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Abstract: Weather variation in the distribution of image data can cause a decline in the performance
of existing visual algorithms during evaluation. Adding additional samples of target domain to
training data or using pre-trained image restoration methods such as de-hazing, de-raining, and
de-snowing, to improve the quality of input images are two promising solutions. In this work, we
propose Multiple Weather Translation GAN (MWTG), a CycleGAN-based, dual-purpose framework
that simultaneously learns weather generation and its removal from image data. MWTG consists of
four GANs constrained using cycle consistency that carry out domain translation tasks between hazy,
rainy, snowy, and clear weather, using an asymmetric approach. To increase network capacity, we
employ a spatial feature transform (SFT) layer to fuse the features extracted from the weather layer,
which contains high-level domain information from the previous generators. Further, we collect
an unpaired, real-world driving dataset recorded under various weather conditions called Realistic
Driving Scenes under Bad Weather (RDSBW). We qualitatively and quantitatively evaluate MWTG
using the RDSBW and the variation of Cityscapes that synthesize weather effects, eg., FoggyCityscape.
Our experimental results suggest that MWTG can generate realistic weather in clear images and also
accurately remove noise from weather images. Furthermore, the SOTA pedestrian detector ASCP is
shown to achieve an impressive gain in detection precision after image restoration using the proposed
MWTG method.

Keywords: Multiple Weather Translation; unpaired training; CycleGAN

1. Introduction

Autonomous vehicles are highly dependent on their perception systems to sense the
surrounding environment and detect other road users, as this information is essential for
their planning and control systems. However, when adverse weather occurs, retrieved
images with low contrast and poor visibility can degrade the performance of the visual
algorithms used in autonomous vehicle perception systems, such as detection, tracking, and
intention estimation [1–5]. This degradation is caused by tiny particles in the atmosphere
that absorb and reflect light [6]. To improve the performance of perception systems during
adverse weather, researchers have used de-hazing, de-raining, and de-snowing applications
to remove these effects to obtain clearer images.

Previous works have suggested using heuristic priors based on observations to remove
weather-related degradation from images, such as Dark Channel Prior [7], Haze-Lines
Prior [8], Sparse Coding [9], Layer Prior [10], Saturation and Visibility Features [11], and
Mutiple-guided Filter [12]. These works utilize meteorological models, with an example
of a haze model being presented in Equation (1), where I is the input hazy image, J is its
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radiance, A is the atmospheric light, and t is the transmittance map measuring the amount
of light able to pass through the haze layer [13].

I(x) = J(x)t(x) + A(1− t(x)) (1)

The same paradigm can also be used for de-raining and de-snowing images. The
simplified models for simulating rain [14] and snow [15] are shown in Equations (2) and
(3), respectively.

O(x) = B(x) + R(x) (2)

I(x) = K(x)t(x) + A(1− t(x)) (3)

where O(·), B(·), and R(·) symbolize a rainy image, a clean background, and a rain layer,
respectively. Equation (3) utilizes K(·) to represent a snow image and the concept is similar
to that explained in Equation (1) and (2).

With the advancement of deep learning techniques, researchers have explored alternative
solutions to mitigate the limitations of traditional approaches in generalization ability. One
such approach that has gained traction is convolutional neural networks (CNN) [16–21]
and generative adversarial networks (GAN) [22,23] trained on prepared datasets. These
methods allow for direct mapping of the domain variation between paired weather-affected
and clear images.

However, there are several reasons for investing in a new approach. First of all,
most current weather removal methods are designed to only solve one type of weather
problem. Second, researchers still tend to utilize paired datasets containing synthetic
weather images, even though using unpaired, real-world weather images would likely
provide more authentic and richer details for deep modeling. Third, current restoration
models usually only allow one-way processing for the removal of weather data, although
studies have shown that models that learn generation and removal simultaneously can
achieve better transformation results. Finally, generating inclement weather images and
using them to train visual algorithms to output clear images could improve autonomous
vehicle sensing under adverse weather conditions. Therefore, in this study, we proposed a
dual-purpose framework for generating images of multiple adverse weather conditions
from clear weather images, as well as the removal of these conditions. Our contributions
are as follows:

• A deep-learning model for the generation and removal of multiple weather conditions
in visual images. Inspired by CycleGAN, we introduce a model consisting of four
generators and four discriminators. The four GANs are trained to generate and remove
haze, rain, snow, and clear weather conditions. Once training is completed, the clear
weather generator can be used to restore images, no matter which of the three weather
conditions described above is present.

• A disentangled training strategy based on unpaired, real-world weather images. By
training our model with images of real weather conditions, ground truth images and
parameters for meteorological physical models are unnecessary.

• We have meticulously curated our newly created dataset, Realistic Driving Scene under
Bad Weather (RDSBW) [24], by removing images with blur and wiper. The dataset
now comprises of 20,000 1080P images extracted from videos. These images showcase
driving scenes captured through the windshield in varying weather conditions such
as clear, hazy, and snowy.

• Evaluate the performance of our model using the RDSBW and Weather Cityscapes
datasets. Use structural similarity (SSIM) and peak signal-to-noise ratio (PSNR) to
measure image quality before and after removing adverse weather. Furthermore,
assess detection accuracy using a state-of-the-art pedestrian detector, demonstrating
promising results for both accuracy and speed.
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2. Related Work
2.1. Removal of One Type of Adverse Weather

Based on image restoration methods, approaches for removing a single type of adverse
weather gained extensive attention due to their possible applications in the field of computer
vision. As a result, many researchers have proposed methods of de-hazing, de-raining, and
de-snowing images.

2.1.1. De-Hazing

Early on, learning-based de-hazing models required an intermediate step to estimate
the transmission map and atmospheric light [25–28]. Error or bias during this estimation
process resulted in artifacts or color distortion, requiring extra processing to reconstruct
clear images [29]. In contrast, more recent, deep-learning models map the relationships
between hazy and clear images directly using datasets of paired images with ground truth
labels [16]. Researchers have also proposed various, innovative modules to enhance their
de-hazing networks, resulting in substantial advances. These include the feature atten-
tion module [17], dense feature fusion module [18], spatially-weighted channel attention
module [19], etc.

2.1.2. De-Raining

Deep learning methods for de-raining were first introduced in 2017, when Yang et al. [20]
proposed region-dependent rain models with contextualized dilated modules to jointly detect
and remove rain. In the same year, Fu et al. [21] proposed De-rainNet, which only uses high-
frequency details as inputs. These two pioneering studies inspired other CNN-based methods
that imported more advanced network architecture designs, achieving better results. However,
using synthetic images of rainy weather as supervision often produces unsatisfactory results
when processing images of real-world rainy weather.

The most potent generative models proposed to date incorporate generative adversar-
ial networks (GAN) and exploit the Min–Max algorithm to reduce the distance between
two domains, which can be used to bridge the visual gap between synthetic and real
rain [14]. Zhang et al. [22] have suggested an effective, conditional, GAN-based single
image de-raining framework with a novel, densely-connected generator and multi-scale
discriminator. Li et al. [23] have proposed a coarse-to-fine framework that first calculates
the underlying physics and then recovers the background using a depth-guided GAN.

2.1.3. De-Snowing

Compared to de-hazing and de-raining, learning-based de-snowing is still in the
early stages of its development due to variations in the shapes and sizes of snowflakes.
Liu et al. [30] created multi-stage DesnowNet, a network that consists of translucency
recovery modules and residual generation modules. Thanks to its context-aware features
and loss functions, DesnowNet outputs images with better illumination, color, and contrast
distributions than traditional methods.

To resolve problems caused by snowflake diversity, Chen et al. [15] proposed a hierar-
chical network, optimized using contradictory channel loss, that was based on contradicting
the state of the prior channel. Zhang et al. [31] proposed using a framework with four
sub-networks, including their newly-designed DDMSNet, in order to utilize semantic and
depth information. After learning the semantic and geometric representations of snowy
images, it was possible to recover clean images with clearer details.

2.2. Removal of Multiple Types of Adverse Weather

Only a few studies have been published which propose generic solutions for removing
multiple types of adverse weather interference from visual images. Li et al. [32] used the
Network Architecture Search framework to obtain a network that uses an image degraded
by any type of weather condition as the input and predicts a clean image as the output.
This All-in-One method was tested across three datasets of rainy, hazy, and snowy images
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and achieved better or comparable performance than dedicated adverse weather removal
models. Jeya et al. [33] proposed a transformer-based encoder–decoder network called
TransWeather. Through fine filtering, they created a dataset combining the Snow100K,
Raindrop, and Outdoor-Rain corpora. Extensive experiments using multiple synthetic and
real-world images proved that TransWeather can effectively remove any type of weather
degradation present in an image.

2.3. Image-to-Image Translation and CycleGAN

If we think of adverse and clear weather as two different domains, the removal
of weather effects can be viewed as a type of image-to-image translation process, the
objective of which is transforming an image from one domain to the other [34]. The
early work on image-to-image translation applied conditional adversarial networks to
learn the mapping between the domains, which required paired datasets. This approach
is not suitable for weather removal tasks, however, because we cannot collect data on
different weather conditions while keeping the background the same at the pixel level,
since atmospheric lighting is constantly changing. However, unpaired image-to-image
translation is a possible solution. In order to preserve the attributes of the source image,
as well as the relationships between objects, pioneering methods such as CycleGAN [35],
DiscoGAN [36], and DualGAN [37] have employed GAN-based reconstruction objective
functions, such as the one shown in Equation (4):

Lr = ‖GAB(GBA(xa))− xa‖+ ‖GBA(GAB(xb))− xb‖ (4)

where Lr represents reconstruction loss, GAB represents the generator from domain A to
domain B, and GBA is the generator from domain B to domain A, while xa and xb represent
examples of the two domains.

The approach proposed in this paper is related to previous methods for removing
degradation caused by multiple types of adverse weather, but it is not restricted to elimi-
nating noise. In contrast, we use information obtained from the image translation domain
and define the problem as unpaired translations of multiple types of weather, which can
transform images from any weather domain into the clear domain, or vice versa, without
providing a ground truth.

3. Multiple Weather Translation GAN

We propose a novel, multiple weather translation GAN called MWTG, inspired by
CycleGAN [35]. The goal of our work is to translate clean images of traffic scenes into
versions of these images with different types of weather degradation and to then be able
to convert the weather-degraded images back into clean ones. The proposed method can
also be used to convert real-world, weather-degraded images into clearer ones. Overall,
MWTG consists of three GANs for weather effect generation and one GAN for weather
effect removal. Our rationale for creating a multi-weather application was based on the
observation that it would be convenient to be able to use just one model to remove all the
various types of adverse weather effects that drivers are likely to encounter.

3.1. General Pipeline

To explain the theoretical basis for our approach in more detail, suppose haze, rain,
and snow are three sub-domains of an adverse weather set (X = x1, x2, x3) and that Y
represents a clear weather domain. As shown in Figure 1, there exist three mappings from
adverse to clear weather: x1 → Y, x2 → Y, and x3 → Y. Furthermore, conversely, there
also exist three mappings from clear to adverse weather: Y → x1, Y → x2, and Y → x3.
In order to simplify the mapping process, we compress the mapping X → Y into one
network. Therefore, our model requires four generators: GA, GB, GB for generating adverse
weather effects (haze, rain, and snow, respectively) and GD for adverse weather removal.
Correspondingly, four discriminators (DA, DB, DC, and DD) are introduced to distinguish
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real images from the generated, fake images. The pseudo-code of MWTG is also provided
in Algorithm 1.

Figure 1. Architecture of proposed Multiple Weather Translation GAN. MWTG consists of four
generators corresponding to four mappings: Y → x1, Y → x2, Y → x3, and X → Y. All the
generators have a ResNet encoder–decoder with nine residual blocks. Their associated discriminators
are a three-layer CNN and output a one-channel prediction map. The weather layers, which are
obtained by subtracting the fake output from the input, are used as information guidance to achieve
better results. Note that A ∼ D represent hazy, rainy, snowy, and clear weather, respectively, and that
GA∼D are the respective networks used for generating these weather effects.

Algorithm 1 Multiple Weather Translation GAN (MWTG)
Input: Training data pairs (A, B, C, D) . In order of haze, rain, snow, and clear
Output: Generator networks GA, GB, GC, GD

1: Initialize generators and discriminators
2: Define loss functions
3: Define optimizers for generator and discriminator
4: while epoch ≤ total_epoches do
5: for data pair (A, B, C, D) in data_loader do
6: Generate fake images: FDA = GD(A), FDB = GD(B), FDC = GD(C) and FA =

GA(D), FB = GB(D), FC = GC(D)
7: Generate reconstruct images: RA = GA(FDA), RB = GB(FDB), RC = GC(FDC)

and RDA = GD(FA), RDB = GD(FB), RDC = GD(FC)
8: Update Discriminator DA, DB, DC and DD
9: Update Generator GA, GB, GC and GD

10: end for
11: end while

Since we want to translate the unpaired, real-world weather images, MWTG borrows
the cycle consistency principle from pioneering works [35,38–40] to regulate the structure
of the output images, so they remain the same as the input images. Therefore, after an
image is translated by the weather removal/generation network, we can translate it back
into its original domain using the same generator.

We are using A ∼ D to represent sets of hazy, rainy, snowy, and clear weather images,
respectively. As part of a single processing step, the image data are simultaneously sorted
into two different places. On the one hand, real A, real B, and real C are input to GD and
the fake clear images are output. These fake images will then be input to GA ∼ GC to
obtain the reconstructed adverse weather images. On the other hand, real D images will be
simultaneously input to GA ∼ GC to obtain fake, adverse weather images. These results
then go through GD to obtain the reconstructed clear images.
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3.2. Weather Generators and Discriminators

As the backbones of our four MWTG generators, ResNet [41] (with a Residual Block) is
used to maintain the previous output through a skip connection, a method which has been
proven to be effective when training deeper neural networks. The input image will first be
scaled down twice, using large convolutional filters. After obtaining the desired resolution,
the first layer feature maps of the image will go through nine ResNet blocks, generating
denser representations with more channels. In a similar manner to the encoder–decoder
architecture used in [42], two transpose convolutional layers then follow, to reverse the
dense representations back into normal size RGB images.

For the discriminators, we use simple, three-layer convolutional neural networks that
gradually increase the number of filters. The last layer outputs a one-channel prediction
map, which is the encoding input for the criterion function. Because our datasets consist
of high-resolution images, it would be time and memory-consuming to infer the entire
images. Therefore, in the training stage, we crop the images into 480× 480 pixel patches to
reduce the calculation burden, which are then learned using PatchGANs [35,43,44].

3.3. Weather Information Guidance

To obtain better results, we introduce a disentangled training strategy [24,45] that
regards images degraded by adverse weather as composites of a weather layer and a clean
background. We can then calculate the numerical distance between the input and output of
each generator and store those distance values in a tensor that has the same dimensions as
the input image. We refer to this tensor as the weather layer.

To provide additional input to the generator, we incorporate the spatial feature trans-
form (SFT) to combine the weather layer feature with the extracted feature maps, allowing
the weather layer to serve as guidance. SFT, which was first introduced by Wang et al. [46]
for super-resolution image reconstruction, fuses the middle layer’s features with the image’s
original features spatially using Affine transformations. We adopt the method proposed
by Shao et al. [47] and use a two-layer convolution module to extract the condition map φ
from the weather layer. The extracted map is then fed into the two convolutional layers
to predict the modulation parameters γ and β. Lastly, we use Equation (5) to obtain the
shifted features.

We then use the feature maps of the penultimate convolutional layer of the GAN
generator as input F to the SFT module, while the fake image output from the SFT module
is similar to the input image, the values of the elements in the weather layer are close to 0,
which is the consequence of the vanishing gradients. That is why we normalize the weather
layer before it reaches the SFT module:

SFT(F | γ, β) = γ� F⊕ β (5)

where �means element-wise product and ⊕means element-wise summation.

3.4. Loss Function

Three kinds of loss functions are used when formulating an MWTG model; adversarial
loss, cycle consistency loss, and identity loss.

3.4.1. Adversarial Loss

We use adversarial losses to obtain four mappings, three for from clear to adverse
weather (Y → x1, Y → x2, Y → x3) and one for from adverse to clear weather (X → Y).
The first three mappings can be expressed as shown in Equations (6):

C,3

∑
i=A,j=1

LGAN
(
Gi, Di, Y, xj

)
= Ei∼pdata(i)[log Di(i)] +ED∼pdata(D)[1− log Di(Gi(D)] (6)
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where GA∼C tries to generate images GA∼C(D) that look similar to images from domain
x1∼3 , while DA∼C aims to distinguish between the translated samples GA∼C(D) and real
samples D. The base of the logarithm in the equation is usually set to 2 or e.

The transformation from adverse to clear weather involves three components, cor-
responding to each weather sub-domain; the mean values of which are calculated as
follows:

LGAN(GD, DD, X, Y) =
1
3

n

∑
i=1
LGAN(GD, DD, xi, Y) (7)

where the LGAN over xi tries to enable GD to generate better haze, rain, and snow images,
while DD needs to identify fake images after the generator is evolved.

3.4.2. Cycle Consistency Loss

The concept of ‘cycle consistency loss’ was introduced in [35], the paper proposing
CycleGAN. It is calculated as the L1 norm between the input image and the reconstructed
image and is used to prevent the second generator from generating random images of
the target domain. An example of forward cycle consistency is shown in Figure 2, where
images of each type of adverse weather are first translated into the “clear” domain before
being restored to the original adverse weather images. This process can be formulated as
follows:

A→ GD(A)→ GA(GD(A)) ≈ A, B→ GD(B)→ GB(GD(B)) ≈ B, and C → GD(C)→ GC(GD(C)) ≈ C.

Likewise, for backward cycle consistency, the clear image that is first translated into
various weather domains should be restored to the same state as input, i.e.:

D → GA(D)→ GD(GA(D)) ≈ D, D → GB(D)→ GD(GB(D)) ≈ D, and D → GC(D)→ GD(GC(D)) ≈ D.

To force the weather removal generator GD to update at the same pace as the adverse
weather generators, we compute the average of the three cycle losses as the loss of GD:

Lcyc(G, D) =
C

∑
i=A

EA∼pdata(i)[‖Gi(GD(i)− i‖1] +
1
3

C

∑
j=1

ED∼pdata (D)

[
‖GD(Gj(D)− D‖1

]
(8)

Figure 2. MWTG translates clear images into hazy, rainy, or snowy images using three different
generators, creating a set of images representing different weather conditions (top row). In contrast,
only one generator is needed to translate all three types of adverse weather images into clear ones
(bottom row).

3.4.3. Identity Loss

Identity loss is used to preserve the image color composition when applying painting
transfer to realistic photo tasks. We also find it useful when dealing with large weather
images that have obvious base color tones. The goal is to train the generator to learn to
map the identities of the target domain images used as input. This identity loss can be
expressed as:

Lidentity(GA, GB, GC, GD) =
D

∑
i=A

Ei∼pdata (i)[‖Gi(i)− i‖1] (9)
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3.4.4. Overall Objective Function

Based on the context provided above, the overall objective function can be formulated
as shown in Equation (10), where λc and λi are weights that control the cycle consistency
loss and identity loss:

Lobj = LGAN + λcLcyc + λiLidentity (10)

4. Evaluation

In this section, we present the results of our qualitative and quantitative evaluations
and also discuss the results when the mixed dataset or the new RDSBW dataset is used
as an input.

4.1. Datasets
4.1.1. Cityscapes Weather Datasets

Cityscapes [48] is an annotated corpus of 5000 driving scene images captured in urban
areas. The researchers also simulated various weather effects onto the dataset, using infor-
mation such as depth maps based on atmospheric scattering models. Foggy Cityscapes [49]
includes three different haze densities for each image, representing visibilities of 150 m,
300 m, or 600 m, respectively. Rain Cityscapes [50] is based on 295 images, which were used
to generate 36 different haze concentrations and rain types for each image. The training
and testing sets of the Snow Cityscapes [31] each consist of 2000 pairs of images. The size
of the images in both the training and testing sets is 512× 256.

To train our MWTG, we reorganized the datasets described above to create a Cityscapes
weather dataset, as shown in Figure 3. The synthetic weather datasets use the same depth
maps as the background more than once to simulate different weather intensities. Since
low-intensity weather does not degrade visual applications very much and high-intensity
weather occurs relatively infrequently, we only used the 300-m haze images of the Foggy
Cityscapes and chose 12 types of rain patterns from Rain Cityscapes. To keep all the images
in the training set at the same resolution, which is important to reduce domain difference,
we resized the Snow Cityscapes images to 2048× 1024 using normal linear interpolation.

Figure 3. Sample scenes from the Cityscapes and rearranged Cityscapes weather datasets. We com-
bined images selected from Foggy Cityscapes [49], Rain Cityscapes [50], Snow Cityscapes [31], and
the original Cityscapes [48] datasets into one corpus consisting of 5000, 3540, 6000, and 5000 images
from each dataset, respectively. The number of samples from each dataset varied due to variation
in our synthesis strategy for different weather types. The original resolution of all the images is
2048× 1024.

4.1.2. Realistic Driving Scenes under Bad Weather Dataset

RDSBW is a new dataset we created, which includes 2831 clear, 2052 hazy, 4171 rainy,
and 4777 snowy images. We picked out high-quality images, 1920× 1080 pixels in size,
from driving scene videos recorded in urban settings. Figure 4 shows examples of RDSBW
images from each set.
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Figure 4. Sample scenes from the Realistic Driving Scenes under Bad Weather dataset (RDSBW).
We first captured driving scene video under different weather conditions using a camera with
1920× 1080 resolution mounted behind a car windshield. We then selected sharp and unique images
and manually categorized them by weather type. The “haze” set contains 2052 images, the “rain” set
contains 4171 images, the “snow” set contains 4777 images, and the “clear” set contains 2831 images.
Note that the images are uncorrelated by location.

4.2. Implementation Details

We used the Pytorch framework for training, testing, and image preprocessing. Two
NVIDIA RTX A6000 graphics cards were used for training, with a batch size of 4. We
trained the MWTG model for 200 epochs on each dataset to ensure convergence, using the
Adam optimizer and a step learning rate schedule. In addition, we set the λc and λi loss
weights at 10 and the extra identity loss weight λidt at 2.

4.3. Evaluation Results and Comparisons
4.3.1. Qualitative Evaluation Using RDSBW Data

We first conducted a qualitative experiment using MWTG with the RDSBW dataset.
The samples of the weather generation results are shown in Figure 5. MWTG can translate
an unseen clear image into hazy, rainy, and snowy images without changing the original
background context. The proposed method seemed especially effective for adding haze
and rain, based on the following three aspects. First, the color of the image shifted based
on the type of adverse weather effect being added. Second, the weather effects were similar
to those observed in real scenes, since MWTG does not simply add an extra layer to the
input image but instead applies appropriately generated weather effects to each region of
the image, to objects such as the sky, roads, and trees. Third, MWTG is able to consider the
semantic information. For example, the wires connecting the power and telephone poles
were partly hidden under hazy weather conditions and the lane markings were covered by
ice and snow under snowy conditions. However, in the case of rainy weather, the generated
results were not ideal because the patterns in the rainy weather source images were not
conspicuous enough for the model to learn them effectively. We will address this problem
in the future by collecting more useful rainy weather image data.
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Figure 5. Weather generation results for RDSBW. Even when trained without paired image sets,
MWTG still can translate clear images into images of our three adverse weather conditions without
corrupting the background context.

Regarding the weather removal results, we can still observe accurate color transforma-
tion and realistic scene translation results, as shown in Figure 6, but MWTG occasionally
fabricated inputs, generating artifacts in some cases, most notably the insertion of fake
grass in the middle of the road when removing rainy weather effects. We believe this is
due to limitations in the generation process and, when weather effects are very extensive,
the network is unable to determine the original context without some guessing.

Figure 6. Weather removal results for the RDSBW dataset, showing examples of MWTG’s translation
of adverse weather images into clear weather images; while MWTG was unable to recover objects
and buildings hidden behind dense haze, it did not randomly insert fake objects.

4.3.2. Qualitative and Quantitative Evaluation Using Cityscapes Weather Data

Here, we present our qualitative results when using the Cityscape corpora and, since
ground truth images without any adverse weather phenomena are included, we will
then provide quantitative results also. As shown in Figure 7, MWTG demonstrated high
performance when removing weather effects during the qualitative experiment. This is
because, in this setting, the only difference between the adverse and clear weather domains
was the weather effects. Therefore, even though the data were unpaired during training,
MWTG can still determine what is hidden behind the haze, rain streaks, or snowflakes and
recover the original images.

In our quantitative evaluation, we compare MWTG with the state-of-the-art single
weather removal methods, but only for their specific tasks. For de-hazing, we compared
the performance of our proposed MTWG method with DehazeNet [25], MSCNN [26],
AODNet [27], and GridDehazeNet [51]. For de-raining, we compared MTWG with RCD-
Net [52], MPRNet [53], PReNet [54], and RESCAN [55]. For de-snowing, we compared
it with RESCAN [55], SPANet [56], and DesnowNet [30]. Note that although MSCNN is
listed in all the comparisons, it is still categorized as a single weather removal tool since it
needs to be retrained for each removal task. In contrast, MWTG performs all these tasks
using the same model.
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Figure 7. Weather removal results for the Cityscapes datasets. Although the MWTG model uses an
unpaired training paradigm, the original Cityscapes dataset contains ground truth images for its
synthesized weather datasets, in contrast to the RDSBW dataset. The result is that even if objects
are occluded by haze, rain, or snowflakes, MWTG still can recover the original Cityscape images to
generate clear images.

PSNR and SSIM were used to compare the performance of each model when using
the Cityscapes images. The tabulated results are shown in Tables 1–3.

Table 1. Comparison of results with Foggy Cityscapes.

Type Method Venue PSNR SSIM

Task Specific

DehazeNet [25] TIP 14.971 0.487
MSCNN [26] ECCV 18.994 0.859
AODNet [27] ICCV 15.446 0.631

GridDehazeNet [51] ICCV 23.72 0.922
Previous Work [24] VTC 24.071 0.915

Multi Task MWTG - 23.844 0.911

Table 2. Comparison of results with Rain Cityscapes.

Type Method Venue PSNR SSIM

Task Specific

RCDNet [52] CVPR 20.39 0.6498
MPRNet [53] CVPR 20.10 0.6815
PReNet [54] CVPR 20.48 0.6598

RESCAN [55] CVPR 20.44 0.6681
Previous Work [24] VTC 22.458 0.886

Multi Task MWTG - 25.16 0.911

Table 3. Comparison of results with Snow Cityscapes.

Type Method Venue PSNR SSIM

Task Specific

RESCAN [55] ECCV 33.63 0.9627
SPANet [56] CVPR 35.73 0.9741

DesnowNet [30] TIP 33.58 0.9382
Previous Work [24] VTC 27.42 0.871

Multi Task MWTG - 25.233 0.858

From these results, we can see that MWTG achieved similar or better performance
than the other de-hazing and de-raining methods, as measured using PSNR and SSIM.
However, for the de-snowing task, MWTG was impaired by pixel resolution differences and,
thus, did not achieve satisfactory performance. This is because the conventional methods
were evaluated using the original Snow Cityscapes images, with an image resolution of
512× 256, while we resized these images to match the resolutions of the other two datasets
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(2048× 1024) when training MWTG. Therefore, MWTG is dealing with images that are 16
times larger than the conventional methods.

4.4. Evaluation Using Perception Algorithm

To verify the suitability of MWTG for visual applications, we tested it using the state-
of-the-art pedestrian detector ACSP on Foggy Cityscapes images. An example of MWTG’s
de-hazing performance is shown in Figure 8 and ACSP detection results before and after
de-hazing are shown in Table 4. As we can see, the detection results clearly improved after
the images were de-hazed using MWTG. For further investigation, we used ACSP on the
validation set of Foggy Cityscapes and tabulated the values of log-average Miss Rate over
False Positive Per Image (FPPI); the results are shown in Table 5. We also apply the SOTA
object detector, which uses Cascade-RCNN [57] as the backbone, on Weather Cityscapes as
shown in Figure 9. We can observe the performance improvement in the detection numbers
in different weather conditions.

Figure 8. Application of MTWG on Foggy Cityscapes using SOTA pedestrian detector.

Table 4. Generation Results on Cityscapes

Type Weather PSNR SSIM

Multi Task
Haze 21.091 0.924
Rain 21.375 0.849
Snow 19.021 0.679

Figure 9. Application of MTWG on Weather Cityscapes using SOTA object detector.
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Table 5. Log-average miss rate over false positive per image (FPPI) results for ACSP pedestrian
detector using Foggy Cityscapes.

Data Reasonable Bare Partial Heavy

Foggy (before) 23.73% 16.32% 25.93% 58.70%
De-haze (after) 20.65% 14.98% 21.30% 58.70%

4.5. Discussion

Based on the results of our evaluations, we can confirm that MWTG is able to translate
images of multiple types of adverse weather into clear images, since a constraint on
cycle-consistency loss allows the background context to remain unchanged. We now
discuss in more detail the capabilities and drawbacks of weather generation and removal
using MWTG.

In the experiment with the RDSBW dataset, the number of samples for each weather
condition was unbalanced. Normally, models learn better conversion rules with more
training samples. However, in the case of hazy weather, with only 2000 training samples,
the model was able to achieve satisfactory results. In contrast, in the case of images of rainy
weather, even though the model was trained with 4000 image samples, the translation
results were less accurate. This is because rain creates more complex patterns in images.
For example, streaks of rain in the air are spindly, so they are difficult for the camera to
capture. Furthermore, rain is often accompanied by high humidity, thus there is often fog
in the background of rainy images. When encountering finer and more varied distinctions,
our model tends to learn simpler representations, which is why the rainy images generated
using MWTG are more similar to an intermediate output between haze and snow. We
can also observe that MWTG’s weather generation performance is superior to its weather
removal performance. Since the CycleGAN model [35] is good at translation tasks involving
color and texture changes and, since our model is based on CycleGAN, MWTG should
inherit this ability. However, even though we intuitively consider the generation and
removal of weather to be two separate tasks, our model treats both as translation tasks.
This means erasing noise, such as blocks of haze or flakes of snow from occluded objects,
is not the primary target of the model but it is adding a layer of snow on the road or
inserting a layer of haze in the distance, for example. Note that this difference in conversion
performance is less obvious when using the Cityscapes data, where domain variance is
minimal since the images are all synthesized using the same dataset.

5. Conclusions

In this work, we have explored a solution to the visibility degradation problem
that intelligent vehicles encounter when operating under adverse weather conditions,
which can lead to malfunctioning of the perception module. Our proposed, dual-purpose
framework, called Multiple Weather Translation GAN (MWTG), is able to perform adverse
weather generation and removal tasks simultaneously. In particular, we trained our image
translation model using unpaired data. Three weather generators were used to create
adverse weather effects on images of normal driving scenes obtained from video datasets,
while a fourth clear weather generator was used to recover clear images by removing
hazy, rainy, and snowy noise. To avoid translation deviation, we added a spatial feature
transform layer to fuse the feature maps of the front-end network, as an information guide
to the subsequent network.

A qualitative evaluation of MWTG using our own RDSBW dataset and qualitative
and quantitative evaluations using reorganized images from the Cityscapes and Cityscapes
weather datasets showed that MWTG can achieve promising de-noising performance. More-
over, the results of a practical experiment showed that our model boosted the performance
of state-of-the-art pedestrian detector ACSP when tested using the Foggy Cityscapes images.
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In the future, we intend to expand the range of adverse weather that the model can
handle to include strong light and nighttime scenes, without complicating the present
MWTG framework.
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