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Abstract: An interferometric fiber-optic gyroscope (IFOG) demodulates a rotation signal via inter-
ferometric light intensity. However, the working environments of IFOGs typically involve great
uncertainty. Fluctuations in temperature, air pressure, electromagnetic field, and the power system
all cause the power of the superluminescent diode (SLD) light source to fluctuate as well. In this
invited paper, we studied the effects of SLD power fluctuation on the dynamic and static performance
characteristics of a gyro system through the use of a light-power feedback loop. Fluctuations of
0.5 mA, 1 mA, and 5 mA in the SLD source entering the IFOG caused zero-bias stability to be 69,
135, and 679 times worse. We established an effective method to monitor power fluctuations of SLD
light sources and to compensate for their effects without increasing hardware complexity or system
cost. In brief, we established a real-time power-sensing and -compensating system. Experimental
results showed that for every 0.1 mA increase in the fluctuation amplitude of the driving current, the
zero-bias stability became 4 to 7 times worse, which could be reduced about 95% through the use of
SLD power compensation.

Keywords: interferometric fiber-optic gyroscope; SLD light-power fluctuation; real-time compensation;
closed-loop configuration; light-power signal demodulation method

1. Introduction

Interferometric fiber-optic gyroscopes (IFOGs) are key components of inertial naviga-
tion systems. They have the advantages of simple structure, an absence of dynamic parts,
and high accuracy. They are among the most successful fiber-optic sensors on the market
and are widely used in various systems for military and civil applications [1–5]. IFOGs
are divided into closed-loop and open-loop configurations according to their structures.
In general, the closed-loop configuration has a significantly better dynamic range and
scale factor than the open-loop configuration, and thus the former produces better perfor-
mance [6–8]. In a closed-loop IFOG configuration, demodulation of the rotational signal is
usually achieved using the difference between the superluminescent diode (SLD) powers
of the first and second half-cycles. The performance of the fiber-optic gyroscope is therefore
directly related to the stability of the light source [9–11]. In order to improve SLD stability,
researchers have carried out a great deal of work, and many good, practical results have
been achieved. These include the design of new high-temperature, low-coherence light
sources and constant-temperature and constant-current control techniques, as well as SLD
power detection and closed-loop control techniques [12–15]. Although the above methods
can improve the stability of an SLD, SLD power still fluctuates at about 1%. Such fluctua-
tions are closely related to the working environment. Even small changes in temperature,
air pressure, electromagnetic field, and the power system lead inevitably to fluctuations in
SLD light-source power [16–18]. When SLD power fluctuates, there are deviations in IFOG
SLD power in the first and second half-cycles, and these small errors gradually accumulate
in the process of closed-loop control until their impact is non-negligible.
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In the process described in this paper, we sought to simplify system components as
much as possible and to achieve better integration. In production of sensors, miniaturization
and low cost have always been desired objectives. In 2011, a SLD light source, a coupler,
a phase modulator, and a photodetector were packaged in one chip by GENER8 [19]. In
2012, the preamplifier circuit and A/D conversion circuit of a fiber-optic gyroscope were
packaged in one device by Zhang et al. [20]. In 2017, a method to miniaturize a fiber-optic
gyroscope using a totally digital circuit for compensation of modulation gain was proposed
by Pan et al. [21]. In 2020, a 2.14 m-long fiber ring on a SIO2 waveguide was fabricated by Liu
et al. [22]. In 2020, KVH, USA, integrated two couplers and one deflector on a SI3N4-based
integrated optical chip [23]. The miniaturization of a fiber-optic gyroscope ultimately depends
on the miniaturization of individual components; however, the SLD light source, constant
current drive circuit, thermoelectric cooler (TEC), and thermostatic drive circuit are all complex
components with large spatial requirements. If simpler SLD light sources and drive circuits
could be used, IFOGs would be greatly simplified, and both size and production cost would
be reduced. In this work, we established a system that analyzes the power fluctuation of an
SLD and compensates for its effect, thus minimizing the impact of SLD instability and making
it possible to simplify the SLD and its driver circuit.

Real-time monitoring of SLD power and compensation for fluctuations in it can
effectively reduce the adverse effects of SLD power fluctuations on a gyroscope. In order to
detect an SLD power signal, the most common method is to add a photodetector at one
end of the coupler; however, this increases the complexity of the system hardware, as well
as the cost of the IFOG. The conventional detection technique is to use square-wave to set
phase bias and step-ramp to set feedback phase, but these methods cannot demodulate
the SLD power signal. In this work, we made improvements to the traditional method to
achieve real-time monitoring of the SLD power signal while bearing system complexity and
cost in mind. Our experimental results show that this new modulation and demodulation
method can distinguish the SLD power fluctuation brought about through a change of
0.1 mA in an SLD drive current.

2. Basic Principles of Closed-Loop IFOGs

The IFOG system consists of a SLD light source, together with its driver, coupler,
phase modulator, fiber-optic ring, photodetector, preamplifier, analog-to-digital converter
(ADC), logic processor, digital-to-analog converter (DAC), and output amplifier, as shown
in Figure 1.
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When the fiber ring is rotating, the two beams in the fiber ring rotating in opposite
directions produce a Sagnac phase, ϕs, proportional to the rotation speed, resulting in a
change in interferometric light intensity [24–26]. The magnitude of the Sagnac phase is
expressed thus:

ϕs =
2πLDΩin

λc
(1)

where L is the length of the fiber ring, D is the average diameter of the fiber ring, λ is
the free-space wavelength, c is the free-space velocity of light in vacuum, and Ωin is the
angular rate of rotation of the fiber ring. The relationship between the interferometric light
intensity, I, and the Sagnac phase, ϕs, can be expressed as follows:

I = I0[1 + K0+ cos(ϕs)] (2)

where I0 is a signal proportional to the SLD power and K0 is caused by incomplete cancella-
tion of the two counter-rotating beams [27]. Equation (2) shows that the response of the
light intensity to the Sagnac phase is a cosine function. When rotation is slow, light inten-
sity is insensitive to the rotational signal and cannot identify the direction of rotation. To
improve the sensitivity and identify the direction of rotation, square-wave bias modulation
needs to be applied. A square-wave voltage signal is generated by the DAC and amplified
by the output amplifier; this square-wave voltage is then applied to the phase modulator,
as shown in Figure 2g. The modulated phase of clockwise (CW) light is shown in Figure 2f,
and the modulated phase of counterclockwise (CCW) light has a delay of time, τ, as shown
in Figure 2e; τ is the time required for the light wave to pass through the fiber ring. The
maximum sensitivity is obtained when the bias phase is π/2 because the relationship
between the interferometric light intensity, I, and the Sagnac phase, ϕs, is at the maximum
slope of the cosine function, as shown in Figure 2a at points A and B. When the rotational
angular velocity is large, the relationship between the interferometric light intensity, I, and
the Sagnac phase, ϕs, deviates from points A and B. Through applying the feedback phase,
ϕf, generated by the step ramp to cancel the Sagnac phase, the fiber-optic gyroscope can
always work at the point of maximum sensitivity. The optical power response can thus be
expressed as follows:

IA = I0[1 + K0 + cos(ϕs + ϕ f + ϕm)] (3)

IB = I0[1 + K0 + cos(ϕs + ϕ f − ϕm)] (4)

where IA is the light intensity when the bias phase is ϕm and IB is the light intensity when
the bias phase is −ϕm. The feedback phase, ϕf, always lags behind the Sagnac phase, ϕs, by
one cycle, so the result of canceling ϕf and ϕs is the Sagnac-phase increment, ∆ϕs (where
∆ϕs→0). When ϕm = π/2, we obtain the following:

IB − IA = 2I0∆ϕs (5)

The result of Equation (5) is accumulated to obtain the rotation signal. When the
total gain of the circuit is G, the rotating signal output from the IFOG can be expressed
as follows:

Ω[n] = 2GI0∑n
i=1 ∆ϕs[i] (6)

Because the control period of the gyroscope is 2τ, n is a discrete signal sequence with
a period of 2τ. According to Equation (6), SLD power directly affects the scale factor of the
IFOG. In addition, when fluctuations of SLD power in a short time period are considered,
the differential signal of the SLD power also crosstalks into the output signal of the IFOG,
as we shall now prove in the following discussion.
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Figure 2. Square-wave bias modulation of a fiber-optic gyroscope. (a) Relationship between phase
and light intensity, point “A” indicates that the bias phase is ϕm, point “B” indicates that the bias
phase is −ϕm. (b) Light-intensity signal with zero rotational angular velocity. (c) Light-intensity
signal with nonzero rotational angular velocity. (d) Phase difference of the two counter-rotating
beams. (e) Modulated phase of the counterclockwise light. (f) Modulated phase of clockwise light.
(g) Voltage applied with the phase modulator.

3. Analysis
3.1. Principle of Error Generation

In a stable working environment, SLD power does not fluctuate by more than 1%
after closed-loop control of current and temperature is established. Under such conditions,
the SLD power of the IFOG is generally considered to be constant. However, when the
gyroscope working environment changes, the SLD power fluctuates. In this regard, we
recall that the process of gyroscope miniaturization, driven by considerations of volume
and cost, may result in simplification of the SLD and its drive circuit, in which SLD stability
is sacrificed. In such circumstances, it becomes necessary to analyze the effect of SLD power
fluctuation and to compensate for it, if possible.

When considering variations in SLD power over a short time period, there is always
a difference in light power between the first and second half-cycles of the fiber-optic
gyroscope, as shown in Figure 3b, where the blue curve indicates the variation of light
power with time and the black curve indicates the average light power with time, τ, as the
period. Because the control period of the gyroscope is 2τ, we can now discretize the signal
with a period of 2τ (except for the light-intensity signal).
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If the differential signal of the light intensity, I0(t), is β(t), the average intensity in the
first half-cycle, I0A[n], and the average intensity in the second half-cycle, I0B[n], can be
expressed as follows:

I0A[n] = I0(2nτ) +
1
2

∫ 2nτ+τ

2nτ
β(t)dt (7)

I0B[n] = I0(2nτ) +
∫ 2nτ+τ

2nτ
β(t)dt +

1
2

∫ 2nτ+2τ

2nτ+τ
β(t)dt (8)

The gyroscope system detects the light-intensity difference and assumes that this
difference is generated from the rotation, which eventually leads to an error in the output
rotation signal. Now, after consideration of the effects of the Sagnac and modulation phases,
light intensity can be expressed as follows:

IA[n] = I0A[n][1 + K0 + cos(ϕs[n] + ϕ f [n] + ϕm[n])] (9)

IB[n] = I0B[n][1 + K0 + cos(ϕs[n] + ϕ f [n]− ϕm[n])] (10)

After closed-loop feedback control is established, the feedback phase, ϕf, not only
cancels the light-intensity difference caused by the Sagnac phase, ϕs, but also cancels the
light-intensity difference caused by the SLD power fluctuation. The SLD power fluctuation
is generally very small, so it still satisfies (ϕs + ϕf)→0. When ϕm = π/2, through combining
Equations (7) and (8), the following equations can be obtained:

IB[n]− IA[n] = 2I0[n](ϕs[n] + ϕ f [n]) + (1 + K0)τβ[n] (11)

where I0[n] and β[n] are expressed as follows:

β[n] =
1

2τ

∫ 2nτ+2τ

2nτ
β(t)dt (12)

I0[n] =
1
2
(I0B[n] + I0A[n]) (13)
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Ideally, ϕf[n] can completely cancel the light-intensity difference caused by the Sagnac
phase of the n − 1 period and light-source power fluctuation. This can be expressed
as follows:

0 = 2I0[n− 1](ϕs[n− 1] + ϕ f [n]) + (1 + K0)τβ[n− 1] (14)

Now, subtracting Equation (14) from Equation (11), we obtain

IB[n]− IA[n] = 2I0[n]∆ϕs[n] + τ(1 + K0)(β[n]− β[n− 1]) (15)

Thus, when the total gain of the circuit is G, the output of the gyroscope is

Ω[n] = 2G∑n
i=1 I0[n]∆ϕs[i]

+Gτ(1 + K0)(β[n]− β[0])
(16)

Comparing Equations (6) and (16), we can see that after consideration of the light-
source power change in a short period, the output signal of the gyroscope contains not only
the Sagnac phase information but also the differential signal of the SLD power. Therefore,
through means of real-time monitoring of the SLD power signal and subtracting a certain
percentage of the SLD power differential signal from the gyroscope output signal, error
caused by SLD power fluctuation can be effectively reduced. In order to monitor the SLD
power signal, the general method is to add an additional photodetector, amplification
circuit, and ADC. However, this method increases the complexity and cost of the system.
In this work, we sought to improve the traditional modulation scheme to achieve real-time
demodulation of SLD power using the original hardware.

3.2. Light-Source Power Signal Demodulation Method

The conventional detection technique cannot demodulate an SLD power signal. In this
work, we improved upon the conventional detection scheme, as follows. First, we divided
the square-wave bias modulation into six stages (A, B, C, D, E, F), as shown in Figure 3a.
In the B and E stages, the bias phase was modulated to ±π/2, while in the A, C, D, and
F phases, the bias phase was modulated to zero, so the bias phase, ϕm, can be expressed
as follows:

ϕm =


AC : 0
DF : 0

B : −π/2
E : +π/2

(17)

After consideration of the Sagnac phase, ϕs, and the feedback phase, ϕf, the phase
difference, ϕsmf, between the clockwise and counterclockwise beams can be expressed
as follows:

ϕsm f =


AC : ϕ f + ϕs
DF : ϕ f + ϕs

B : ϕ f + ϕs − π/2
E : ϕ f + ϕs + π/2

(18)

The response function of light intensity at each stage can now be expressed thus:

I =


AC : I0[1 + K0 + cos(ϕs + ϕ f )]
DF : I0[1 + K0 + cos(ϕs + ϕ f )]

B : I0[1 + K0 + cos(ϕs + ϕ f + π/2)]
E : I0[1 + K0 + cos(ϕs + ϕ f − π/2)]

(19)
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In a closed-loop fiber-optic gyroscope, (ϕs + ϕf = ∆ϕs)→ 0, so the light intensity of
each phase can be expressed as follows:

I =


AC : I0(1 + K0)
DF : I0(1 + K0)

B : I0(1 + K0 − ∆ϕs)
E : I0(1 + K0 + ∆ϕs)

(20)

From Equation (20), it can be seen that the B and E stages are the same as those of the
conventional scheme, while the A, C, D, and F stages can directly detect an SLD power
signal, as shown in Figure 3a. In the A, C, D and F stages, light intensity is not affected
by the Sagnac phase or gyroscope closed-loop control, and the SLD power signal can be
directly obtained with the photodetector, as shown in Figure 3b. Through calculating the
differential SLD power signal and subtracting a certain percentage of the differential signal
from the output of the gyroscope, the effect of SLD power fluctuations can be reduced.

3.3. Error Compensation Simulations

We used a computer to simulate the closed-loop control process of the fiber-optic
gyroscope. We set the input angular rate to zero, modulated the SLD power to a 2 kHz
sine wave, and set the SLD power fluctuation amplitude to 1%, as shown in Figure 4a. The
differential signal of the SLD power was obviously crosstalked into the output signal of the
gyroscope, as shown in Figure 4a. We could then effectively reduce gyroscope output error
through subtracting a certain percentage of the differential signal of the SLD power from
the gyroscope output signal, as shown in Figure 4b.
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From Figure 4b, it can be seen that the output signal of the gyroscope was highly
correlated with the differential signal of the SLD power. After compensation, the error
signal was reduced by 95%. However, this is not complete compensation for error. We
assumed during the analysis that the feedback phase, ϕf, would always completely cancel
the Sagnac phase, ϕS, of the previous cycle, i.e., ϕf[n] =−ϕs[n− 1]. However, this condition
is not satisfied in most cases. This is because the noise in a closed-loop control system is
very large when integral parameter values are at their maximum, and oscillations may
occur in the system. Therefore, the integral parameter of the step ramp is usually smaller
than the maximum value, so ϕf follows ϕs with a certain delay. The error caused by SLD
power fluctuation was correlated with the power differential signal but not the actual
power signal.

4. Experimental Section
4.1. Demodulation of the Light-Source Power Signal

In this experiment, we used the circuit shown in Figure 5a to control the drive current
of the SLD through the MCU and achieve different levels of power modulation. There
is an approximately linear region between the SLD power and the drive current of the
SLD. In Figure 5b, this is the region between S and E. Therefore, when variation in drive
current is low, an approximately linear relationship between SLD power and drive current
is exhibited.
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the SLD light source. D, G and S is pin name of N-Channel MOSFET, G: gate, S: source, D: drain.
(b) Relationship between SLD power and the drive current, from S to E can be approximated as a
linear relationship.

In the circuit shown in Figure 5a, the voltage across the resistor, Rs, follows the voltage,
Vm, modulated with the MCU, so the relationship between the driving current of the SLD
and the modulating voltage is as follows:

iSLD =
Vm

Rs
(21)

When the drive current changes by a small amount, the output power of the SLD can
be expressed as follows:

Pf =
a

Rs
Vm + b (22)

where a and b are two constants determined from the relationship between SLD power
and the drive current, as shown in Figure 5b. Modulation of SLD power can be achieved
through the MCU controlling the DAC to generate a different voltage, Vm. In order to verify
the correctness of the SLD power-demodulation method, we modulated the drive current



Sensors 2023, 23, 1925 9 of 15

of the SLD light source as a sine wave with a frequency of 2 kHz; a bias of 100 mA; and
waveform amplitudes of 0.5 mA, 1.0 mA, 2.0 mA, and 5.0 mA. From Equation (20), the SLD
power signals of the A, C, D, and F stages could be directly collected, and the demodulated
signals corresponding to different drive currents are shown in Figure 6. Because the voltage
signal of the photodetector passed through AC coupling before reaching the AD conversion,
the demodulated SLD power signal here only contains AC components. The detected SLD
power signal was consistent with the parameters of the drive current, and this proves the
correctness of our SLD power-modulation and -demodulation method.
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4.2. Error Compensation

When the rotation speed is zero, the output signal of the fiber-optic gyroscope is ran-
dom noise without consideration of SLD power fluctuation. When SLD power fluctuation
is considered, the output signal of the gyroscope also contains a certain percentage of the
differential signal of the SLD power. In this experiment, the SLD light-source drive current
was modulated to square, triangle, and sine waves with the same bias of 100 mA, the
same frequency of 2 kHz, and amplitudes of 1 mA and 0.5 mA, respectively, as shown
in Table 1. The differential signals of the SLD power appeared in the gyroscope output
signal, as shown in Figure 7, where the red curve is the SLD power signal demodulated
via the method laid out in this paper and the blue curve is the gyroscope output signal.
The gyroscope output signals in Figures 7 and 8 were both raw signals of 174 kHz (the
experimental fiber ring had a crossing time, τ, of 2.875 µs) without any filtering process.

Table 1. Parameters of the drive current.

Waveform Frequency Amplitude

Square
2 kHz

0.5 mA
Triangle

1.0 mASine
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steep trapezoidal wave, so the differential signal is a finite pulse signal. In the output sig-

nal of the gyroscope, spike pulses appear when the square wave jumps, in line with the 

Figure 7. SLD power signal and original output signal of the gyroscope. The driving currents of
the SLD in the experiments had the same bias of 100 mA. (a,d) Square-wave driving currents of the
SLD with 0.5 mA and 1.0 mA amplitudes. (b,e) Triangle-wave driving currents of the SLD with
0.5 mA and 1.0 mA amplitudes. (c,f) Sine-wave driving currents of the SLD with 0.5 mA and
1.0 mA amplitudes.
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Figure 8. The differential signal of SLD power and original output signal of the gyroscope. The
driving currents of the SLD in these experiments had the same bias of 100 mA. (a,d) Square-wave
driving currents of the SLD with 0.5 mA and 1.0 mA amplitudes. (b,e) Triangle-wave driving currents
of the SLD with 0.5 mA and 1.0 mA amplitudes. (c,f) Sine-wave driving currents of the SLD with
0.5 mA and 1.0 mA amplitudes.

In Figure 7a,d, the drive current is modulated as a square wave, but there were
response times and delays in the circuit, and the actual drive current is approximated as
a steep trapezoidal wave, so the differential signal is a finite pulse signal. In the output
signal of the gyroscope, spike pulses appear when the square wave jumps, in line with the
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results of our analysis. In Figure 7b,e, the current is modulated as a triangle wave. The
differential signal of the triangle wave is a square wave, and a square wave also appears
clearly in the output of the gyroscope. In Figure 7c,f, the current is modulated as a sine
wave, the differential signal of the sine wave has a π/2 phase difference from the original
signal, and the output signal of the gyroscope is again consistent with our analysis. This
experimental result proves the correctness of Equation (16) in the analysis section above.

The output signal of the gyroscope contains the differential signal of the SLD power.
Because of this, calculating the differential signal of the SLD power and compensating
for the output signal of the gyroscope can reduce the effect caused by fluctuation in SLD
power. The differential signals of the SLD power and the gyroscope output are compared
in Figure 8. We can see that there is an obvious correlation between the output signal
of the gyroscope and the differential signal of the SLD power. Subtracting a certain
percentage of the differential signal of the SLD power from the gyroscope output signal,
we obtained the compensated result, as shown in Figure 9, where the curve marked as
1 is the original signal of the gyroscope and the curve marked as 2 indicates the result
of the compensation. In Figure 9a,b show compensation results for different modulation
amplitudes, illustrating that the output signal of the gyroscope was effectively compensated
with different fluctuations in SLD power.
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The SLD power fluctuation directly affected the output of the gyroscope so that the
zero-bias stability was greatly affected, as indicated in the experimental results shown
in Figure 10. When the SLD light source was driven by a constant current, the zero-bias
stability was 0.0885◦/h, and this did not greatly change after compensation. However,
when the SLD power fluctuated, the zero-bias stability increased by two to three orders of
magnitude, and the impact was very large. Through our compensation method, the error
caused by SLD power fluctuation could be reduced by more than 90%, as shown in Table 2.
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Figure 10. Measured effects on zero-bias stability and compensation results when the driving currents
are modulated as square-, sine-, and triangle-waveforms that have the different amplitudes of
0.5 mA, 1.0 mA, and 5.0 mA.

Table 2. Influence of SLD power fluctuation on zero-bias stability and compensation results.

Waveform Amplitude
(mA)

Stability
without

Compensation
(◦/h)

Stability with
Compensation

(◦/h)

Percentage of
Improvement

Constant \ 0.0885 0.0874 1.2%
Square 0.5 6.08 0.62 89.8%

Sine 0.5 5.22 0.34 93.5%
Triangle 0.5 3.94 0.45 88.6%
Square 1.0 11.93 0.53 95.6%

Sine 1.0 10.74 0.93 91.3%
Triangle 1.0 8.74 0.85 90.3%
Square 5.0 60.09 1.89 96.9%

Sine 5.0 49.96 1.76 96.5%
Triangle 5.0 38.84 1.05 97.3%

We have shown the original output and compensation results of the gyroscope at
different waveforms and different amplitudes of light-source driving current; the frequency
was the same. In order to test the influence of the driving current with different frequencies
on the gyroscope, we modulated the driving current of the SLD into a sine wave with the
same bias of 100 mA and the same amplitude of 1 mA but different frequencies: 1 kHz,
2 kHz, and 4 kHz. The original output and compensation results of the gyroscope are
shown in Figure 11. Comparing the three pictures of Figure 11a–c, we can see that when the
amplitude was the same, the frequency of the driving current of the light source was higher,
and the error amplitude of the output of the gyroscope was greater. These experimental
results further prove the correctness of Equation (16) showing that the differential signal of
light-source power crosstalked into the output of the gyroscope. From Figure 11d–f, it can
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be found that the compensation method could effectively reduce error caused by power
fluctuation of the light source at different frequencies.
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Figure 11. Experimental results of the gyroscope without (a,c) and with (d,f) compensation when
the driving currents were sine waves that had the same amplitude of 1 mA but different frequencies.
(a,d) A 1 kHz sine wave was added to the driving currents of the SLD. (b,e) A 2 kHz sine wave was
added to the driving currents of the SLD. (c,f) A 4 kHz sine wave was added to the driving currents
of the SLD.

The above experiments provide proof for the compensation method when the gyro-
scope is in a static state. However, the gyroscope would be in motion in most cases, so the
dynamic performance of the compensation method is very important. In order to further
test the dynamic characteristics of the compensation method, we modulated the driving
current of the SLD light source into a sine wave of a frequency of 2 kHz and an amplitude
of 1 mA and measured the original output and compensation results of the gyroscope when
the rotation rates were 10◦/s and 50◦/s, as shown in Figure 12. In both experiments, the
original output of the gyroscope crosstalk the sine wave with basically the same frequency
and amplitude. We can see that the crosstalk effect caused by light-source power fluctuation
remained unchanged when the rotation rates were different. In addition, the light-source
power signal demodulated with our method was basically the same at different rotation
rates. After compensation, the sine wave of the output of the gyroscope caused by power
fluctuation of the light source disappeared and the gyroscope returned to the normal noise
level. Therefore, the compensation method is still effective in dynamic rotation.
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Figure 12. Experimental results of the gyroscope without (a,c) and with (b,d) compensation when
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10◦/s. (c,d) Rotation rate was 50◦/s.
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5. Conclusions

SLD power directly affects the scale factors of fiber-optic gyroscopes. In IFOGs,
constant-current and constant-temperature drive technologies are commonly used, so SLD
power is usually considered to be constant. Under actual IFOG working conditions, SLD
power fluctuation is typically small, but when the working environment of the gyroscope
changes, greater fluctuations in SLD power may result, with the stability of the light
source also possibly affected by miniaturization and cost-reduction requirements. When
the variation in SLD power in a short time period is considered, the differential signal of
the SLD power will crosstalk into the output signal of the gyroscope. In this study, we
quantitatively analyzed this crosstalk signal and modulated a variety of light-source drive
currents in experiments. We also developed a SLD power-detection method to compensate
for the gyroscope output signal using the differential signal of the SLD power and, through
such means, effectively reduced the gyroscope output error caused by the SLD power
fluctuation. This work may help to reduce the noise of gyroscopes and to improve their
anti-interference ability. It may also assist in the ongoing process of miniaturization and
cost reduction in gyroscope production.
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