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Abstract: In order to improve the performance of a micro-electro-mechanical system (MEMS) ac-
celerometer, three algorithms for compensating its temperature drift are proposed in this paper,
including deep long short-term memory recurrent neural network (DLSTM-RNN, short DLSTM),
DLSTM based on sparrow search algorithm (SSA), and DLSTM based on improved SSA (ISSA). More-
over, the piecewise linear approximation (PLA) method is employed in this paper as a comparison
to evaluate the impact of the proposed algorithm. First, a temperature experiment is performed to
obtain the MEMS accelerometer’s temperature drift output (TDO). Then, we propose a real-time
compensation model and a linear approximation model for neural network methods compensation
and PLA method compensation, respectively. The real-time compensation model is a recursive
method based on the TDO at the last moment. The linear approximation model considers the MEMS
accelerometer’s temperature and TDO as input and output, respectively. Next, the TDO is analyzed
and optimized by the real-time compensation model and the three algorithms mentioned before.
Moreover, the TDO is also compensated by the linear approximation model and PLA method as a
comparison. The compensation results show that the three neural network methods and the PLA
method effectively compensate for the temperature drift of the MEMS accelerometer, and the DL-
STM + ISSA method achieves the best compensation effect. After compensation by DLSTM + ISSA,
the three Allen variance coefficients of the MEMS accelerometer that bias instability, rate random
walk, and rate ramp are improved from 5.43× 10−4 mg, 4.33× 10−5 mg/s

1
2 , 1.18× 10−6 mg/s to

2.77 × 10−5 mg, 1.14 × 10−6 mg/s
1
2 , 2.63 × 10−8 mg/s, respectively, with an increase of 96.68%

on average.

Keywords: MEMS accelerometer; temperature drift; real-time compensation model; DLSTM + ISSA

1. Introduction

The MEMS accelerometer is one of the essential measurement elements of an Inertial
Measurement Unit (IMU), which inherits the advantages of MEMS technology, such as
small size, light weight, low cost, low power consumption, etc. MEMS accelerometers
can be used in various fields, such as aerospace, healthcare, gait analysis, sport science,
activity recognition, and portable devices [1–9]. However, existing manufacturing defects,
such as manufacturing tolerances, always degrade its performance. In addition, MEMS
accelerometers are extremely sensitive to ambient temperature, causing their performance
to degrade dramatically with temperature, which limits their application in high-precision
fields. In recent years, researchers have proposed many different approaches to address the
effects of temperature on MEMS accelerometers. In general, they are mainly divided into
two methods: hardware method and software method.

The hardware method improves the temperature characteristics of MEMS accelerom-
eters mainly through circuit control and structural optimization, which always require
additional time and economic costs. Wang proposed a temperature compensation method
for a high-performance resonant MEMS accelerometer based on a control circuit and struc-
tural design [10]. Liu used parasitic resistance to compensate for the temperature drift of
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high precision capacitive accelerometers [11]. Tsai optimized the temperature drift of the ac-
celerometer by limiting the distribution area of different materials to suppress the mismatch
of expansion coefficients [12]. Zotov used two identical tuning forks with opposite sensitive
axes to eliminate common mode errors to suppress temperature effects [13]. Jing collected
the temperature inside the accelerometer package through an on-chip temperature sensor
to more accurately compensate for temperature effects [14]. Kose eliminated thermal lag
between the DETF resonator and accelerometer for more accurate temperature, enabling
more accurate temperature compensation of capacitive MEMS accelerometers [15]. Ma
created a common-mode signal based on a modulated feedback architecture and added
the common-mode signal to the closed loop to compensate for the temperature drift of
the MEMS capacitive accelerometer [16]. Zhang introduced an excitation signal to drive
the proof mass and demodulated the response amplified by the mechanical stiffness and
readout gain to compensate for the temperature drift of the MEMS accelerometer [17].
Parmar implemented temperature compensation of MEMS capacitive accelerometers with
suitable TC circuits [18].

The software method usually studies the mathematical relationship between the tem-
perature and the temperature drift output through modeling and then calculates the model
parameters through mathematical methods to achieve compensation. This approach is often
time-saving, money-saving, and easy to implement. He studied the relationship between
thermal deformation and stiffness temperature dependence and presented an analytical
study and a compensation structure for temperature drifts of a bulk silicon MEMS capaci-
tive accelerometer. After compensation, the bulk silicon MEMS capacitive accelerometer’s
temperature drift was suppressed by 71.89% [19]. Ruzza used low-order polynomials to
compensate for the thermal effects of low-cost MEMS accelerometers to solve the common
drawbacks that currently make low-cost MEMS sensors unsuitable for tilt-based monitor-
ing applications. The author developed a miniaturized temperature-controlled oven and
mounted it on a tilting device to account for tilt angle variation. The results show that
this paper’s low-cost MEMS accelerometer’s RMS errors decreased by 96% [20]. Zhang
adopted the method of finite element analysis to identify the parameters of the tempera-
ture drift model to realize the compensation of the capacitive MEMS accelerometer [21].
Khankalantary studied the relationship between the error coefficients and temperature
and employed cubic spline interpolation to model the relationship to remove temperature
effects [22]. Wang eliminated the temperature effects of MEMS resonant accelerometers
with an optimized back propagation neural network (BP NN) [23]. Han aimed to improve
the accuracy of MEMS capacitive accelerometers over temperature through a BP NN model
and an adaptive genetic algorithm (AGA) in rapidly changing temperature environments.
The traditional genetic algorithm (GA) can realize an extensive search for optimal solutions
in the solution space but easily falls into local minima because of the constant probabilities
of crossover and mutation. The characteristic of the proposed AGA is nonlinearly adjusting
the probabilities. The validation results show that AGA-BP has the best compensation
effect [24]. Qi simulated a MEMS accelerometer’s structural deformation in diverse condi-
tions to trace its temperature drift error (TDE). Then, the author considered the ambient
temperature, ambient temperature change, and the square of the two in the temperature
drift model and improved the accuracy of the MEMS accelerometer with temperature
changes through the BP NN model based on particle swarm optimization (PSO) and GA.
GA is used to remove local optimums of BP NN, and PSO is utilized to solve the prob-
abilistic disorder of GA to improve its accuracy [25]. Zhu focused on compensating the
temperature drift of high-G MEMS accelerometers through a fusion algorithm. In this
paper, the author considered temperature, temperature variation rate, and temperature
product terms to model temperature drift. Then, the radial basis function neural networks
(RBF NN) optimized by a Kalman filter (KF) and GA was proposed, and the temperature
model’s output corrected its output. At this time, the fusion algorithm is determined [26].
Du studied the real-time temperature compensation algorithm of a force-rebalanced MEMS
capacitive accelerometer based on the linear relationship between its temperature and
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dynamic resonant frequency. After compensation, the first-order temperature coefficient
of the accelerometer’s bias offset improved by 98.59%, and the long-term drift was sup-
pressed by 93.14% [27]. Han analyzed the temperature effect and proposed the temperature
compensation of a MOEMS accelerometer. The author used a finite-element method to
complete the quantitative analysis and set up the temperature model by simulating the
deformation of the sensor chip. The model was used to describe the accelerometer’s tem-
perature characteristics, and the temperature compensation was put forward based on the
model. The results show that the temperature compensation can improve the stability of
the MOEMS accelerometer [28]. Considering some specific applications, Yang considered a
simple mathematical model to compensate for low-cost quartz accelerometers’ temperature
drifts at high temperatures. His model considers both temperature and rolling sensitiv-
ity and has been successfully applied to the temperature compensation of two low-cost
quartz accelerometers. The result shows that the temperature drift was suppressed by
90% [29]. Pan focused on the compensation of bias drift and scale factor for a quartz flexible
accelerometer between a quick turn-on and the thermal balance inside the system based on
a three-layer depth wavelet neural network. Moreover, a variable rate learning algorithm
was also employed in this method. Results show that the compensation algorithm increases
efficiency and improves precision [30]. Li proposed an improved BP NN based on GA for
temperature drift compensation of a quartz flexible accelerometer in different temperatures.
The accelerometer’s temperature and temperature drift output are used as the input and
output of the model, respectively. The GA operation(selection, crossover, and mutation)
improves the BP NN’s optimization capability. The results show that this method achieved
a good effect and had fewer training steps and better fitting accuracy precision than the
standard BP NN [31]. Yu employed the artificial fish swarm (AFS) algorithm to carry
out temperature drift compensation for a quartz flexible accelerometer. The accelerom-
eter’s temperature and output voltages are the input and output of the compensation
model. The results show that the accelerometer’s drift instability is reduced by 88.76% after
compensation by the AFS algorithm [32]. Wu studied a quartz flexible accelerometer’s
temperature characteristics and proposed a method for its temperature drift compensation
in the cold start condition. The author established the temperature drift compensation
models based on temperature, temperature gradient, and time-related drift. Then, the PSO
algorithm was employed to find the best model parameters. The results show that the
proposed method greatly reduces the output signal’s standard deviation [33].

Unlike the previous studies, this paper proposes a real-time compensation model and
introduces a deep-learning approach. Moreover, a swarm intelligence optimization, SSA,
is used to tune the parameters of DLSTM for finding the optimal global parameters, and
an improved method is proposed to enhance the optimization ability of SSA. For evaluating
the proposed methods’ influence, the linear approximation model and the PLA method are
introduced in this paper as a comparison.

This paper proposes three methods for temperature drift compensation of a MEMS
accelerometer: DLSTM, DLSTM + SSA, and DLSTM + ISSA. First, the experimental product,
named guidance navigation and control (GNC) module, and the temperature experimen-
tal process are briefly introduced. Second, a real-time model is described to study the
characteristics of the temperature drift of the MEMS accelerometer, which is a recursive
method whose input and output are the output of the temperature drift at the last mo-
ment and the current moment, respectively. We then aim to improve the accuracy of the
previously proposed model with DLSTM, a kind of RNN variant, since the temperature
drift of MEMS accelerometers is a random time series, and RNNs are good at this signal.
Afterwards, the parameters of DLSTM are optimized by SSA and ISSA, respectively. More
accurate compensation results are obtained, further improving the generalization ability
and robustness of the real-time model and DLSTM. Moreover, the linear approximation
model and PLA method are also employed as a comparison with the proposed methods in
this paper. Finally, Allan variance analysis is used to quantify the compensation results
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of the four methods. The results verify that the DLSTM + ISSA method shows the best
compensation performance.

2. Temperature Experiment
2.1. Experimental Product

The experimental product used in this paper is an in-house-designed GNC Module
developed entirely by us. The GNC Module includes a dual-core processor, AD, IMU,
external interface, etc., which can provide a full range of inertial information. In addition,
combined with information from other external sensors, such as GPS or geomagnetic
field information, the GNC Module can realize a broader range of functions, such as
integrated navigation, flight control, electronic control combination, steering gear control,
etc. The dimensions of the GNC Module are 30 mm × 30 mm × 21.6 mm. Its picture is
shown in Figure 1a.

Figure 1. (a) The In-house-designed GNC Module; (b) temperature test equipment.

2.2. Experimental Scheme

In order to study the temperature drift characteristics of the MEMS accelerometer in
the GNC Module, we conducted a temperature test on it. Here, we ignore the influence of
other factors and set the reference value of temperature drift equal to zero. The experimental
scheme is set up as follows.

1. As is shown in Figure 1b, the GNC Module is placed in a temperature-controlled oven
with a static base The accelerometer chosen in this paper has axes perpendicular to
the local gravity direction. The function of the static base is to ensure that the product
on it is not disturbed by the vibration of the external environment;

2. At the beginning of the experiment, the temperature of the temperature-controlled
oven is set to −40 °C and maintained for 1 h;

3. The temperature of the temperature-controlled oven is raised to 80 °C at a heating
rate of 1 °C/min. At the beginning of this step, a computer outside the temperature-
controlled oven synchronously collected the MEMS accelerometer’s output with a
frequency of 200 Hz until the end of the heating process;

4. The temperature of the temperature-controlled oven is maintained at 80 °C for 1 h;
5. Then the temperature of the temperature-controlled oven is brought down to room

temperature. The temperature experiment is over.
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3. Model and Algorithm
3.1. Neural Network Methods
3.1.1. Real-Time Compensatiom Model

Many authors typically use temperature and other temperature-related quantities as
inputs to temperature compensation models. In this way, the collected temperature must
be accurate enough. Otherwise, the temperature error will be directly introduced into the
compensation model, thus reducing the compensation accuracy. In addition, the tempera-
ture is usually output synchronously with temperature drift, so real-time compensation
is impossible. We propose a one-step ahead predictor to perform real-time compensation,
a recursive method based on the TDO from the last moment. This method uses the TDO
at time t− 1 (U(t− 1)) and t (U(t)) as the model input and output, respectively. That is,
the TDO of the MEMS accelerometer from 1 to M − 1 ([U(1), U(2), . . . , U(M − 1)]) and
from 2 to M ([U(2), U(3), . . . , U(M)]) are represented as the input and output data for the
proposed model, respectively. M is the total number of the MEMS accelerometer’s TDO.
The model can be described as follows:

Y(t) = U(t) = F[X(t)] = F[U(t− 1)] = F[Y(t− 1)] (1)

where X(t) and Y(t) are the input and output of the model at time t, respectively. U(t− 1)
and U(t) are the TDO of the MEMS accelerometer at time t− 1 and t, respectively. F[·] is
the target function to be trained. The framework of the proposed real-time compensation
model is shown in Figure 2.

Figure 2. The real-time compensatiom model.

3.1.2. LSTM and DLSTM

• LSTM

LSTM was proposed by Hochreiter and Schmidhuber in 1997 and is a popular variant
of RNN [34]. The framework of LSTM is shown in Figure 3.

Figure 3. The framework of LSTM.
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LSTM is built with a “gate” structure and a cell unit. Three gate units in LSTM
adjust the information flow within the unit adaptively, called forget gate, input gate,
and output gate. The cell can remember values over arbitrary time intervals [34–36].
The equations of the LSTM are described below.
The sigmoid function implements the forget gate, which determines the information
to be discarded from the cell state. The output of the forget gate ranges from zero to
one, representing the forgetting degree of each input in the cell state. The smaller the
forget gate output, the more information is forgotten. Its equation can be described as
Formula (2).

ft = σ(W f xxt + W f hht−1 + b f ) (2)

where xt and ht−1 are the input of the forget gate, W f x and W f h are the coefficients of
xt and ht−1, respectively, b f is the threshold of forget gate, σ(·) is the sigmoid function,
ft is the output of forget at time t, and ht−1 is the output of LSTM at time t.
The second part is the input gate, which determines the new information to be stored
in the current cell state. The input gate consists of two parts. The first is the sigmoid
function that decides the value to update. Similar to the forget gate, the output of
the sigmoid function represents the updating degree of each input. The second is the
tanh function that creates a new candidate value gt. Both outputs are added to the
cell state after a pointwise multiplication operation. Its equation can be described as
Formulas (3) and (4).

it = σ(Wixxt + Wihht−1 + bi) (3)

gt = tan h(Wgxxt + Wghht−1 + bg) (4)

where tan h(·) is the tanh funtion. The meanings of other parameters are similar to the
previous ones.
The last part is the output gate, which decides what information to output. The func-
tion of the sigmoid function is similar to the previous which decides the output degree
of each input. The cell state is put through a tanh function and then pointwise multipli-
cation with Ot as the output of LSTM. Its equation can be described as Formulas (5)–(7).

Ot = σ(Woxxt + Wohht−1 + bo) (5)

Ct = Ct−1
⊙

ft + it
⊙

gt (6)

ht = tan h(Ct)
⊙

Ot (7)

where C(t) is the cell state at time t, and
⊙

represents the point-wise multiplication
operation. The meanings of other parameters are similar to the previous ones.
The above analysis shows that xt and ht are the input and output of LSTM, respectively;
ft, it, gt, and O(t) are intermediate variables in the calculation process; W f x, W f h, b f ,
Wix, Wih, bi, Wgx, Wgh, bg, Wox, Woh, and bo are the weights determined in the training
process; σ(·) and tanh(·) are activation functions; C(t) records the cell state at time t,
which is initialized as 0.

• DLSTM

Figure 3 and Formulas (2)–(7) describe a single-layer LSTM. Figure 4 describes a two-
layer DLSTM. In the two-layer DLSTM, the first-layer LSTM’s output is passed to the
second-layer LSTM and used as input. The input vector goes through the two-layer
DLSTM layer by layer to jointly determine the output of the two-layer DLSTM.
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Figure 4. The framework of two-layer DLSTM.

In general, DLSTM is a sequence LSTM that decides the output together. Its structure
is shown in Figure 5.

Figure 5. Basic structure of DLSTM workflow.

3.1.3. SSA and ISSA

• SSA

SSA is a swarm intelligence optimization algorithm inspired by the foraging and
anti-predation behaviors of sparrow populations, which Xue proposed in 2020 [37]. It
has strong optimization capabilities and fast efficiency and was widely welcomed as
soon as it was proposed. After simplifying and idealizing the biological characteristics
of sparrow populations during foraging, the authors concluded the following rules.

1. Sparrow populations typically divide during foraging into subpopulations called
producers and scroungers. The criteria for classification are according to the
fitness value of individual sparrows. Producers usually have better fitness values,
while others are scroungers. Producers are primarily responsible for finding
food and have larger search areas to provide foraging areas and directions for
the entire sparrow population. Scroungers follow the producer’s location to
find food;

2. Some individuals in the population have a strong anti-predation ability, called
scouters. When scouters detect danger, they will act against predation;

3. Producers and scroungers can dynamically switch in each generation according
to their fitness values, but the number of individuals in these two subpopulations
remains the same;

4. Some scroungers may monitor producers and compete for food, while some
starving scroungers may look elsewhere for food;

5. When aware of the danger, the fittest sparrow will randomly approach others,
and others will move toward the best sparrow.
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Assume that there are a total of N sparrow individuals in the population, each with
d dimensions/elements. This sparrow population can be represented as an expres-
sion (8). Each row of the matrix represents a sparrow individual.

x1,1 x1,2 . . . x1,d
x2,1 x2,2 . . . x2,d

...
...

. . .
...

xN,1 xN,2 . . . xN,d

 (8)

The mathematical expression of SSA can be summarized as follows.
Updating Producer Location

xt+1
i,j =

xt
i,j · exp(− i

α · itermax
), i f R2 < ST

xt
i,j + Q, i f R2 ≥ ST

(9)

where xt
i,j is the j-th dimension of the i-th individual in the t-th iteration of the produc-

ers; j = 1, 2, . . . , d, where d is the dimension of the sparrows; itermax is largest number
of iterations; α is a random value in the range of (0, 1]; Q is a random value from a
normal distribution; R2 ∈ [0, 1] is the alarm value; ST ∈ [0.5, 1] is the safety threshold;
R2 < ST means there is no danger around the producer, and they will continue their
extensive search; and R2 ≥ ST means there is danger around the producer and they
will fly to other safe areas.
Updating Scroungers Location

xt+1
i,j =

Q · exp(
xt

worst,j − xt
i,j

i2
), i f i >

n
2

xt
best,j + |x

t
i,j − xt

best,j| · A
+ · L, else

(10)

where xt
best,j and xt

worst,j are the j-th dimension of the individual with the best and worst
fitness in the t-th iteration, respectively; n is the total number of sparrows; A is a d di-
mensional vector, each element of which is randomly 1 or −1, and A+ = AT(AAT)−1;
L is a d dimensional vector, each element of which is a 1; i > n

2 means that the fitness
of i-th scrounger is poor, it will fly to other places for food; and i ≤ n

2 means that the
i-th scrounger is likely to forage around the best individual.
Updating Scouters Location

xt+1
i,j =


xt

best,j + β · |xt
i,j − xt

best,j|, i f fi > fb

xt
i,j + K · (

|xt
i,j − xt

worst,j|
( fi − fw) + ε

), i f fi = fb

(11)

where β is a random number that follows a normal distribution; K is a random number
that obeys a uniform distribution and K ∈ [−1, 1]; ε is a very small constant to ensure
the denominator is not 0; fi, fb, and fw are the i-th individual’s fitness, the best fitness,
and the worst fitness in the t-th iteration, respectively; and fi = fb and fi > fb denote
whether the sparrow is the individual with best fitness or not in the t-th iteration,
respectively. When they feel danger, they follow Rule 5 to perform the corresponding
actions, respectively.

• ISSA

Although the original SSA has strong optimization ability and fast efficiency, it easily
falls into the local optimum [38–40]. The foraging area and direction of the entire
sparrow population mainly depend on the producers, so we need to expand the explo-
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ration range of the producers to improve the foraging ability of the entire population.
The improvement of ISSA mainly comes from the following three aspects.

1. Introducing self-adaptive hyper-parameters to producers: In Formula (9), the up-
date position of the producer is affected by exp(− i

α·itermax
). When α is a random

value, as i becomes larger, the value range of exp(− i
α·itermax

) becomes (0, 0.4),
where itermax = 1000. It is shown in Figure 6.

Figure 6. Distribution of exp(− i
α·itermax

).

We introduce the adaptive weight w shown by Formula (12) to improve the
producer’s search speed and global search ability.

w = w0 × ct (12)

where w0 = 1 is initial weight; c is set to 0.9.
After adding the adaptive weight w, the producers’ formula is changed to
Formula (13).

Xt+1
i,j =

Xt
i,j · exp(− i

w · α · itermax
), i f R2 < ST

Xt
i,j + Q, i f R2 ≥ ST

(13)

2. We Introduce the Lévy flight (LF) mechanism, which is widely used to overcome
the premature convergence problem [41,42]. In the LF algorithm, the random
walk is used to tune local search capabilities. The formula of LF is shown in
Formulas (14) and (15).

LF =
σ · NLF

|MLF|
1
β

(14)

σ = [
Γ(1 + β) · sin(π·β

2 )

βΓ( 1+β
2 ) · 2

β−1
2

]
1
β (15)
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where MLF and NLF are random numbers that obey a Gaussian distribution;
β = 1.5; and Γ(·) is Gamma function. After the introduction of the LF algorithm,
Formulas (13) and (10) are changed to (16) and (17)

Xt+1
i,j =

Xt
i,j · exp(− i

w · α · itermax
), i f R2 < ST

Xt
i,j + LF, i f R2 ≥ ST

(16)

Xt+1
i,j =

LF · exp(
Xt

worst,j − Xt
i,j

i2
), i f i >

n
2

Xt
best,j + |X

t
i,j − Xt

best,j| · A
+ · L, else

(17)

3. The sparrow individuals with the best fitness are directly passed on to the next
generation. Its purpose is to ensure that the population’s overall quality does
not decline.

The workflow of ISSA is similar to SSA. The difference is that producers and scroungers
obey different formulas in SSA and ISSA, respectively. Moreover, the individual with
the best fitness in the last generation replaces the individual with the worst fitness
in the current generation in ISSA. Here, we present the workflow by the example of
ISSA. The workflow of ISSA is shown in Figure 7.

Figure 7. Workflow of ISSA.
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3.1.4. Fusion Algorithm

It was introduced in the last section that ISSA is similar to SSA. In this section, we
present the fusion algorithm by the example of DLSTM + ISSA. The fusion algorithm can im-
prove the accuracy and generalization ability of the temperature drift model. The workflow
of DLSTM + ISSA is shown in Figure 8, and its steps can be described as follows:

1. We randomly generate N groups values as the initial parameters of DLSTM. Each
group of parameters represents a solution of DLSTM. Each group of parameters
contains d elements, where d is the total number of parameters. These N groups of
parameters have the same form as expression (8) and are used to train the DLSTM.

2. We train the DLSTM until the ending condition one is met; that is, the accuracy of the
DLSTM meets requirements or reaches preset cycles of the DLSTM training. At this
time, new N group parameters are obtained. If the accuracy meets the requirements,
we finish training and export the optimal parameters. Otherwise, new N groups of
parameters constitute the initial population of the ISSA.

3. The ISSA is used to evaluate and improve the parameters in the population further
until ending condition two is met. That is, the accuracy of the DLSTM meets the
requirements or reaches preset cycles of the ISSA.

4. We export the optimal results.

Figure 8. Workflow of DLSTM + ISSA.

3.2. PLA Method
3.2.1. PLA Model

The PLA method uses the MEMS accelerometer’s temperature and TDO as the input
and output of the PLA model, respectively. The model can be described as follows:

Y(t) = U(t) = FL[X(t)] = FL[T(t)] (18)

where X(t) and Y(t) are the input and output of the PLA model at time t, respectively.
U(t) and T(t) are the TDO and temperature output of the MEMS accelerometer at time t,
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respectively. FL[·] is the target function to be trained. The framework of the PLA model is
shown in Figure 9.

Figure 9. The PLA model.

3.2.2. PLA Algorithm

The MEMS accelerometer continuously outputs the TDO and the measured internal
temperature value during the experiment. The measured internal temperature increases
as the temperature rises in the temperature-controlled oven. Consider each temperature
(T(t)) and its corresponding MEMS accelerometer’s TDO (U(t)) as a whole ([T(t), U(t)]).
Divide the data set ([T, U]) evenly into intervals over the entire temperature range ac-
cording to the temperature. In this paper, we divide the data set into ten intervals, that
is [T1(t), U1(t)], . . . , [T10(t), U10t)]. It is fitted separately according to Formula (19) in
each interval.

Y(t) = U(t) = kX(t) + b = kT(t) + b (19)

where X(t) and Y(t) are the input and output of the formula at time t, respectively. U(t)
and T(t) are the TDO and temperature output of the MEMS accelerometer at time t,
respectively., and k and b, respectively, denote the slope and intercept of the linear function.

Ten sets of k and b and nine temperature split points will be calculated using the
PLA algorithm to fit the training data. The temperature values in the validation data set
are first determined by which temperature range they belong to according to the temper-
ature split points. The predictions are then calculated by combining the corresponding
PLA parameters.

4. Results and Analysis

This paper used a calibrated GNC Module to experiment, during which the data
collecting process lasted at least 2 hours, and more than 1,440,000 data were obtained. We
collected two sets of TDO of a MEMS accelerometer under the same condition, one for
training the model proposed in this paper, named training data, and the other for validating
the performance of the previously obtained model, named validation data. In this way,
we verified the compensation effect of the proposed methods in this paper at a heating
rate of 1 °C/min. Therefore, the two data sets have similar characteristics with at least
half an hour between experiments. The experimental scheme is described in Section 2.2.
The training and validation process on the proposed model are both based on a CPU. All
the simulations and analyses in this paper were carried out in Matlab.

We performed 5 s smoothing on the training data in the training process to remove
noise caused by data fluctuations. The hidden layers’ node numbers were both ten. The DL-
STM’s maximum number of iterations was set to 500. The preset cycles of SSA and ISSA
were both 200. The learning rate was 0.02. The initial population of DLSTM had ten
individuals. Figure 10 shows the simulation results of the training data. From Figure 10,
we can see that all four methods simulate the training data well, in which the bias of the
DLSTM + SSA method is the largest. At this time, we obtained three set global optimal
parameters of the DLSTM by the three methods and a set global optimal parameters of
the PLA.
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Figure 10. Simulation results on training data by the four methods.

Then, we apply the four models newly obtained from training data on validation data
to verify their effectiveness. We perforedm 0.5 s smoothing on the validation data to ensure
its diversity. Figure 11 shows the fitting results, and Figure 12 shows the compensation
results. From Figures 11 and 12, all of the methods work well except for the bias of the
DLSTM + SSA method.

Furthermore, we introduce Allan variance to analyze the compensation results quanti-
tatively. Allan variance is a standard and popular method for analyzing the performance
of inertial sensors [26,43,44]. Figure 13 shows the compensation results of Allan variance
analysis by the four methods, and Table 1 shows the corresponding quantitative results.
Here, we mainly focus on the three Allan coefficients: bias instability (B), rate random walk
(K), and rate ramp (R).

Figure 11. Fitting results on validation data by the four methods.
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Figure 12. Compensation results on validation data by the four methods.

Figure 13. Allan variance analysis results after compensation of validation data by the four methods.

Table 1. Allan variance analysis for different compensation methods.

Validation
Data DLSTM Improvement

(%)
DLSTM +

SSA
Improvement

(%)
DLSTM +

ISSA
Improvement

(%) PLA Improvement
(%)

B (mg) 5.43× 10−4 6.97× 10−5 87.16 6.33× 10−5 88.35 2.77× 10−5 94.89 5.25× 10−4 3.29

K (mg/s
1
2 ) 4.33× 10−5 4.19× 10−6 90.33 3.39× 10−6 92.16 1.14× 10−6 97.37 3.45× 10−5 20.23

R (mg/s) 1.18× 10−6 1.11× 10−7 90.59 9.40× 10−8 92.05 2.63× 10−8 97.77 8.24× 10−7 30.31
Aver (%) 89.36 90.85 96.68 17.94

Figure 13 shows that the DLSTM + ISSA method shows the best compensation per-
formance, further confirmed by Table 1. Table 1 shows that after compensation by the
four methods, the three Allen variance coefficients increased by an average of 89.36%,
90.85%, 96.68%, and 17.94%, respectively. The results also prove the effectiveness of the
proposed method.
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5. Conclusions

This paper investigates a MEMS accelerometer’s temperature drift compensation
methods based on DLSTM, DLSTM + SSA, and DLSTM + ISSA. First, we proposed a
real-time compensation model, a recursive method. Then, DLSTM was established to
improve the accuracy of the temperature drift compensation model. DLSTM + SSA and
DLSTM + ISSA were used to optimize the parameters of DLSTM to improve its precision,
where ISSA was an optimization algorithm for SSA. Moreover, the linear approximation
model and PLA method were also used to compare with the proposed methods in this
paper. Finally, Allan variance analysis was used to quantify the compensation results,
showing that all three methods had excellent performance of which DLSTM + ISSA was
the best. The PLA method has little compensation effect in this application. The results of
Allan variance analysis showed B from 5.43× 10−4 to 2.77× 10−5, K from 4.33× 10−5 to
1.14× 10−6, and R from 1.18× 10−6 to 2.63× 10−8 after compensation by DLSTM + ISSA.
These three coefficients have an average improvement of 96.68%.
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SSA Sparrow Search Algorithm
ISSA Improved Sparrow Search Algorithm
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IMU Inertial Measurement Unit
BP NN back propagation neural network
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GA genetic algorithm
PSO particle swarm optimization
RBF NN radial basis function neural networks
GNC guidance navigation and control
PLA piecewise linear approximation
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KF Kalman filter
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