training with the protocol.

5.1.4. Scenario 3

The scenario was run using the specifications mentioned in the previous section. The
execution times per epoch and total protocol are evidenced in Figure 9.

Figure 9. Protocol execution times in scenario 3.

Table 5 presents the metrics (accuracy, loss, precision, recall, and ROC-AUC) for the
three clients in this scenario when training using the local data and applying the proposed
federated learning protocol, as well as their average for both training sessions.

Table 5. Model training results for scenario 3.

Client Train Accuracy Loss Precision Recall ROC-AUC

1 Local 0.4944 1.6577 0.4959 0.4944 0.8967
Federated 0.5889 1.5359 0.6342 0.5889 0.9197

2 Local 0.5889 1.7016 0.6510 0.5889 0.8865
Federated 0.5722 1.7278 0.6215 0.5722 0.8769

3 Local 0.5389 1.7054 0.5209 0.5389 0.8658
Federated 0.5889 1.5798 0.5608 0.5889 0.8920

Average Local 0.5407 1.6882 0.5559 0.5407 0.8830
Federated 0.5833 1.6145 0.6055 0.5833 0.8962

As shown by the results presented in Table 5, all the metrics obtained by running the
proposed protocol for clients 1 and 3 show an improvement in training with local data.
However, for client 2, all metrics worsen when running the proposed protocol, although the
average of each of the metrics for the proposed protocol is better than the corresponding
average for the training where only local data was used.

Sensors 2023, 23, 1966 13 of 18

The results obtained for client 2 are because this client outperforms the other clients
(given by the metrics) when only local data is used during training. When the protocol
is executed, the noise generated by the other clients is introduced, thus resulting in the
training and metrics for this client getting worse.

The metrics obtained in this scenario are worse than those obtained in the second
scenario and, therefore, worse than those obtained in the first scenario. With these results
and those of the previous scenario, it can be concluded that architectures with higher hidden
layers obtain worse metrics for this dataset. However, the metrics’ results are obtained
within the expected range thanks to the training performed with the protocol, which uses a
more significant number of samples corresponding to all the clients’ information.

The accuracy for predictions is high for some classes belonging to the dataset, these
being the worst performers throughout all scenarios. However, several classes show very
high levels of failure in the prediction, in some cases completely missing a class, where
these differ from client to client; for client 1, they are classes 0, 3, 5, and 8; for client 2, they
are classes 1, 3, and 9 and; for client 3, they are classes 1, 2, 3, 5, and 8, where they tend to
improve in the training with the protocol.

5.2. Discussion

The contribution of this paper is a protocol to perform MLP neural network training
for classification using a federated learning scheme. In the protocol, the privacy of the
client data is preserved, and better results are presented on average concerning performing
the training using only the local data held by each client.

5.2.1. Learning Capability

Compared to proposals studied during the literature review, the protocol proposed in
this research generalizes the training of MLP neural networks using the federated learning
scheme compared to the logistic regression models proposed by other authors. Additionally,
the proposed protocol allows training with multiple clients without exposing their data to
the other participants of the protocol as opposed to other works, where only two clients are
trained and transmit their encrypted data to a third party. Finally, the proposed protocol
uses a secure aggregation method based on homomorphic encryption, while other authors
propose methods for the same purpose without using this type of encryption.

Regarding the training, using the proposed protocol, on average, the evaluation
metrics improve because, ultimately, the training is performed using data from all clients.
The above can be observed in Figure 10 for each pair of metric sets of the scenarios.
However, it is essential to mention that there are cases where the metrics worsen for a
specific client whose local model significantly outperforms others. The latter is because
the model trained using the protocol includes the noise generated by other clients, making
said model worse than the one trained locally for this client.

Additionally, it is noted that the metrics presented for scenario 1 are much better than
those presented for scenarios 2 and 3. In contrast, scenarios 2 and 3 do not differ much in
their metrics, some being higher in scenario 2 and others in scenario 3.

Another aspect to mention is that the execution times of the proposed protocol are
directly influenced by the number of clients participating in the training and by the number
of parameters to be deduced. The times are considerably higher than those of training with
local data because the processes of encryption, decryption, and homomorphic operations
have a high computational cost. It can be seen in Figure 11, which shows the comparison
of local and protocol training times for all three scenarios.

Sensors 2023, 23, 1966 14 of 18

Figure 10. Comparison of average metrics for all scenarios.

Figure 11. Comparison of training times for all scenarios.

Likewise, Figures 12 and 13 show the times per epoch and total training times using
the protocol for the three scenarios, where it can be seen that the times presented in scenario
1 are lower than in scenario 2. In turn, these are lower than in scenario 3. These results
show the impact of the number of trainable parameters and clients on the training times
due to the mentioned processes.

Sensors 2023, 23, 1966 15 of 18

Figure 12. Comparison of training times by epoch using the training protocol.

Figure 13. Comparison of the total training times using the protocol.

Since the amount of data used in the simulations is small, it does not significantly
impact the processes that depend on it (forward propagation and backpropagation), so
its impact on the training times is considered negligible. Regarding the number of clients,
this linearly affects the training times of the protocol because each client must perform the
encryption and gradient aggregation operations (except for the first one that only performs
gradient encryption), and all clients were simulated in the same computer. Similarly, the
number of parameters is the variable that affects the training times. Because of this number,

Sensors 2023, 23, 1966 16 of 18

the gradient encryption and aggregation operations must be performed, taking into account
the time consumed by the selected homomorphic cryptosystem, i.e., Paillier.

The Equation (3) shows the training time given the number of clients nclients and the
number of parameters nparams, where avgTenc is the average encryption time and avgTagg is
the average aggregation time.

T(nclients, nparams) = nclients ∗ nparams ∗ avgTenc + (nclients − 1) ∗ nparams ∗ avgTagg (3)

5.2.2. Privacy Guarantees

Regarding data privacy, the passive attacks described by Boenisch F. et al. [22] are con-
sidered. In this regard, the proposal preserves data privacy in the honest-but-curious model:

1. A client never exposes its data to any other participant during the execution of the
protocol since the client’s end device carries out all computations locally.

2. Note that a client receives the encrypted gradients from the previous client. Since the client
does have access to the server’s private key, it cannot decrypt the encrypted gradients.

3. The server receives the encrypted aggregated gradients from all the clients, and even
though it can decrypt them, it can not infer any data or features of any client’s dataset
from them. Note that the server can not distinguish what portion of the aggregated
gradients corresponds to which client. It is worth mentioning that data privacy might
be compromised only if:

• For a particular trainable parameter X, n_clients− 1 out of n_clients gradients
are computed as zero. In such a case, the server might use the non-zero gradient
to infer data or reconstruct some feature from the corresponding client’s dataset,
assuming the server can detect when the case occurs.
Let us assume that pi

X is the probability that the gradient for the trainable pa-
rameter X computed by the client i is zero during an iteration of the protocol.
Let p = max{pi

X, 1 ≤ i ≤ n_clients}. Given that each client computes its train-
ing independently, the experiment of having a out of n_clients gradients for
the trainable parameter X computed as zero follows a binomial distribution
with probability p. Therefore, the probability of having n_clients − 1 out of
n_clients gradients for the trainable parameter X computed as zero is given
by Pn_clients−1 = (n_clients

n_clients−1)pn_clients−1(1− p) = (n_clients)pn_clients−1(1− p).
Therefore, Pn_clients−1 tends to zero as the number of clients increases for any
0 ≤ p ≤ 1. Moreover, note that if p is negligible, then Pn_clients−1 is negligible too.
Note that the server might analyze the function npn−1(1− p) as n increases and
use a proper estimation for p. However, an accurate estimation for p is tough
since p relies on each client’s dataset and the initial/updated values for the
trainable parameter X. Therefore, this situation is hardly exploitable. Note that
the server might always try to obtain some information from the aggregated
gradient for a trainable parameter X and might succeed if the event occurred
(which is negligible).

• There exists a single client running the protocol. In such a case, the server might
exploit this to obtain relevant information from the gradients sent by the client.
However, this scenario is unrealistic since if there is a single client, such a client
would prefer local training on its data without relying on the main server. Hence,
and without loss of generality, the number of clients is assumed to be greater
than one.

6. Conclusions and Future Work

This work proposed a cryptographic protocol to train MLP neural networks by com-
bining federated learning and homomorphic encryption.

The efficiency and effectiveness of the proposed protocol are measured by running
simulations and using the dataset “Optical Recognition of Handwritten Digits Dataset”
provided by the scikit-learn library. Moreover, the privacy guarantees of the proposal were

Sensors 2023, 23, 1966 17 of 18

analyzed by looking at various attacks targeting the federated learning scheme under a set
of defined assumptions.

Regarding the effectiveness of the protocol, by executing the proposed protocol, better
values are obtained on average for most metrics in several clients. For those clients whose
local training exceeded their metrics to a large extent those of the others, their metrics
through the protocol tended to worsen.

Concerning the privacy guarantees, the analysis shows that the proposed protocol
strives to preserve data privacy through the secure aggregation method based on homo-
morphic encryption since it prevents information leakage from client gradients.

The added value of this work lies in presenting a generalized protocol for training any
MLP neural network with any number of clients under a federated learning scheme, as
opposed to the training of logistic regression models with the number of clients limited to
two, as recently presented works.

For future work, three research lines are worth exploring. The first would be adjusting
our protocol to use a fully homomorphic cryptosystem and include regularization and opti-
mization methods when training MLP neural networks. The second would be eliminating
the central server, which is itself a point of failure. That would ideally mean the decryption
and distribution of aggregated weights would be computed by all clients together. Finally,
it would be interesting to implement the protocol in a private computer network with a
less controlled environment, where the amount of data held by each participating client is
different, and the processing capabilities are also potentially varying.

Author Contributions: Conceptualization, J.M. and R.V.-P.; methodology, E.A., J.M. and R.V.-P.;
software, E.A.; validation, E.A., J.M. and R.V.-P.; formal analysis, E.A., J.M. and R.V.-P.; investigation,
E.A., J.M. and R.V.-P.; resources, J.M.; data curation, E.A.; writing—original draft preparation, E.A.,
J.M. and R.V.-P.; writing—review and editing, E.A, J.M. and R.V.-P.; visualization, E.A.; supervision,
J.M. and R.V.-P.; project administration, J.M.; funding acquisition, J.M. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding and the APC was funded by Universidad
de Norte.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset used was the “Optical Recognition of Handwritten Digits
Dataset” sample from UCI [10].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Subramanian, E.; Tamilselvan, L. A focus on future cloud: Machine learning-based cloud security. Serv. Oriented Comput. Appl.

2019, 13, 237–249. [CrossRef]
2. Hesamifard, E.; Takabi, H.; Ghasemi, M.; Jones, C. Privacy-preserving machine learning in cloud. In Proceedings of the 2017 on

Cloud Computing Security Workshop, Dallas, TX, USA, 3 November 2017; pp. 39–43.
3. Carlini, N.; Liu, C.; Kos, J.; Erlingsson, Ú.; Song, D. The secret sharer: Measuring unintended neural network memorization &

extracting secrets. arXiv 2018, arXiv:1802.08232.
4. Casanovas, P.; De Koker, L.; Mendelson, D.; Watts, D. Regulation of Big Data: Perspectives on strategy, policy, law and privacy.

Health Technol. 2017, 7, 335–349. [CrossRef]
5. Liu, B.; Ding, M.; Shaham, S.; Rahayu, W.; Farokhi, F.; Lin, Z. When machine learning meets privacy: A survey and outlook.

ACM Comput. Surv. CSUR 2021, 54, 1–36. [CrossRef]
6. Yang, Q.; Liu, Y.; Chen, T.; Tong, Y. Federated machine learning: Concept and applications. ACM Trans. Intell. Syst. Technol. TIST

2019, 10, 1–19. [CrossRef]
7. Acar, A.; Aksu, H.; Uluagac, A.S.; Conti, M. A Survey on Homomorphic Encryption Schemes: Theory and Implementation. ACM

Comput. Surv. 2018, 51, 1–35. [CrossRef]
8. Marcolla, C.; Sucasas, V.; Manzano, M.; Bassoli, R.; Fitzek, F.H.P.; Aaraj, N. Survey on Fully Homomorphic Encryption, Theory,

and Applications. Proc. IEEE 2022, 110, 1572–1609. [CrossRef]

http://doi.org/10.1007/s11761-019-00270-0
http://dx.doi.org/10.1007/s12553-017-0190-6
http://dx.doi.org/10.1145/3436755
http://dx.doi.org/10.1145/3298981
http://dx.doi.org/10.1145/3214303
http://dx.doi.org/10.1109/JPROC.2022.3205665

Sensors 2023, 23, 1966 18 of 18

9. Aono, Y.; Hayashi, T.; Trieu Phong, L.; Wang, L. Scalable and secure logistic regression via homomorphic encryption. In
Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy, New Orleans, LA, USA, 9–11 March
2016; pp. 142–144.

10. Blake, C. UCI Repository of Machine Learning Databases. 1998. Available online: https://archive.ics.uci.edu/ml/index.php
(accessed on 21 November 2022).

11. Hardy, S.; Henecka, W.; Ivey-Law, H.; Nock, R.; Patrini, G.; Smith, G.; Thorne, B. Private federated learning on vertically
partitioned data via entity resolution and additively homomorphic encryption. arXiv 2017, arXiv:1711.10677.

12. Paillier, P. Public-key cryptosystems based on composite degree residuosity classes. In Proceedings of the International
Conference on the Theory and Applications of Cryptographic Techniques, Prague, Czech Republic, 2–6 May 1999; pp. 223–238.

13. Sharma, D. Elements of Optimal Predictive Modeling Success in Data Science: An Analysis of Survey Data for the ‘Give
Me Some Credit’ Competition Hosted on Kaggle. 2013. Available online: https://ssrn.com/abstract=2227333 (accessed on
21 November 2022).

14. Zheng, H.; Hu, H.; Han, Z. Preserving user privacy for machine learning: Local differential privacy or federated machine
learning? IEEE Intell. Syst. 2020, 35, 5–14. [CrossRef]

15. TLC. Nyc Taxi and Limousine Commission (tlc) Trip Record Data. 2017. Available online: https://www.nyc.gov/site/tlc/about/
tlc-trip-record-data.page (accessed on 21 November 2022).

16. IPUMS-International. Harmonized International Census Data for Social Science and Health Research. 2018. Available online:
https://knowledge4policy.ec.europa.eu/dataset/ds00128_en (accessed on 21 November 2022).

17. Bonawitz, K.; Ivanov, V.; Kreuter, B.; Marcedone, A.; McMahan, H.B.; Patel, S.; Ramage, D.; Segal, A.; Seth, K. Practical secure
aggregation for privacy-preserving machine learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, Dallas, TX, USA, 30 October–3 November 2017; pp. 1175–1191.

18. Evans, D.; Kolesnikov, V.; Rosulek, M. A Pragmatic Introduction to Secure Multi-Party Computation; NOW Publishers Inc.: Norwell,
MA, USA, 2018; Volume 2. [CrossRef]

19. Boneh, D.; Shoup, V. A Graduate Course in Applied Cryptography. Available online: http://toc.cryptobook.us/book.pdf (accessed
on 25 January 2023).

20. Bisong, E. Introduction to Scikit-learn. In Building Machine Learning and Deep Learning Models on Google Cloud Platform; Springer
Apress: Berkeley, CA, USA, 2019; pp. 215–229.

21. Lokanath, A. Exploring Libraries for Homomorphic Encryption. Master’s Thesis, NTNU, Trondheim, Norway, 2018.
22. Boenisch, F.; Dziedzic, A.; Schuster, R.; Shamsabadi, A.S.; Shumailov, I.; Papernot, N. When the curious abandon honesty:

Federated learning is not private. arXiv 2021, arXiv:2112.02918.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://archive.ics.uci.edu/ml/index.php
https://ssrn.com/abstract=2227333
http://dx.doi.org/10.1109/MIS.2020.3010335
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://knowledge4policy.ec.europa.eu/dataset/ds00128_en
http://dx.doi.org/10.1561/3300000019
http://toc.cryptobook.us/book.pdf

	Introduction
	Previous Work
	Approach
	Problem Statement
	Assumptions
	Hyperparameters
	Inner-Working of the Approach

	Experiments
	Simulation
	Dataset Selection and Analysis
	Data Preproccessing
	Hyperparameters Selection and Design of Scenarios

	Results Analysis
	Scenarios Evaluation
	Execution Environment
	Scenario 1
	Scenario 2
	Scenario 3

	Discussion
	Learning Capability
	Privacy Guarantees

	Conclusions and Future Work
	References

