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Abstract: Monocular cameras and multibeam imaging sonars are common sensors of Unmanned
Underwater Vehicles (UUV). In this paper, we propose a new method for calibrating a hybrid sonar–
vision system. This method is based on motion comparisons between both images and allows us to
compute the transformation matrix between the camera and the sonar and to estimate the camera’s
focal length. The main advantage of our method lies in performing the calibration without any
specific calibration pattern, while most other existing methods use physical targets. In this paper, we
also propose a new sonar–vision dataset and use it to prove the validity of our calibration method.
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1. Introduction

Remotely Operated Vehicles (ROVs) are used for a wide range of underwater opera-
tions either physically impossible or technically complicated for divers, from inspections
of industrial offshore structures to scientific deep-sea explorations. Usually, ROVs are
equipped with at least one monocular video camera to pilot the ROV and to observe
its surroundings. For more autonomous robots, this camera can be used for navigation
by determining the robot’s position from the observed objects and features, for obstacle
avoidance by tracking objects in the camera and determining the risk and time for the
robot to encounter them, or even for autonomous docking using visual targets. Another
example of such applications is station-keeping, which gives the ROV increased stability
when standing still during inspections. This can be achieved by using homography to
estimate the movement of the robot and then compensate for it [1]. Furthermore, object
detection algorithms can help guide the pilot to its goal. This can be achieved using object
segmentation, as presented in [2], by combining multiple visual cues (gradient, colour
disparity, pixel intensity, etc.). However, all these methods are limited by optical cameras’
sensitivity to low-light conditions, colour degradation, turbidity, and noise. To cope with
these problems, many techniques have been proposed to enhance underwater images, as
presented in the survey [3,4]. There are also solutions to denoise underwater images using
a variation of the wavelet transform [5]. Some of these algorithms are quite simple and can
even be used for low-power platforms [6], such as for Autonomous Underwater Vehicles
(AUVs).

In addition to the camera, an imaging sonar may be added for specific operations
(inspections of underwater structures, target localisation, etc.). An example of an ROV
equipped with such sensors is shown in Figure 1. The imaging sonar allows to detect objects
at a larger range or under poor visibility conditions. Moreover, sonars allow to obtain
information regarding dimension and distances, which is not the case of monocular cameras.
These advantages of the sonars over the cameras are counterbalanced by two limitations: a
slower frame rate, due to the sound propagation; a poorer resolution, due to the limited
number of acoustic beams and the quite low frequency of the emitted acoustic waves
(typically less than 1.2 MHz). There are several classes of sonars. In this paper, we will only
consider multibeam imaging sonars, often called “acoustic cameras”. Unlike single-beam
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scanning sonars, multibeam imaging sonars use several beams at the same time (typically
256), allowing a much higher update rate (typically 10 to 30 fps, depending on the range).
The acoustic beams have a quite large vertical aperture (typically 20◦) while having a
narrow horizontal width (less than 1◦). Thanks to their long range and their ability to work
in turbid waters, sonars are very useful for underwater object or landmark detection and
recognition. In [7], this is achieved by processing the beams composing the sonar image
and by looking for combined bright spots and acoustic shadows in the acoustic image; then,
comparing the sizes of the detected bright and shadow zones to a known template of the
landmark leads to its recognition. These landmarks are then used for the localisation of
Autonomous Underwater Vehicles (AUVs). Another use of sonar imaging is marine life
detection for ecological surveys [8] using machine learning algorithms such as k-nearest
neighbours, support vector machines, and random forests. To classify them, the detected
targets are described using many parameters, such as their size, intensity, speed, time in
the image, or time of the observation. Sonars can also be used to detect dangerous objects.
For example, in [9], the authors used a CNN-based approach to identify underwater mines
lying on the seafloor. In pipeline following and inspection, sonars are also often employed.
A recent approach used a constant false alarm algorithm to extract the pipeline in spite of
the noise in the sonar image [10].

Figure 1. The Hilarion ROV of the DRASSM equipped with an acoustic camera (Oculus 1200M
multibeam sonar from BluePrint Subsea) and a monocular video camera (Sony ER8530).

Combining the sonar with a monocular camera allows to benefit from both sensors’
advantages: long range sensing, distance and dimension measurements, robustness to
turbidity in the sonar image, easier identification of objects in the optical images, etc.
Figure 2 shows acquisitions of the same scene by a video camera and sonar. However, this
requires knowledge of the transformation matrix between the two sensors, thus allowing
to match pixels of the sonar image with pixels of the optical image. Furthermore, the
knowledge of this matrix allows to improve piloting experience. Indeed, areas of the optical
image can be highlighted where obstacles or objects of interest are detected by the sonar.
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Figure 2. Optical image of a car acquired by a UHD (4K) camera (on the left) and the corresponding
acoustic image obtained by a multibeam imaging sonar (on the right). One can observe the bright
lines corresponding to the edges of the wreck.

In this paper, we propose to study an acquisition system associating a monocular
camera and a multibeam imaging sonar. As mentioned above, to adequately exploit such a
system, it is necessary to perform a calibration, i.e., to determine the existing transformation
between the two sensors. Most existing calibration methods rely on purpose-made physical
calibration patterns, which contain both optical patterns (such as checkers or aruco markers)
and acoustically detectable patterns (made of materials with different textures or different
backscattering properties). For example, in [11,12], the authors use a grid where the edges
create bright lines, which intersect at corners, creating eligible feature points in both acoustic
and optical images. Corners in both images are associated to their known positions in
the grid. With enough points, it is then possible to find the transformation matrix linking
the two sets of points by using the Levenberg–Marquardt algorithm. This process is quite
similar to the one used for the calibration of standard optical stereovision systems. More
recently, a paper proposed to use patterns such as aruco markers with metal rods [13] or
bolts [14], allowing differences in sound reflection. These differences lead to bright spots
where the material is highly reflective and dark spots where it is not. This creates patterns
visible in both the optical and the acoustic images. Another approach consists in using
a known 3D object, including an optical pattern such as a chessboard pattern [15]. By
comparing the acoustic view of the object and the image of the optical pattern, it is possible
to find the transformation between the two sensors.

There are other hybrid sensors’ associations for underwater perception. One of these
methods uses a stereo camera placed alongside a sonar [16]. This adds the distance
information to the visual data, thus allowing to match them with the distances from the
sonar image. Another method, combining a monocular camera and an acoustic sensor, uses
an echosounder instead of a sonar [17]. While not giving an acoustic image of the scene,
this gives a distance map that can be overlapped with the optical image. Additionally, an
original idea came from using a multidirectional microphone array [18]. This kind of sensor
proposes the idea of using multiple microphones placed at various positions. This could be
advantageous when the payload of the vehicle is limited.

As seen previously, most calibration methods between a sonar and an optical camera
rely on a specific calibration object with features that can be detected and matched in both
the acoustic and the optical images. These approaches are efficient, but their use at sea
may be limited by some difficulties, such as the sea state or the requirement of divers and
the time needed to immerse the object and to calibrate the system, especially from large
vessels or offshore structures. A pre-calibration in a pool or in a harbour is not always
enough, as the ROV maintenance teams often modify the system on the field to adapt it
to various types of missions (pipeline inspection, hull inspection, manipulation, etc.) or
simply because the maintenance implies frequent disassembly and reassembly of the robot,
thus inducing small changes in the relative positions of the sensors. In this context and at
the moment, we have found only one team who proposed a targetless calibration method.
This approach is based on natural contours [19] and uses the fact that not only can edges be
easily detected in optical images but they also create detectable bright lines in the acoustic
images. Using these contours, the article proposes to match segmented images of the two
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sensors in order to perform the calibration. As for target-based approaches, this method
may be limited by the field constraints because many underwater environments do not
offer the adequate natural shapes and textures (i.e., allowing easy matching of optical and
acoustic contours).

In this paper, we propose a new calibration method, using only very common under-
water elements (rock, underwater structures, wrecks, etc.) without requiring any specific
shape. Thus, our self-calibration technique is dedicated to hybrid sensing systems com-
posed of a monocular camera and a multibeam imaging sonar. Unlike most existing
methods, this technique does not require any artificial calibration pattern, and uses only
elements of the observed scene without necessitating any knowledge about them. Our
method first extracts acoustic feature points in the sonar image and tracks them with optical
flow to compute their motion in two consecutive sonar frames. Then, a comprehensive
search algorithm estimates the best transformation matrix by projecting these motions onto
the optical image and by comparing the motions predicted from the acoustic image with
the motion actually observed in the optical images. The proposed method also allows
to estimate the focal length of the optical camera and, thus, does not require any prior
knowledge of its intrinsic matrix. This method is validated by experiments on field data
gathered during archaeological surveys. The results presented highlight the ability of the
method to estimate the focal length of the monocular camera, as well as the transformation
matrix between the two sensors. Another contribution of this paper is the introduction of
a dataset. This dataset includes combined optical and sonar images acquired on archae-
ological underwater sites in the Mediterranean sea. The paper is organised as follows.
In Section 2, we introduce the sensors’ models and the notations. Section 3 presents the
calibration method. Then, the experimental performances of our algorithm are evaluated
on field data and the results are presented and analysed in Section 4. This chapter also
presents the content of the public dataset accompanying this paper. The conclusion gives
some perspectives on future works and usage of this method.

2. Problem Statement, Notations and Models
2.1. Problem Statement

We consider two sensors: one monocular optical camera and one acoustic camera.
Each variable associated with the monocular camera (respectively, the acoustic camera) will
be referenced with a subscript o (respectively, s). Let us define Rs as the frame associated to
the sonar and Ro as the frame associated to the optical camera as shown in Figure 3. Then,
a 3D point is denoted Ps : (Xs, Ys, Zs)ᵀ in the sonar frame, while the same point is denoted
Po : (Xo, Yo, Zo)ᵀ in the optical frame. The transformation between the two frames Ro and
Rs is composed of a 3D rotation matrix Ro

s and a translation matrix To
s .

Figure 3. The camera frame Ro, the sonar frame Rs, and the translation vector To
s .



Sensors 2023, 23, 1700 5 of 18

The rotation matrix Ro
s is defined by three angles α, β, and γ around the axes xs, ys,

and zs, respectively. Using the Euler angles with the (z, y, x) convention, the rotation matrix
is defined by Equation (1).

Ro
s = Rx(α)Ry(β)Rz(γ) =

1 0 0
0 cosα −sinα

0 sinα cosα


 cosβ 0 sinβ

0 1 0
−sinβ 0 cosβ


cosγ −sinγ 0

sinγ cosγ 0
0 0 1

 (1)

The translation vector To
s = (tx, ty, tz)ᵀ has three components, one for each translation

along the axes of the sonar frame. Then, a 3D point Ps : (Xs, Ys, Zs)ᵀ in the sonar frame can
be expressed in the camera frame using Equation (2).

Po = Ro
s Ps + To

s (2)

where Po : (Xo, Yo, Zo)ᵀ are the coordinates of the 3D point Po in Ro, and Ro
s and To

s
have been defined above and are the elements that we want to estimate through our
calibration method.

2.2. Monocular Camera’s Model

This section details the camera model used to project a 3D point expressed in Ro into
the 2D image frame. Using the well-known pin-hole model, the projection is expressed in
Equation (3).

po =
1

Zo
KPo (3)

where Po is a 3D point expressed in the camera frame; po : (u, v, 1)ᵀ is the correspond-
ing pixel in the optical image; and K is the intrinsic matrix of the camera, defined by
Equation (4).

K =

 fx s cu
0 fy cv
0 0 1

 (4)

where ( fx, fy) are the focal length in pixel/m along the two axes, s is the skew parameter
describing the non-orthogonality of pixels, and (cu, cv) are the coordinates of the optical
centre of the camera expressed in pixels. For our method, we assume that the skew
parameter s is equal to zero since it is now the case for most cameras thanks to modern
manufacturing techniques (as said in [20]), and we also assume that coordinates (cu, cv)
correspond to the middle of our image. Only the focal length remains unknown, with the
assumption that fx and fy have the same value, noted f . Even though f can be obtained by
a classic intrinsic calibration, we decided to include it in our calibration method to simplify
as much as possible the calibration process to the ROV’s operator.

2.3. Sonar’s Projection Model

In this paper, we consider the case of a multibeam imaging sonar, which processes the
echoes received along multiple beams to create an image. The principle of multibeam sonar
imaging is illustrated in Figure 4.
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Figure 4. Illustration of the principle of a multibeam imaging sonar. The sensor produces wide
acoustic beams, which are reflected by the objects they reach. The echoes are then received by an
array of transducers forming many beams. The echoes create bright points in the acoustic image. The
areas located behind the objects do not receive any sound, thus creating dark zones, corresponding to
the acoustic shadows. The length of the shadow generally depends on the object’s height.

In what follows, ps: (ρ, θ)ᵀ will be the polar coordinates of ps—the projection of the
3D point Ps in the 2D sonar image Is; ρ is the distance in meters between the sonar frame’s
origin Os and the point Ps; while θ is the horizontal azimuth angle with respect to the
central line of the sonar image (Figure 5).

As one will remark, ps has only two coordinates, ρ and θ, while the elevation angle
φ does not appear. This is because the sonar cannot discriminate the echoes from points
having the same horizontal azimuth and the same distance but different elevations. So,
every 3D point in spherical coordinates Psk : (ρ, θ, φ)ᵀ with the same distance ρ and azimuth
θ will be projected on the same point ps: (ρ, θ)ᵀ of the sonar image as long as their elevation
φ is within the range of the vertical aperture of the sonar. Figure 5 illustrates this.

Figure 5. Illustration of the sonar elevation incertitude effect. In the figure, we can see that the three
3D points Ps1 , Ps2 , and Ps3 —having the same azimuth angles θ and the same range ρ but different
elevation angles φ along the doted arc—will be projected on the same point ps in the sonar image (on
the right).

This inability to discriminate the elevation angle has been studied in works concerning
3D reconstruction from sonar images. To deal with this, the existing methods either rely
on a single sonar or on adding an additional sonar placed orthogonally [21] to compute
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the elevation angles by using the azimuth angles observed in the images from the second
sonar. Another approach [22] consists in using multiple views by moving the sonar up
and down and then in tracking points in these views to determine their elevation from
their displacement along an acute angle of the object. The limitation of this method as it is
presented by the author is that in case of smooth objects, extracting and following a feature
can be difficult and can lead to errors in the elevation’s estimation. Another possibility is
to consider the intensity of the points as an image of the elevation [23]. Even though the
intensity of a pixel in the sonar image is linked to the echoes of each point of the arc of
the acoustic beam, this method only works when used close to the ocean floor and with
objects with a similar composition since backscattered intensity varies depending on the
material. One last solution is to track the bright spot of an object and its shadow [24]. By
combining the robot position and considering the evolution of the object’s position in time,
particularly the moment when it leaves the image, this method allows to determine the
elevation of certain points and the height of objects.

In our case, because of the possible absence of targets and the complexity of the
environment, these method will not be used. Instead, we use an interval of elevation values
[φ], where φmin and φmax (the minimum and maximum values of the interval) are defined
by the sonar’s vertical aperture. Using this interval, we can find the interval of 3D points
[Ps] corresponding to each sonar point ps by using Equation (5).

[Ps] =


Xs = ρsin(θ)cos([φ])
Ys = ρcos(θ)cos([φ])
Zs = ρsin([φ])

(5)

where the values of φ belong to the interval [φmin, φmax]. Using this method means that
each point in the sonar image may come from an arc of 3D points.

2.4. Frame Transformation

As stated before, the calibration consists in finding the parameters to go from a pixel
ps of the sonar image to its corresponding pixel po in the optical image. This transformation
relies on the sensors’ models and the transformation between the sensors’ frames. First,
starting from the sonar image point ps, its corresponding sets of points [Ps] can be obtained
from Equation (5). Then, for the set of points [Ps], a corresponding set of points [Po] is
found in the optical camera frame by applying Equation (2) on each points of [Ps]. Finally,
from [Po] and using Equation (3), the corresponding set of points [po] in the optical image
can be found. In summary, for a point in the sonar image ps with an azimuth angle θ and a
range ρ, as well as a value of φ in the interval [φmin, φmax], we obtain a corresponding set
[po] in the optical image. This transformation is summarised by Equation (6):

[po] =
1

Zo
K(Ro

s

ρsin(θ)cos(φ)
ρcos(θ)cos(φ)

ρsin(φ)

+ To
s ) (6)

where ρ and θ are the coordinates of ps in the sonar image, φ is within [φmin, φmax], and
the other variables have been introduced in previous sections. In Equation (6), we need to
estimate the translation vector To

s , the rotation matrix Ro
s , as well as the focal length f of

the camera (inside the camera’s intrinsic matrix K). In order to find these parameters, we
introduce a new calibration algorithm in the following section.

3. Calibration Method
3.1. Selection of a Set of Feature Points in the Sonar Images

To compute K, Ro
s , To

s , and f (i.e., to calibrate the optical–acoustic system), similarly to
stereovision calibration, we need to select a set of corresponding feature points in both the
sonar image and the optical image.

To associate points between a camera image and a sonar image, a recent method
proposes to use feature matching (SuperGlue, a feature matching method based on graph
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neural networks) between the optical and the style-transferred sonar image (CNN-based
style transfer) [25,26]. Another optical–acoustic matching is proposed by the same research
team, based on the Dense Adaptive Self-Correlation Descriptor (DASC), which provides
better results than other descriptor techniques such as Scale-Invariant Feature Transform
(SIFT), Binary Robust Invariant Scalable Keypoints (BRISK), and Accelerated-KAZE (A-
KAZE) [27]. The goal of the authors was not to calibrate the opti-acoustic system, and one
notes that rotation, translation, and scale differences between two images were corrected
prior to the images’ preprocessing, thanks to the knowledge of the relative sensor’s transfor-
mation. Even if the results obtained by the matching process in [27] are impressive and very
relevant, the method requires that the calibration parameters of the opti-acoustic system are
known. This method also necessitates that, after style transfer, the acoustic image contains
patterns relatively similar to the ones of the optical image. Although in many situations
the calibration of the opti-acoustic system can be performed before the mission, for the
reasons given in the introduction, we propose today a method for automatic calibration.
Moreover, in natural underwater environments, it may happen that the acoustic image
bears no resemblance to the optical, as depicted in Figure 2, thus reducing the effectiveness
of the descriptor-based methods. For this reason, in this paper, we propose a motion-based
method aiming at performing the calibration of the opti-acoustic system. Relying on the
comparison of the local motion in both images (optical flow), our method does not rely on
the visual similarity of the images; thus, it can work in any type of environment (except
completely flat bottoms) and we do not need any artificial pattern or calibration target.
This method is described below.

Before selecting the points, we need to process the sonar images in order to reduce
the background noise and other disturbances such as schools of fish that would appear as
multiple clustered spots in the images. To suppress these, we apply a low-pass filter on
the sonar image using its Fourier transform, results are shown in Figure 6. In the denoised
image, denoted Isi , we select n feature points using the Shi-Tomasi algorithm. On sonar
images, the Shi-Tomasi detector offers the advantage of selecting less outliers than the
Harris detector would.

(a) (b)

Figure 6. (a) The unfiltered sonar image. (b) The sonar image after using a low-pass filter.

Among the n selected feature points in the sonar image, the ones located farther than
an adjustable range ρmax are discarded, since they may not be visible in the optical camera
due to turbidity or the lack of light (deep sea). The value of ρmax is set depending on the
water’s turbidity and the lighting capabilities of the robot. In what follows, we will use
ρmax = 2 m. We also discard the points that may be occluded by other selected points
located closer on the same acoustic beam. The final set of selected points is denoted {psi} in
the following. Figure 7 summarises the selection process, while Figure 8 gives an example
on real sonar images. It is important to note that if the number of points in {psi} is below
a certain threshold nmin, the image is discarded and the algorithm will go on to the next
image. For a correct behaviour of the calibration process, experiments have demonstrated
that nmin should be equal to at least 10 points. Once a large enough set of points {psi}
has been selected in the current sonar image Isi, these points are tracked in the next sonar
image Isi+1 using the Lucas–Kanade tracking algorithm [28]. Thus, we obtain the set of
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sonar points {psi+1} corresponding to the tracked positions of {psi} in the second image
Isi+1 .

Figure 7. Illustration of the points’ selection process in the sonar image.

Figure 8. Selection process of the sonar feature points. Similarly to Figure 7, green points are
the remaining points psi after the suppression of the red points located further than ρmax range or
occluded by a closer point located on the same acoustic beam.

3.2. Projection and Evaluation

First, we consider an arbitrary initial value for Ti, Ri, and fi, the sought-after parame-
ters. Using Equations (5) and (6) presented in Section 2, we can project each starting point
psi and the corresponding end point psi+1 into the optical images Ioi and Ioi+1 acquired at
the same times ti and ti+1, thus obtaining the corresponding sets of optical starting points
noted poi and end points poi+1 . As stated before, these optical points represent an arc of
points for each of the selected sonar points. We then use the Lucas–Kanade optical flow to
estimate end points in the next optical image based on the optical movement of the starting
points poi , thus obtaining the estimated end points { p̂oi+1}. An example of this projection
process is shown in Figure 9 for a single sonar point.
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(a) (b) (c)

Figure 9. (a) The selected sonar point in green. (b) The corresponding projected points in the optical
image, with the starting (green), ending (red), and estimated points (yellow); a zoomed image of the
projected points is proposed in (c).

So, for each selected point in the sonar image, we have a starting arc of optical points,
an arc of optical end points corresponding to its tracked counterpart, and an arc of estimated
points from the movement in the optical image. Using these, we can compute the projection
score (i.e., a proximity score between the points computed from the optical movement and
the end points obtained by projection of the tracked acoustic points).

The relative score for the j-th point is defined in Equation (7), where d is the minimal
distance between the estimated points and the end points, and dmax is the distance between
the starting and ending points. This is illustrated in Figure 10.

This score is calculated by considering the estimated end points with the biggest
displacement with respect to the starting points and their distance to the end points, noted
d, as well as the distance between the arc of end points and the arc of starting points, noted
dmax. The score for the j-th point among the n selected points is calculated by Equation (7)
and described by Figure 10. We decided to represent the score with a distance ratio to
mitigate the effect of parameters that could act as scale factors. We call scale factors the
parameters such as focal length that will impact the scale of the projection, thus changing
the spacing of the point by themselves.

scorej =
abs(dmax − d)

dmax
(7)

Figure 10. Description of the score calculation for one projected point, with the starting points (green),
ending points (red), and estimated points (yellow) from the optical flow, as well as the distances used
to compute the score.
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Then, by taking the mean score of every projected point, we obtain the score for one
group of images (two consecutive sonar images and their corresponding optical images).

3.3. Estimation of the Calibration Parameters

To compute the projection parameters (i.e., calibration parameters), we iterate through
all the parameters, realising an exhaustive search in a parameter space whose limits can be
either defined by the dimensions of the robot or chosen by the operator according to the
rough knowledge of the robot’s configuration if it is available (note that the method will
work even without any prior knowledge about the geometric configuration of the setup).
Since an exhaustive search can take a long time, we use an adaptive search, starting with a
coarser step, and then using a finer step to find the calibration parameters. In addition, we
also need to use multiple image pairs to obtain a finer estimation.

To conclude this section, all the steps of the calibration algorithm are represented in
Algorithm 1.

Algorithm 1 Research of the calibration algorithm on one set of camera and sonar image
pairs.

Isi ← getNextSonarImage()
Ioi ← getNextCameraImage()
Isi+1 ← getNextSonarImage()
Ioi+1 ← getNextCameraImage()
psi ← selectFeaturePoints(Isi )
psi+1 ← LucasKannade(Isi , Isi+1 , psi )
scoreMin← +∞
for all Ro

s , To
s and f do

[poi , poi+1 ]← projectPointsSonarToCamera(Ro
s , To

s , f , psi , psi+1)
p̂oi+1 ← LucasKannade(Ioi , Ioi+1 , poi )
projectionScore← computeScore(poi , poi+1 , p̂oi+1)
if score < scoreMin then

scoreMin← score
[Tmin, Rmin , fmin]← [Ro

s , To
s , f ]

end if
end for
Return : [Tmin, Rmin , fmin]

4. Experimental Validation and Dataset
4.1. Experimental Setup

To test our calibration algorithm, we performed two campaigns at sea with two
different ROVs. These tests were performed on wrecks under the supervision of the
Department of Underwater Archaeological Research (DRASSM) of the French ministry of
culture. The first set of tests were performed with the Hilarion ROV equipped with a Sony
4K ER8530 optical camera and an Oculus 1200M multibeam imaging sonar (Figure 1).

Hilarion inspected underwater car wrecks located in the Mediterranean Sea, 60 m deep.
Such wrecks are interesting for these experiments since they present sharp angles, thus
facilitating the detection of feature points thanks to the bright echoes they create in the
sonar images. The second set of tests were performed with the Basile ROV, equipped with
the same Oculus 1200M multibeam imaging sonar and a monocular imaging camera, both
mounted on a mechanical frame, allowing to accurately change the geometric parameters
(e.g., distance and orientation of the camera with respect to the sonar) and thus allowing us
to control the ground truth of the extrinsic calibration parameters, as shown in Figure 11.
During this second mission, the ROV observed various wrecks (cars, barges, boats, etc.)
located around 60 m deep. We created a software allowing synchronisation of the images
from the two sensors, as well as the IMU of the robot.
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(a) (b) (c)

Figure 11. (a) The CAD model of the Basile ROV and its frame, allowing to modify the relative
positions of the camera and the sonar. (b) The mechanical frame with the optical camera and the
sonar. (c) The frame attached to the Basile ROV during a dive in Marseille.

4.2. Dataset

The dataset we created contains 17572 monocular images and the 8577 corresponding
sonar images. We also added the IMU data of the ROV during the mission, despite them
not being useful for our calibration method. We named this dataset the “shipwreck sens-
ing dataset” and it is publicly available here https://www.lirmm.fr/shipwreck-dataset/
(accessed on 1 February 2023).

Details on the nature of the data and their acquisition are presented in Table 1. In
order to see if our algorithm works for various positions of the sensors, we acquired
images with different configurations, as presented in Table 2. The choice of these ground
truth configurations was made to try parameters independently, the first one serving as a
reference and the two others introducing variation on a single parameter. A representation
of each of the extrinsic parameters is shown in Figure 12.

Table 1. Technical data about the sensors of the Basile ROV.

Monocular Video Camera

Camera model Optovision HD mini IP camera

Image size 720 × 480 pixels

Frame rate 30 fps

Sonar

Sonar model Oculus 1200 M

Image size 1024 × 507 pixels

Frame rate 10 fps

Horizontal aperture 130◦

Vertical aperture 20◦

Angular resolution 0.5◦

IMU data frequency 20 Hz

https://www.lirmm.fr/shipwreck-dataset/
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Table 2. The three geometric configurations of the sensors available in the dataset.

Tx (cm) Ty (cm) Tz (cm) α (◦) β (◦) γ (◦) f (pixel/m)

Configuration I 0 5 0 0 0 0 600

Configuration II 0 15 0 0 0 0 600

Configuration III 10 5 0 0 0 0 600

Figure 12. Representation of the extrinsic parameters as part of the frame used to set them during the
experiments at sea. It is important to note that the rotations are expressed along the sonar frame Rs

while the translations are expressed along the optical camera frame Ro, as defined in Figure 3.

4.3. Experimental Evaluation of the Calibration Algorithm

Taking sonar and camera image pairs from this dataset, we tested our algorithm using
the steps described in Section 3. The code was made in C++ with the OpenCV library and
executed on a Dell precision 5520 with an Intel Xeon E3-1505M v6 3.00 GHz processor.

First, we tested our algorithm on an increasing number of image pairs to show the
evolution of the error. The error is the absolute value of the difference between the parame-
ters obtained with the algorithm and the ground truth (relative positions of the two sensors
on the frame, and focal length computed from a standard optical calibration of the camera).
The results are presented in Figure 13. One observes that the algorithm converges very fast
(5 to 6 pairs of images) to errors smaller than 1 cm and 1 degree.
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(a) (b)

(c)

Figure 13. (a) The evolution of the mean error on the calibration parameters over the number of
image pairs used. In (a), the translation parameters (Ts, Ty, and Tz) are presented in meters, (b) the
rotation parameters (α, β, and γ) in degrees, and (c) is the focal parameter.

As we could expect, the results yield a bigger error on the β and Tz parameters because
of the elevation uncertainty in the sonar images, creating a larger vertical zone where the
projection can match the movement. Similarly with the error on the parameters shown
in Figure 13, the evolution of the reprojection error in pixels is shown in Figure 14. This
reprojection error is defined by the minimal distance between the projected arcs and the
known position where they should be. An example of points projected with the found
calibration parameters in comparison to their goal is shown in Figure 15.

The achieved results allow to accurately convey information (the position of an object
from one to the other, for example) from the sonar to the camera and vice-versa, notably
for the position of objects seen by the sonar from further away. Even though a greater
number of images yields a lower error, it is at the cost of the time required to obtain the
results. Since this is an exhaustive search without any optimisation, the time increases
with the number of image pairs (around 4 h per pair), requiring several hours to compute
the calibration parameters, despite using a coarser step to reduce search time (typically
searching by 5 cm/◦ every iteration, then reducing the step to 3, and then 1).
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Figure 14. The mean reprojection error (in pixels) depending on the number of image pairs used for
the calibration. As a reminder, the images have dimensions of 720 × 480 pixels.

This steep increase of the required time can be explained by the sequential imple-
mentation of this algorithm (no parallelisation). An improvement on that matter could
be a subject of future work. The purpose of this brute force approach was to validate the
algorithm before improving its time of execution. To end this section, Table 3 summarises
the results yielded on all the configurations available in the dataset.

These results show that we are able to achieve a precise estimation of all the parameters
despite the differences in configuration. Even though an error still persists, we consider
it sufficiently low for applications making these two sensors work together. For example,
with such precision we could highlight in the optical image the position of a distant object
visible only in the sonar image.

Table 3. Results obtained with our method for the three geometric configurations.

Tx (cm) Ty (cm) Tz (cm) α (◦) β (◦) γ (◦) Focal

Configuration I ground truth 0 5 0 0 0 0 600

Configuration I estimated 1.2 3.8 0.9 0.7 1.0 0.1 570

Configuration II ground truth 0 15 0 0 0 0 600

Configuration II estimated 0.5 14.2 0.8 0.3 1.1 0.4 610

Configuration III ground truth 10 5 0 0 0 0 600

Configuration III estimated 8.7 4.0 0.8 0.7 1.0 0.1 570
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Figure 15. Examples of reprojection once the calibration parameters have been obtained. In green are
the selected points in the sonar image and their corresponding area of presence in the camera image.
In yellow are the arcs of points obtained using the found calibration parameters.

Table 4 presents a comparison with results from the literature. One can observe that
we obtain better performances for translation estimation and we obtain 0.5 degree less
accurate results for rotation estimations. This shows that using movement is an effective
way to compute the calibration parameters.

Table 4. Comparison between existing methods and our algorithm.

Algorithm Error on Tx (m) Error on Ty (m) Error on Tz (m) Error on α (◦) Error on β (◦) Error on γ (◦)

[12] 0.02 0.05 0.1 0.1 1.0 0.003
[14] 0.0 0.05 0.1 1.0 5.0 0.0

Our algorithm 0.01 0.015 0.05 1.0 1.5 0.5

The main limitation of our method in its current form is the important time required
to estimate the calibration parameters. This makes our method unusable for short missions;
however, it could still be of used for long-term missions. This drawback is counterbalanced
by the fact that our method does not require any specific calibration pattern and can be
performed in any natural environment. The computation of the parameters relies on
brute force; thus, it is likely to be optimised in the future in several ways. As gradient-
based techniques are likely to fail with such a problem, we will consider other approaches
in the coming months, such as genetic algorithms. In addition to this, although it is
not required for the convergence of the algorithm, a rough measurement of the relative
positions of the two sensors with a very reasonable accuracy of several centimetres and
several degrees would drastically reduce the search space and, thus, will help them to
converge much faster.
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5. Conclusions

In this article, we presented a new targetless calibration method for a system combining
an acoustic camera (i.e., multibeam imaging sonar) and an optical monocular camera. This
method uses the pixels’ motion in the images of the two sensors. After a presentation of the
model of each sensor, we showed that we could project the movement of feature points of
the sonar image into the optical image. Using the optical flow of the optical image to obtain
an estimate of the movement of projected points in the optical image, a distance score
was calculated, allowing us to compute the calibration parameters through an exhaustive
search. The important upside of this method is that it does not require a calibration pattern.
This will help for robotic operations at sea, which may require frequent recalibration due
to changes in the sensors’ positions and orientations. The obtained level of accuracy is
sufficient to merge the data acquired by the two sensors and is close to the one obtained
by existing calibration methods based on a target. Future works will consist in optimising
the algorithm to improve the search speed, with the goal of reaching a far better execution
time, preferably below an hour, while keeping the same precision. For now, plans for this
method are to use it to highlight in the optical image the distant structures (objects, rocks,
pipelines, etc.) that are visible only to the sonar, in order to give better indication to the
ROV’s operator.
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