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Abstract: With the rapidly emerging user-generated images, perception compression for color image
is an inevitable mission. Whilst in existing just noticeable difference (JND) models, color-oriented
features are not fully taken into account for coinciding with HVS perception characteristics, such
as sensitivity, attention, and masking. To fully imitate the color perception process, we extract
color-related feature parameters as local features, including color edge intensity and color complexity,
as well as region-wise features, including color area proportion, color distribution position and
color distribution dispersion, and inherent feature irrelevant to color content called color perception
difference. Then, the potential interaction among them is analyzed and modeled as color contrast
intensity. To utilize them, color uncertainty and color saliency are envisaged to emanate from feature
integration in the information communication framework. Finally, color and uncertainty saliency
models are applied to improve the conventional JND model, taking the masking and attention effect
into consideration. Subjective and objective experiments validate the effectiveness of the proposed
model, delivering superior noise concealment capacity compared with start-of-the-art works.

Keywords: user-generated images; color feature parameters; color interaction; color uncertainty and
saliency; just noticeable difference

1. Introduction

With the rapidly emerging user-generated images, it occurs a massive demand for
transmission to meet social needs; moreover, user-generated images end up with being
received by the human eye. Therefore, it is necessary to study the minimum visual threshold
of color images to remove the perceptual redundancy to the greatest extent.

Human visual perception derives from the visual information received by the human
eye. Work related to building the perception model inevitably involves exploring visual
mechanisms in depth and investigating what features affect visual perception. For instance,
Chang et al. [1] utilized sparse feature, which can be seen as the response of neurons in
visual cortex that is closely associated with visual perception, to design a perceptual quality
metric. Men et al. [2] extracted temporal quality-related features, which addresses the
problems caused by temporal variations, to build a feature-combination video quality
assessment method. Liu et al. [3] concerned the low-level human vision characteristics and
the high-level brain activities that can capture the quality degradations effectively. As an
aggregator, Korhonen [4] extracted sets of features, covering a wide variety of different
statistical characteristics in both temporal and spatial dimensions, which are capable to
model and train several different specific distortions. Moreover, color vision is an important
part of the human visual system (HVS) [5–7]. After refining the statistical regularities of
chromatic perception, Chang et al. [8] proposed independent feature similarity (IFS) that can
predict the perceived distortion of color information within a given image. Considering that
the information of image structure cannot reflect the color changes between the reference
and distorted images, color similarity is also involved in modeling besides extracting
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gradient information and saliency information [9]. It can be seen that, based on visual
perception characteristics, the primary task of constructing a subjective task model is to
fully extract the features within visual information that affect perception.

In practical applications, visual perception redundancy exists not only in the luminance
component, but also in the chromaticity component [10,11]. Human color perception
needs to be integrated into image and video encoding to maintain the quality of color
perception while saving more bitrates [12]. Traditional Just Noticeable Difference (JND)
models typically consider the luminance adaptive effect and luminance component contrast
masking effect of HVS, as well as edge masking and texture masking [13], uncertainty
masking [14], pattern masking [15], structural masking [16], and the effect of eccentricity
on visual sensitivity [17]. The JND model in the transformation domain also considers
the contrast sensitivity function (CSF), which reflects the bandpass characteristics of the
human visual system in the spatial frequency domain [18]. Through the full study of
HVS, it has been found that the human eye can only focus on a limited area [19], and HVS
scans the entire scene and guides the rapid process of the eye to focus on the area with the
most information, known as visual attention [20]. The computing resources of the human
brain are allocated to high-attention regions rather than low-attention areas, and visual
saliency regulates visual sensitivity in different regions [21]. Thus, visual saliency is used
to modulate the masking effect in the JND model. For example, after calculating the visual
attention map of an image/video, the pixel corresponding to the highest attention level is
selected as the foveal region/fixation point of HVS, the other regions are treated as non-
foveal areas, and different weighted values are assigned to different regions. Finally, the
weighted map is used to modulate the JND profile and calculate the masking value [22]. In
the transformation domain, a combined modulation function by considering the aftereffect
of visual attention and contrast masking is designed to modulate the CSF threshold of each
DCT coefficient with luminance adaptation factor [23]. From the above analysis, it can be
seen that in the JND model, the masking effect of the luminance component has been fully
studied, whereas the visual saliency model is used to adjust the masking effect.

As we all know, color plays an extremely important role in the way we understand the
world. Since the luminance component can be thought of as an achromatic component
channel, its properties are correlated with the intensity of the color stimulus [24]. Therefore,
color JND model can apply the visual perception characteristics for parameters in the
luminance component to the chrominance component. In the color image JND study,
Chen et al. [25] obtained the color CSF in the DCT domain and applied it to the spatial–
temporal domain JND model. There also exists works to directly calculate the masking
effect of luminance on chromaticity components. For instance, [26] proposed a spatial
JND model, which first models the masking effect integrating different masking effects.
However, it is more suitable for handling luminance components for considering luminance
features. In order to obtain a more accurate color JND model, Xue et al. [27] proposed
the chromatic JND model (CJND) according to the finding that human color perception is
closely related to the density of cones in the retina [28]. Subsequent studies have found
that there is a certain masking effect between adjacent areas in color images [29]. Wan [30]
used color complexity to calculate the spatial masking effect of color images. In the latest
color JND study, Jin et al. [31] considered the characteristics of full-RGB channel, added
pattern complexity and visual saliency, and generated a color image JND threshold called
RGB-JND.

In summary, although many studies on color JND have been explored, they are mainly
based on the three-channel decomposition of color space, or simply regarding chromaticity
as a single quantity from the receiving end of the human eye, or directly applying the
luminance-related masking effect to the color component. Existing JND models do not
consider color features as deeply as luminance components. Driven by these drawbacks,
the chrominance component needs to be analyzed as carefully as the luminance component
in JND modeling. The above analysis proposes three key questions for spatial color JND
modeling. First of all, which color features are extracted? Second, how do we analyze the
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interaction between color excitations? Third, how do we fuse and quantify the impact of
these heterogeneous color features in the perception sense?

In order to tackle these three problems, the color features are elaborated, which are color
edge intensity, color complexity, color area proportion, color distribution position, color
distribution dispersion, and color perception difference. Then, the interaction between
color regions is analyzed from the perspective of visual energy competition to obtain the
color contrast intensity. According to the characteristics of HVS perception, these color
features can be divided into visual excitation sources and suppression sources, which
express masking effects and visual saliency effects, respectively. In this paper, the degree of
color uncertainty caused by color complexity and color distribution dispersion is measured
by means of information theory and modeled as a color masking model. Visual saliency
caused by color contrast intensity is measured, which is modeled as the adjustment weight.
In order to be more consistent with HVS characteristics, color saliency is applied to adjust
color uncertainty masking so as to participate in the color image JND model. The main
contributions of this paper are as follows.

(1) We carefully extract the color features that affect perception in the image, and on this
basis, analyze the interaction relationship between color regions from the perspective
of visual energy competition; then, accordingly propose color contrast intensity.

(2) According to the characteristics of visual perception, color complexity and color
distribution dispersion are regarded as visual suppression sources, and color contrast
intensity is regarded as a visual stimulus source. Then, they are unified to information
communication framework to quantify the degree of influence on perception.

(3) The color uncertainty and the color saliency are applied to improve the conventional
JND model, taking the masking and attention effect into consideration, wherein color
saliency serves as an adjusting factor to modulate the masking effect based on color
uncertainty.

The rest of the article is organized as follows. The color feature parameters are analyzed
in Section 2. In Section 3, the details in color perception modeling and the framework of
the proposed JND model are elaborated. The performance of the proposed JND model is
demonstrated in Section 4. Finally, the conclusion is drawn in Section 5.

2. Analysis of Color Feature Parameters

Abundant studies on color have been involved in the fields of image quality assess-
ment [32,33], salient object detection [34], and visual attention mechanisms [35]. Whereas,
many of these color feature parameters have not yet been applied to the JND model. This
section first analyzes the color perception feature parameters involved in the existing stud-
ies. In order to fuse these heterogeneous color feature parameters and achieve a unified
scale metric, this section analyzes the feasibility of using information theory to fuse het-
erogeneous color feature parameters. In addition, the interaction that exists between color
parameters is analyzed from the perspective of visual energy competition, then represented
as color contrast intensity accordingly.

2.1. Existing Color Feature Parameters

Both color complexity and color edge intensity are local features, which can be obtained
directly in pixel units. Regional color features are based on color regions that are generated
from homogeneous regions through color clustering.

Color complexity mc is used to describe the intensity of color change in the area around
a pixel in the CIELab color space and is calculated as [36]

mc =
8

∑
i=1

(
L2

i + a2
i + b2

i

)
(1)

where Li, ai, and bi denote the results of the convolution by the Lab three-channel compo-
nents going through the i th direction of the gradient operator, respectively.
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Color edge intensity ec is used to describe the distinctness of color edges perceived by
the human eye and is calculated as [34]

ec(x, y) = max
(

Dc′ (x, y)
∣∣∣c′ ∈ {rg, gr, by, yb}

)
(2)

where c
′

represents the four color opponent channels. Dc′ is derived from the maximum
boundary response in each direction at each position.

To extract regional color features, Gaussian Mixture Model (GMM) is used to extract 12
color components with relatively high percentages, and each homogeneous color compo-
nent c is expressed as a weighted combination of several similar GMM components [37].
A homogeneous color region is obtained by clustering spatially connected homogeneous
color pixels, and the weight of homogeneous region position is defined as follows [38]:

lc = exp
(
−9d2

c

)
(3)

where dc is the average distance between pixels in region c and the center of the image,
with pixel coordinates normalized to [0, 1].

The color perception difference χc is calculated as [39]

χc = 1− exp
(
−∆µ

ϑ

)
(4)

∆µ =
∥∥∥µci − µcj

∥∥∥ denotes the Euclidean color distance in CIELab, and µc is the mean
value of color pixels in the homogeneous color component c. ϑ is the normalization
parameter.

The homogeneous color distribution dispersion vc is measured as follows [37]:

vc =
1
|X|c

∑
x

p(c|Ix)×
(
|xh −Mh(c)|2 + |xv −Mv(c)|2

)
(5)

where |X|c = ∑
x

p(c|Ix ), xh, and xv are the horizontal and vertical coordinates of the pixel;

p(c|Ix) are the probabilities that the Gaussian mixture clusters pixels Ix belong to the
homogeneous color components c; and Mh(c),Mv(c) are the mean horizontal and vertical
coordinates of the homogeneous color component regions.

The homogeneous color weight ρc is defined as the area of that color component in the
whole image as follows:

ρc =
num(c)
m× n

(6)

where m and n are the length and width of the image, and num(c) indicates the number of
pixels occupied by homogeneous colors c.

Figure 1 shows a schematic diagram of each color feature parameter. Table 1 lists these
parameters and the corresponding perceptual effects.
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(a) (b) (c) (d)

(a) (b) (c)

(d) (e) (f)

Color Saliency 
Adjustment Intensity

Color Masking 

Figure 1. (a–f) The color complexity mc, color edge intensity ec, relationship between euclidean
distance and color perception difference, saliency weight of color region location lc, degree of color
distribution dispersion vc, and areas of homogeneous color regions, respectively. (Brighter area
indicates greater value.)

Table 1. Existing color feature parameters and their corresponding perceptual effects.

Color Feature Parameter Symbol Effect

Color Complexity mc Masking
Color Edge Intensity ec Saliency

Color Distribution Position lc Saliency
Color Perception Difference χc Saliency

Color Distribution Dispersion vc Masking
Color Area Proportion ρc Saliency

2.2. Feasibility Analysis of Heterogeneous Color Feature Fusion

The abovementioned color parameters result in the distortion of human eye perception
to a certain extent, performing as essential interference factors that affect the accurate
perception of the visual system. On the one hand, some excitation sources affect the fixation
point of human eyes, thus causing saliency effect, while on the other hand, some feature
parameters reduce visual perceptual sensitivity and consume human eyes’ perceptual
energy, inducing a masking effect. In order to quantify the extent of the masking and
saliency effects, we face the challenge of fusing heterogeneous feature parameters. It
naturally leads to the question, can these heterogeneous feature parameters be mapped to
the same scale?

In existing studies, refs. [40,41] modeled visual perception as an information communi-
cation process in which the visual signal passes through an error-prone communication
channel (HVS). The noise level in this communication channel is not fixed, i.e., the HVS
does not perceive all information content with the same degree of certainty; then, the
amount of information that can be received (perceived) at the receiving end will depend
heavily on the noise in the distortion channel (HVS). Therefore, this degree of perceptual
uncertainty can be quantified by information theory if a statistical model of the information
content can be found [42]. This ideological approach has also been proven to be effective
in still image quality assessment (IQA) [43]. Inspired by this, the distortion of human eye
perception caused by color feature parameters can be regarded as visual channel noise. If a
statistical model of the parameter can be developed based on visual perceptual properties,
it can be quantified in view of information theory. Thus, it is feasible to fuse heterogeneous
color feature parameters in the information communication framework.

Next, the key point is how to measure equivalent noise in this communication channel.
According to [44], information content can be measured by the prior probability distribution
and the likelihood function. It has been demonstrated that these measurements are consis-
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tent across human subjects and can be modeled using simple parametric functions [42,45].
Motivated by this, this paper adopts the probability distribution function and fitting curve
to measure color information content induced by color feature parameters.

2.3. Interaction Analysis between Color Feature Quantities

The perceptual effects induced by positive stimuli are known to be positive perceptual
effects [46]. Moreover, the transmission and expression of visual information requires
energy consumption [47]. Therefore, with limited resource capacity, not all positive stimuli
induce positive perceptual effects, i.e., there exists biased competition [48]. The information-
theoretic approach can map feature parameters to the same scale for fusion, but it also
ignores the problem that the interaction relationship between color feature parameters
cannot be expressed. Therefore, in order to obtain a color JND model that is more consistent
with HVS, the interactions between color stimuli also need to be analyzed [49].

After the GMM color clustering processing, the image is divided into homogeneous
color regions. For color regions, the following visual properties can be observed directly.

(1) With the same dispersion, the larger the homogeneous color area is, the more visual
energy allocated to this color area compared with other color areas.

(2) On the condition of same area proportion, if the distribution of one homogeneous
color region is more concentrated than that of other regions, it will pose a positive
stimulation effect on vision and vice versa.

(3) As the distance between different color regions and the fixation point increases, the
competitive relationship gradually weakens.

On the basis of the aforementioned points, the interaction behind these visual properties
is defined as color contrast intensity rc in our work.

rc = η(ρc, ∆vc) · lc (7)

where η(ρc, ∆vc) is the intensity of color area competition, which characterizes the visual
energy competition caused by the distribution of homogeneous color areas. ∆vc = vci − vcj

is the difference between the variance of the current perceptually homogeneous color
component ci and all others cj; so, the larger ∆vc is, the more dispersed ci is relative to
all other color components ci, i.e., the less perceptually significant ci is, the weaker the
contrast intensity of the current perceptually homogeneous color component tends to be,
and vice versa. Based on this perceptual phenomenon, this paper employs η(ρc, ∆vc),
which formulates as

η(ρc, ∆vc) =


∑

ci 6=cj

exp
(
−∆vc
2ρ2

c

)
, ∆vc ≥ 0

∑
ci 6=cj

(
2− exp

(
∆vc
2ρ2

c

))
, ∆vc < 0

(8)

Moreover, the intensity of color region competition is also influenced by the proportion
of homogeneous color components in the whole image. With the same dispersion, the
larger ρc is, the less the influence of other homogeneous color components on the current
component, and the less significant the effect. This is the nut of this model to understand.
At the same time, the more η tends to 1 in this equation, the weaker the effect on the color
contrast intensity rc. Therefore, the model is consistent with visual perception.

3. The Proposed JND Model

In this section, color uncertainty and color saliency, of which the proposed JND model
is comprised, will be described in detail, and methods to model them will be also presented.
Then, the color saliency model is constructed as the modulation factor for the masking
effect based on color uncertainty to incorporate in color JND estimation.
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3.1. Color Uncertainty Measurement

Based on the analysis in Section 2, to measure the degree of color uncertainty in the
same scale, parameters can be modeled in the information communication framework. It
is known that the essence of color complexity is the degree of local dispersion of color
in the pixel domain, which coincides with the concept of entropy in information theory.
Moreover, by visually inspecting the reference and distorted images, we observe that the
perceptional noise is distributed unevenly over space. For example, compared with the
pure-color background, some color sharp-change areas in the images are perceptually more
noisy. That is to say, color complexity prevents the visual system from acquiring accurate
information, which can be equivalent to the perceptual noise in the visual channel of HVS,
as in [45].

Specifically, stimulus intensity is one of the fundamental dimensions of the sensory
experience. Understanding the relationship between the physical intensity of a stimulus
and the subjective intensity of its associated percept was the main driving force behind the
development of the field of psychophysics. This effort was propelled by the finding that
the discriminability between two nearby stimuli along a sensory continuum depends only
on the ratio between their intensities, not on their absolute magnitudes. This observation
was first made by Weber in 1834 [50]. Driven by this concept, relative color complexity

mc
max(mc)

is selected to denote stimulus intensity of mc for perception.
Whence it makes sense to use information entropy to measure the level of percep-

tual noise caused by color complexity, and equivalent noise of color complexity can be
developed as

entropy(mc) = −∑j p(mc)log2(p(mc)) (9)

p(mc) = 1− γ1

(
mc

max(mc)

)γ2

(10)

where γ1 = (max(mc)−min(mc))
1−γ2 , γ2 is the weight assignment factor [36]. As mc

tends to max(mc), i.e., relative color complexity mc
max(mc)

tends to 1, the larger the equivalent
perceptual noise entropy(mc) is. Conversely, relative color complexity tends to 0 the smaller
entropy(mc) is. It can be seen that this equivalent model conforms to perception.

The dispersion of color distribution vc emanates from color variance. The larger the
variance, the more dispersive the color distribution is and the more detail the color has.
Therefore, the greater the dispersion of color distribution, the more visual energy is con-
sumed, which is equivalent to adding more perceptual noise.

p(vc) =
1√

2πα1
exp

(
− (vc − α2)

2

2α1
2

)
(11)

where α1 and α2 are both fitting parameters. By using the Nonlinear-additivity model for
masking (NAMM) [51] that can eliminate the joint effect of parameters, the color uncertainty
U is calculated as

U = entropy(mc)− log2(p(vc) + ε)− 0.3 ·min(entropy(mc),−log2(p(vc) + ε)) (12)

where ε is a very small normal value to avoid the extreme case. Figure 2 shows the color
uncertainty and masking effect based on it; the brighter regions indicate a higher degree of
uncertainty.
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(a) (b) (c) (d)

(a) (b) (c) (d) (e) (f)

Color Saliency 
Adjustment Intensity

Color Masking 

Figure 2. (a) Color uncertainty; (b–d) the color uncertainty masking evaluation in YCbCr three-
channels—more details in 3.3 (brighter areas indicate higher uncertainty and masking).

3.2. Color Saliency Measurement

Criterion for the existence of a salient object: a salient object is always different from
its surroundings, and most likely close to the center of the image [52]. In addition, due to
the limited visual energy of the human eye, inevitably there is a competitive relationship
between visual excitation sources [48]. Therefore, to research color saliency, it is necessary
to consider the degree of color difference and spatial distribution characteristics, even the
interaction relationship between color regions. In view of the color itself, the color with
higher difference to others attracts more attention. From homogeneous color areas in image,
the greater the color contrast intensity, the easier it is to attract human attention. Thereupon,
the degree of color saliency can be modeled as follows:

Λ = χc · rc (13)

Similar with color uncertainty, the degree of color saliency is quantified by information
theory. In particular, areas with higher significance are more noticeable to the human eye
and more difficult to conceal distortion. Based on the visual characteristics of the human
eye, the probability density function of color saliency f (Λ) is modeled as

f (Λ) = β1 −
β1

1 + exp(−β2 ·Λ)
(14)

where β1 and β2 are controlling parameters. Experiments show that the color saliency
model can distinguish the color region well; however, the color at the edge is affected by
the significance of the homogeneous color. If the color saliency of the region is low, the
color edge will not be emphasized. Given that the human eye is very sensitive to edges [13],
further consideration needs to be given to protect edges. From this, color saliency I is
calculated as

I = −log2( f (Λ) + ε) ·Φ(ec) (15)

where ε is a tiny positive normal value, Φ(·) serves as a filter function, only data greater
than a certain threshold are retained, and the rest are taken as 1. Here, edge significance is
only considered when the color edge intensity reaches a certain level, and the threshold is
determined by subjective experiments.

For an intuitive effect, the brighter area in Figure 3 indicates greater intensity and greater
saliency. These results are in accordance with our perception.

Figure 3. Panel (a) denotes Λ, (b) is the color edge intensity, and (c) is the color saliency without
considering the color edge protection. Panel (d) accounts for the color saliency of color edge protection
(brighter indicates larger value).
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3.3. The Proposed JND Model

In order to obtain a more accurate JND estimation in color images, the uncertainty
model and saliency model need to be considered in our model. Specifically, the color
uncertainty performs as a masking effect, and with greater color uncertainty, the more
noise can be accommodated, so the masking effect is stronger. Next, the color saliency is
envisaged to adjust the masking effect. The stronger the prominence, the more susceptible
to human eye attention, so the masking effect of the area is weakened; on the contrary, the
masking effect is strengthened. Finally, considering the sensitivity of the human eye to
different colors, corresponding perceptual weights are assigned in the three channels of
the YCbCr color space. Consequently, the color features and the perception characteristics
of the human eye on color have been carefully considered, and a novel JND threshold
estimation model for color images is established. The framework for the proposed model is
shown in Figure 4, where the brighter area indicates a larger value.

Color Saliency
 Measurement

Color Uncertainty 
Measurement

Color 
Perception 
Difference

Color 
Distribution 
Dispersion

Color Area 
Proportion

Masking based JND 
Estimation

Saliency based JND 
Estimation

Color JND Estimation

Color Masking Effect 
Estimation

Color Sensitivity 
Adjustment

Luminance 
Adaptation Effect 

Estimation

Color Edge 
Intensity

Color 
Distribution 

Position

Color 
Complexity cm

cl

c

c

ce

U

cr



 g U

SW

CW

UJ

LAJ

MJ

CJ

J
I

cv

Figure 4. This is the framework of the proposed JND model.

Firstly, the total masking estimation JM
θ is established by considering the luminance

adaptive threshold JLA [51] and color uncertainty masking estimation JU .

JM
θ (i, j) = JLA(i, j) + JU

θ (i, j)− Cθ ×min
{

JLA(i, j), JU
θ (i, j)

}
(16)

where (i, j) is the pixel coordinate, θ represents three channels of the YCbCr color space,
and Cθ aims to eliminate the superposition effect.

Studies have found that the color masking effect behaves actively for masking of
luminance targets [53]. In other words, the masking effect increases with the increase in
color uncertainty. Accordingly, the increase in the visibility threshold in the luminance
component is more or less caused by the presence of the chrominance component in the
color image. Therefore, the color uncertainty masking estimation JU can be modeled as

JU = ψ · g(U) (17)

where ψ is the masking effect estimation based on luminance predicted residuals [14] and
g(U) represents the gain control [54] of color uncertainty U, g(U) = τ1 · Uτ2

U2+τ3
, where τ1 is

a proportionality constant; τ2 performs as an exponential parameter; and τ3 is a very small
number, used to avoid a denominator of zero.

Since the visual energy of human eyes is concentrated in the area around the gaze
point, the masking effect here is suppressed, while the masking effect in the unattended
area is enhanced. According to analysis in introduction, the visual saliency is regarded as
the adjustment factor for the masking estimation JM to obtain the more humanized JND
threshold JC.

JC = JM ·WS (18)
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where WS denotes the intensity of color saliency adjustment. As the region with saliency
tolerates smaller distortion, the corresponding JND threshold is relatively lower, while the
area with low perceived significance is not easy to notice by the human eye and its JND
threshold is correspondingly larger. Based on this, color saliency adjustment intensity WS

is set.
WS = κ1 − exp(I − κ2) (19)

Among it, color saliency I has been normalized, and κ1 is taken as 2 and κ2 as 0.5 by
subjective experiments. Therefore, adjusted by color saliency, the JND threshold is closer to
real perception.

Finally, considering the different sensitivity of the human eye to different colors, per-
ceptual weights are assigned to obtain the final JND estimation.

Jθ = JC
θ ·W

C
θ (20)

where WC
θ denotes the color sensitivity weight of the YCbCr three-channel [55].

4. Experimental Results and Analysis

To evaluate the superiority of the performance of the proposed JND model, objective and
subjective quality evaluation experiments are implemented in this section and compared
with the comparison models.

4.1. Noise Injection Method

The JND model is built to approach the actual HVS threshold and to avoid its over- or
underestimation. When the difference in perceived quality between the original image and
its corresponding JND-contaminated image is more indistinguishable, it means that the
JND model performs better. Usually, JND models are used to add noise to the image, and a
more accurate JND calculation model tends to hide more noise in a specific region, i.e., the
corresponding JND value should be as large as possible, given the same subjective quality
of the image. Concretely, JND-guided noise is added to images by

F
′
θ(i, j) = Fθ(i, j) + rand(i, j) · Jθ(i, j) (21)

where F is the original color image, θ represents the three channels of YCbCr, and F
′

is
the noise-contaminated image. rand represents the bipolar random noise that is randomly
decided to avoid the occurrence of noise change in the fixed pattern.

4.2. Ablation Experiments

To test the effectiveness of the proposed color saliency modulation and color sensitivity
weights, a variable-controlled approach is selected here for the experiments. Figure 5
shows the comparison of the effect of uncertainty masking without and with color saliency
modulation, and it can be clearly seen that the original uncertainty masking occurs in
regions with high color complexity or irregular texture, such as the region in the seawater
part. However, the region in the black box is close to the central part of the image and
contains colors brighter in perception and significantly different from surroundings; so, this
region attracts the human eye, i.e., the perceptual noise here can be easily detected. This is
the reason for the poor perceptual quality of Figure 5a. After considering the color saliency
adjustment masking effect, less noise is added, which results in a significant enhancement
in perception in Figure 5b. This experiment proves that performance can be improved
considering the visual saliency adjustment given equal amounts of noise.
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(a) (b)

(c) (d)

(a) (b)

Figure 5. (a,b) The masking effect without color saliency adjustment and the masking effect with
color saliency adjustment, respectively. Equal noise is added to both figures (PSNR is 26 dB for both).

Figure 6 compares the visual effect of adding JND directly to the original image, and
adding color sensitivity to the three-channel weighted JND threshold in YCbCr color space.
It is obvious to see that with the same amount of noise added, Figure 6a can feel obvious
distortion, while Figure 6b is visually clear in the overall picture with almost no perceptible
distortion. This is because the human eye is more sensitive to the luminance component
than the color component, where a slight noise in the luminance component can be detected
and the color component can accommodate more perceptual noise. If HVS assigns different
perceptual weights to the three channels of YCbCr color space by adding less noise to
the Y component and more noise to the Cb and Cr components, considering the different
sensitivity of human eyes to color, the perceptual quality does not change significantly
compared with the original images. This experiment proves that it is necessary to take
color sensitivity into account for color image JND modeling.

(a) (b)

(c) (d)

(a) (b)
Figure 6. (a,b) The JND generation map without considering the color-sensitivity weighting and with
considering the color-sensitivity weighting, respectively. Both maps add an equal amount of noise
(PSNR is 26 dB for both).

4.3. Comparison Experiments

In this paper, ten images from each of the three color image databases are selected for
testing TID2013 [56], IVC [57], and LableMe [58], with ’TID2013’ and ’IVC ’ being used for
JND performance evaluation. The resolutions of both are 512 × 384 and 512 × 512, respec-
tively. ’LableMe’ dataset is the selected high-resolution image dataset with a resolution of
1024 × 768. Here, the names are simplified to T1-T10, I1-I10, and L1-L10.
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To measure the subjective quality of the images, this paper conducts a subjective quality
assessment experiment with reference to the standard ITU-RBT.500-11. In each test, the
original image and the noise-added image are presented side-by-side on the screen at the
same time. Specifically, the original image was placed on the left as a reference standard,
and the noise-injected image was played on the right screen in a random order for better
comparison. The subjective scores were divided into four levels, indicating the degree of
distortion compared with the original images, and the scoring criteria are shown in Table 2.
Twelve subjects with good vision or vision correction were invited to rate the subjective
quality in this experiment. The final MOS value is the average of the scores given by the
twelve participants.

Table 2. Subjective quality scoring criteria.

Subjective Score Scoring Criteria

0 The right figure has the same subjective quality as the left figure.
−1 The right image is slightly worse than the left image.
−2 The right image is of poorer subjective quality than the left image.
−3 The right image is much worse than the left image.

To obtain a reliable comparison, we choose the existing representative models for com-
parison, named as Wu2017 [15], Zeng2019 [59], Liu2020 [60], and Li2022 [61]. Wu2017
proposed pattern complexity, which divides the image into regular pattern regions and
irregular pattern regions based on the diversity of pixel orientation in local regions, and in-
tegrates the pattern complexity and luminance contrast. Zeng2019 considered the masking
effect of regular and irregular texture regions. The JND model of Liu2020 considered edge
masking and image masking based on different image contents. Notably, both Zeng2019
and Liu2020 used a saliency factor for adjustment. Li2022 considered that the human eye is
more sensitive to sharp edges than non-sharp edges, and proposed a screen-content spatial
masking effect. These four models were chosen for comparison because they all considered
the properties of each perceptual factor in detail, which is very similar in methodology to
our proposed model that considers color image perceptual factors elaborately. Furthermore,
these models are performed directly in the pixel domain, which makes the comparison
more convincing.

Table 3 shows the comparison results of each model with objective metric PSNR and
subjective metric MOS. The average PSNR metric indicates that the proposed JND model
scores lower than Wu2017, Zeng2019, Liu2020, and Li2022 on all three datasets. It is found
that for the TID2013 dataset, the JND models proposed by Wu2017, Zeng2019, and Liu2020
have higher PSNR, while the overall subjective quality score of the images is lower. The
overall subjective quality of Li2022 is close to the proposed model, while the PSNR obtains
0.84 dB higher, indicating that its calculated JND threshold may be underestimated. The
proposed model in this paper has the lowest PNSR and MOS score.

For the IVC dataset, Wu2017 image perception quality is poor, and subjective experi-
ments find that it has significant distortion in some edge regions, especially for the face
region; Zeng2019 and Liu2020 have significant noise in the color perception flat region,
and both have relatively high PSNR, reaching 35.68 dB and 36.08 dB, respectively. The
subjective perceptions of Li2022 and the proposed model are better, but the PSNR of the
proposed model is 2.67 dB lower, indicating that the proposed model in this paper has
better subjective perceptions while tolerating more perceptual noise.



Sensors 2023, 23, 1788 13 of 18

Table 3. Comparison of subjective and objective experimental results for image datasets.

Image Wu2017 [15] Zeng2019 [59] Liu2020 [60] Li2022 [61] Proposed

Name PSNR( dB) MOS PSNR MOS PSNR MOS PSNR MOS PSNR MOS
T1 36.51 −0.32 35.85 −0.30 36.29 −0.30 31.00 −0.20 32.03 −0.06
T2 35.47 −0.30 35.27 −0.30 36.34 −0.26 31.72 −0.16 32.23 −0.06
T3 36.39 −0.24 35.78 −0.22 36.32 −0.24 32.04 −0.18 28.94 −0.10
T4 31.51 −0.22 34.74 −0.12 33.55 −0.08 32.25 −0.08 31.58 −0.06
T5 35.21 −0.24 36.25 −0.26 36.75 −0.18 34.67 −0.10 31.92 −0.10
T6 33.99 −0.32 36.43 −0.28 35.35 −0.22 34.92 −0.10 34.34 −0.08
T7 33.80 −0.34 33.41 −0.40 33.80 −0.36 29.35 −0.34 28.25 −0.14
T8 34.69 −0.28 36.84 −0.24 37.32 −0.18 34.80 −0.12 34.06 −0.06
T9 34.06 −0.16 36.38 −0.22 35.14 −0.18 33.36 −0.10 29.81 −0.08

T10 36.95 −0.24 36.52 −0.30 37.21 −0.26 32.52 −0.16 35.01 −0.06

Avg 34.86 −0.27 35.75 −0.26 35.81 −0.23 32.66 −0.15 31.82 −0.08

I1 35.90 −0.28 36.16 −0.22 37.97 −0.16 37.09 −0.14 30.81 −0.12
I2 31.40 −0.40 35.62 −0.30 35.44 −0.30 32.46 −0.20 31.71 −0.08
I3 34.57 −0.22 36.52 −0.22 37.07 −0.18 35.66 −0.12 30.48 −0.10
I4 33.92 −0.34 34.21 −0.24 34.70 −0.20 29.58 −0.12 27.55 −0.08
I5 34.76 −0.22 34.52 −0.20 35.52 −0.16 29.81 −0.12 27.76 −0.06
I6 33.17 −0.26 36.39 −0.22 36.44 −0.12 34.77 −0.10 31.13 −0.10
I7 34.87 −0.40 35.67 −0.30 37.21 −0.22 33.57 −0.10 30.94 −0.06
I8 35.90 −0.34 36.01 −0.30 37.53 −0.18 33.72 −0.08 33.24 −0.12
I9 28.62 −0.14 36.49 −0.06 33.26 −0.06 33.21 −0.06 29.60 −0.06
I10 36.16 −0.24 35.21 −0.14 35.69 −0.10 30.69 −0.08 30.66 −0.08

Avg 33.93 −0.28 35.68 −0.22 36.08 −0.17 33.06 −0.11 30.39 −0.09

L1 38.34 −0.20 38.30 −0.14 38.04 −0.12 37.58 −0.04 32.00 −0.06
L2 36.72 −0.18 33.33 −0.18 33.58 −0.14 29.13 −0.08 27.87 −0.08
L3 34.09 −0.18 36.93 −0.16 37.89 −0.14 35.14 −0.08 30.96 −0.06
L4 34.83 −0.24 35.62 −0.18 35.84 −0.12 33.07 −0.10 34.01 −0.14
L5 37.52 −0.24 35.35 −0.24 35.41 −0.22 30.80 −0.12 30.17 −0.10
L6 34.71 −0.16 31.87 −0.14 31.56 −0.10 25.96 −0.08 24.49 −0.06
L7 40.20 −0.16 37.66 −0.14 38.30 −0.08 35.43 −0.08 35.82 −0.08
L8 36.47 −0.28 36.70 −0.30 37.08 −0.24 34.30 −0.10 33.83 −0.08
L9 37.62 −0.26 35.02 −0.26 35.51 −0.22 31.69 −0.16 31.31 −0.10
L10 37.45 −0.18 33.02 −0.32 33.22 −0.28 28.10 −0.20 28.21 −0.12

Avg 36.80 −0.21 35.38 −0.21 35.64 −0.17 32.12 −0.10 30.87 −0.09
Bolded data characterizes optimal performance.

For the dataset LableMe, the PSNR values of the proposed JND model in this paper are
significantly smaller than those of the other four comparison models, and the subjective
quality is better. To evaluate the model performance more objectively, IFC [62], VIF [63],
and NIQE [64] are also used in addition to the objective metric of PSNR. The results
obtained from each model on the test dataset are compared with the original figure, and
the comparison results are shown in Figure 7. It is clearly seen that the proposed model
performs better compared with the comparison model. Collectively, it demonstrates that
the subjective quality of the proposed JND model is in accordance with the real perceptual
thresholds with better noise-masking ability.
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Figure 7. (a) The IFC score line graphs for each model in the 30-image sample; (b) the line graph
of VIF score; (c) the line graph of NIQE score. ↑ represents that the bigger the value, the better the
performance, and vice versa.

In addition, when viewing videos or pictures, people often pay extra attention to
human subjects. Therefore, in order to directly and specifically compare the performance
of different JND models, a classic color portrait image in a commonly used dataset is
chosen here as an example. Figure 8a shows the original image, and Figure 8b–f show the
noise-added images generated by Wu2017, Zeng2019, Liu2020, Li2022, and the proposed
model in this paper, respectively. It can be seen from the results that the images generated
by the models of Zeng2019, Liu2020, and Li2022 have perceptible noise in the flatter regions
of the face, where the noise of the Zeng2019 model is very obvious and the noise of the
Li2022 model generates images with less noise. Wu2017 has relatively less noise on the face,
but there is obvious noise in the region around edges. The proposed JND model performs
better, with visually sensitive face regions perceptually almost identical to the original
image. The visual comparison results show that the proposed model is more consistent
with the visual properties of the human eye in terms of overall perception.

(a) (c)

(d) (e) (f)

(b)

Figure 8. Schematic visual comparison of different JND models. (a) Original figure; (b) Wu2017;
(c) Zeng2019; (d) Liu2020; (e) Li2022; (f) proposed JND model, all with a PSNR of 26 dB.

We also compared with the latest pixel-domain color image JND model [31], which has
not been open-sourced, on a unified dataset and the performance metrics published in the
paper, with results in Table 4. From the results, it can be seen that our model Quality Score
performs better. In summary, the proposed model performs better than the state-of-the-art
color JND model.
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Table 4. Comparison performance between Jin2022 and the Proposed in Database CSIQ.

Model

Index
MAD [65] VIF [63] VSI [66]

Jin2022 [31] 30.8754 0.5918 0.9958
Proposed 15.7638 0.8089 0.9973
Reference 0 1 1

5. Conclusions

In this paper, a pixel-domain JND model with elaborate color feature perception is
proposed. Color-oriented features are firstly extracted. Based on this, color contrast
intensity is proposed by analyzing interaction within color stimuli. Then, according to
human visual perception to these features, we propose perceptually the color uncertainty
and color saliency model by fusing related color features with information theory. Finally, to
improve the conventional JND model, color saliency and uncertainty models are applied by
serving as a masking and attention effect. Subjective and objective experiments validate the
effectiveness of the proposed model, confirming that it has better perception performance
with superior noise concealment capacity compared with reference works.

Nevertheless, the proposed model only concerns limited color feature, attaching the
problem of color degradation during color region extraction. To achieve the accurate
color-image JND, there is still a long way to go.
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