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Abstract: In the US, at least one fall occurs in at least 28.7% of community-dwelling seniors 65 and
older each year. Falls had medical costs of USD 51 billion in 2015 and are projected to reach USD 100
billion by 2030. This review aims to discuss the extent of smartphone (SP) usage in fall detection and
prevention across a range of care settings. A computerized search was conducted on six electronic
databases to investigate the use of remote sensing technology, wireless technology, and other related
MeSH terms for detecting and preventing falls. After applying inclusion and exclusion criteria, 44
studies were included. Most of the studies targeted detecting falls, two focused on detecting and
preventing falls, and one only looked at preventing falls. Accelerometers were employed in all
the experiments for the detection and/or prevention of falls. The most frequent course of action
following a fall event was an alarm to the guardian. Numerous studies investigated in this research
used accelerometer data analysis, machine learning, and data from previous falls to devise a boundary
and increase detection accuracy. SP was found to have potential as a fall detection system but is
not widely implemented. Technology-based applications are being developed to protect at-risk
individuals from falls, with the objective of providing more effective and efficient interventions than
traditional means. Successful healthcare technology implementation requires cooperation between
engineers, clinicians, and administrators.

Keywords: remote sensing technology; smartphone; mobile applications; artificial intelligence;
hospital-at-home

1. Introduction

Falls are one of the most concerning areas in healthcare, and they are frequently asso-
ciated with devastating consequences such as fractures or neurologic injuries, particularly
in older adults. Falls are the most common cause of fatal injuries [1]. In the United States,
approximately 28.7% of community-dwelling older adults 65 and older fall at least once per
year [1]. A total of 37.5% of those who fell reported at least one fall that required medical
attention or limited their activity for at least one day, resulting in an estimated 7.0 million
fall injuries [1].

Furthermore, falls are the leading cause of fatal injuries [1] and the most common
reason for trauma-related hospitalizations in older adults [2]. Older adults who have fallen
in the last two years are two to three times more likely to fall again within a year [1].
Nonfatal injuries secondary to falls are one of the top 20 most expensive conditions, with a
medical cost of USD 51 billion in 2015 [3,4], which is expected to rise to USD 100 billion by
2030 [5].

Approximately 25% of hospital falls result in injury, lengthening a patient’s stay,
increasing healthcare costs, and increasing liability [6–9]. Additionally, the Centers for
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Medicare and Medicaid Services will not reimburse hospitals for care when patients sustain
specific fall-related injuries, putting hospitals under significant financial pressure to prevent
falls [10].

Several approaches have been implemented to prevent falls in hospitals. This wide
range of fall prevention practices includes patient monitoring tools (e.g., sitters), bed
modifications (e.g., alarms), identification practices (e.g., bracelets), safety practices (e.g.,
clutter-free floors), and patient and family education [10].

However, there is scant [11–17]—and occasionally even contradictory—support for
implementing any of these strategies [18,19]. Even though bed alarms, for instance, are
ineffective at preventing falls and detrimental (such as noise and alarm fatigue), they are
nevertheless often employed in medical facilities [14,18,20–22]. The case for using multi-
component interventions is more significant, although it is not apparent which elements
have the most important influence on falls [10]. For the prevention of hospital falls, ex-
perts advise adopting multicomponent treatments and customizing the procedures for the
patients who will be cared for in the unit [10].

There are no accepted, evidence-based therapies for fall prevention, in contrast to
other healthcare-acquired illnesses [11–17,23,24], making it challenging for hospitals to
determine which preventative strategies have the most influence on fall rates. This review
intends to discuss the scope of smartphone (SP) utilization in fall detection and prevention
in various care settings. The review’s focus will be on the applicability, current utilization
status, effectiveness, and pros and cons of using SP and threshold-based algorithms to
detect and predict falls and future directions in this field.

2. Material and Methods
2.1. Eligibility Criteria

Studies that described setting thresholds to the SP sensors to detect and/or prevent
falls remotely were included. We classified fall detection studies as those that described
devices or systems that used an accelerometer or other sensors to detect changes in move-
ment that could indicate a fall and send an alert to a caregiver or emergency contact. Fall
prevention studies, on the other hand, are those that describe devices or systems that mon-
itor a person’s movements and provide feedback or suggestions to help prevent falls by
using sensors that detect changes in movement and alert the user to any potential fall risk.
They may also make suggestions or make recommendations to assist users in adjusting
their movements and avoiding falls. Studies that used telehealth video calls or digital
exercise programs, studies in languages other than English, reviews, and book chapters
were excluded (Figure 1).

2.2. Information Sources and Search Strategy

A computerized search was conducted on 12 November 2022, by two independent
investigators (R.T.G. and F.R.A.) using the following electronic databases: PubMed (1994–
present); MEDLINE (1996–present); Embase (1988–present); CINAHL (1994–present); Web
of Science (1900–present); NIH ClinicalTrials.gov (1997–present); Google Scholar. The
following MeSH terms were used: “Remote Sensing Technology”, “Technology”, “Wireless
Technology”, “Accidental Falls”, Fall detection”, “Accidents, Home”, and “Home”.

ClinicalTrials.gov
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Figure 1. Study selection flow chart. Flow chart describing the study selection process according to
PRISMA guidelines. (From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow
CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ
2021;372:n71. doi: 10.1136/bmj.n71; For more information, visit: http://www.prisma-statement.org/)
(accessed on 30 August 2022). * Consider, if feasible to do so, reporting the number of records identified
from each database or register searched (rather than the total number across all databases/registers). **
If automation tools were used, indicate how many records were excluded by a human and how many
were excluded by automation tools.

2.3. Study Selection and Data Collection Process

Two investigators (R.T.G. and F.R.A.) independently conducted the search and fil-
tration following the inclusion and exclusion criteria described above. The studies were
filtered based on titles consecutively by abstracts, and lastly by full-text reading. If both
authors considered that the article met all criteria, the manuscript was included. In case no
consensus could be made, a third author (A.J.F.) designated the inclusion or exclusion of
the article. Data from the selected papers are summarized in Table 1.

http://www.prisma-statement.org/
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Table 1. Description of studies that aimed to detect accidental falls. Abbreviations: EMS: emergency
medical services; SP: smartphone; k-nn: k-nearest neighbors algorithm; SVM: support vector machine.

Reference
and
Year

Smartphone
Operative

System
Device

Detection
(D)/Prevention

(P)

Consequence
Triggered by

the Fall
Parameter Performance

Dai J. et al. [25]
2010 Android OS G1 D and P

Speaker sound
alert and alarm

to guardian

Triaxis
accelerometer,

gyroscope, and
magnetometer

Average false negative:
2.13%

Average false positive
value is 7.7%

Fontecha J. et al.
[26] 2013 Android OS Not stated P Not stated Triaxis

accelerometer Not stated

Mellone S. et al.
[27] 2012 Android OS

Samsung
Galaxy SII
(GT-I9100)

D and P
Alarm to

guardian with
GPS location

Accelerometer,
gyroscope, and
magnetometer

Not stated

Bai, Y-W et al.
[28] 2012 Not stated Not stated D

Alarm to
guardian with
GPS location

and draw help
path

Triaxis
accelerometer Not stated

Castillo J.C.
et al. [29] 2014 Android OS

SP (not stated)
+ external

device
D

Alarm to
guardian with
GPS location

Triaxis
accelerometer

Sensitivity: 92.7%
Accuracy: 97.2%
F-score: 94.8%

He, Y. et al. [30]
2012 Android OS Lenovo

Le-phone D
Alarm to

guardian with
GPS location

Triaxis
accelerometer Not stated

Hsieh, K.L. et al.
[31] 2019 Not stated Not stated D Not stated Accelerometer Not stated

Kwolek, B. et al.
[32] 2015 Android OS

SP (not stated)
+ external

device
D Not stated Accelerometer

k-nn + acceleration %
Sensitivity: 100%

Specificity: 92.86%
Accuracy: 95.83%
Precision: 90.91%

SVM + acceleration %
Sensitivity: 100%

Specificity: 92.86%
Accuracy: 91.67%
Precision: 83.33%

Lee, J.V. et al.
[33] 2013 Android OS HTC Desire

A8181 D Alarm to
guardian

Triaxis
accelerometer Not stated

Lee, R.Y.et al
[34]
2011

Android OS Google G1 D

Speaker sound
alert and alarm

to guardian
with GPS
location

Triaxis
accelerometer

SP:
Sensitivity: 81%
Specificity: 77%

External accelerometer:
Sensitivity: 82%
Specificity: 96%

Lopes, I.C. et al.
[35] 2011 Not stated Not stated D

Speaker sound
alert and alarm

to guardian
with GPS
location

Triaxis
accelerometer Not stated

Suh M.K. et al.
[36] 2011

iOS and
Android

iPhone and
Motorola

Droid
D Alarm to

guardian
Triaxis

accelerometer Not stated
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Table 1. Cont.

Reference
and
Year

Smartphone
Operative

System
Device

Detection
(D)/Prevention

(P)

Consequence
Triggered by

the Fall
Parameter Performance

Aguiar, B. et al.
[37] 2014 Android OS Samsung

Galaxy Nexus D
Alarm to

guardian with
GPS location

Triaxis
accelerometer

and biaxial
gyroscope

Belt usage
Sensitivity: 97.0%
Specificity: 98.4%
Accuracy: 97.6%

Pocket usage
Sensitivity: 96.6%
Specificity: 98.6%
Accuracy: 97.5%

Boehner et al.
[38] 2013 Not stated

EZ430
Chronos

Texas
Instruments
Smartwatch

D
Alarm to

guardian and
EMS

Triaxis
accelerometer Not stated

Cao et al. [39]
2012

Android
v.2.2 OS HTC A3366 D Alarm to

guardian Accelerometer

Classical algorithm:
Sensitivity: 86.7%
Specificity: 85.5%

Adaptive algorithm:
Sensitivity: 86.7%
Specificity: 85.5%

Casilari, E. et al.
[40] 2016 Android OS

SP and
external
sensors

D Alarm to
guardian

3-axis
gyroscope,

3-axis
accelerometer,

and
magnometer

Not stated

Casilari, E. et al.
[41] 2015 Android OS LG Nexus 5 D Alarm to

guardian

Triaxis
accelerometer
and gyroscope

Sensitivity: 89.6%
Specificity: 95.8%

Colon L. et al.
[42] 2014

Android
v.4.4.2 OS

Google Nexus
5 D Alarm to

guardian

Triaxis
accelerometer

and biaxial
gyroscope

Precision: 58.2%
Specificity: 79%
Accuracy: 81.3%

Recall: 89%

Dogan, J. C.
et al. [43] 2019 Android OS LG Nexus 5 D Not stated Triaxis

accelerometer Accuracy: 95.65%

Figueiredo, I.
et al. [44] 2016

Android
v.4.1.2 OS

Samsung
Galaxy Nexus
and Samsung
Galaxy Nexus

S

D Alarm to
guardian

Triaxis
accelerometer

Sensitivity: 100%
Specificity: 92.65%

Hakim, A. et al.
[45] 2017 Android OS Sony C6002

Xperia Z D Not stated Triaxis
accelerometer Accuracy: >90%

Harari, Y. et al.
[46] 2021

Android
v.6.0.1 OS

Samsung
Galaxy S5 D Alarm to

guardian

Triaxis
accelerometer
and gyroscope

Sensitivity: 73%
Specificity: >99.9%
Accuracy: 97.81%

He, J. et al. [47]
2017 Android OS Not stated D

Alarm to
guardian with
GPS location

Triaxis
accelerometer
and gyroscope

Sensitivity: 99%
Specificity: 95%

Accuracy: 95.67%

He, Y. et al. [48]
2012 Android OS Lenovo

Le-phone D
Alarm to

guardian with
GPS location

Triaxis
accelerometer Not stated

Islam, Z. Z.
et al. [49] 2017 Not stated Not stated D Alarm to

guardian
Triaxis

accelerometer Accuracy: >90%
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Table 1. Cont.

Reference
and
Year

Smartphone
Operative

System
Device

Detection
(D)/Prevention

(P)

Consequence
Triggered by

the Fall
Parameter Performance

Koshmak et al.
[50] 2013 Android OS Not stated D

Alarm to
guardian with
GPS location

Triaxis
accelerometer

Senitivity: 90%
Specificity: 100%
Accuracy: 94%

Lee, J. S. et al.
[51] 2019 Android OS Not stated D Alarm to

guardian
Triaxis

accelerometer
Accuracy: 99.38%

Detection rates: 96%

Lee, Y. et al.
[52]
2018

Not stated Not stated D Not stated Triaxis
accelerometer Not stated

Madansingh, S.
et al. [53] 2015 iOS iPhone 4 D Not stated

Accelerometer,
gyroscope, and
magnetometer

Not stated

Maglogiannis
et al. [54] 2014 Android OS Pebble

smartwatch D Alarm to
guardian

Triaxis
accelerometer Not stated

Mehner et al.
[55] 2013 Android OS

Samsung
Galaxy S and
Sony Xperia

ray

D Alarm to
guardian

Triaxis
accelerometer

Detection rate: 83.33%
Specificity: 100%

Mousavi, S. A.
et al. [56] 2021 iOS v.12.0.1 iPhone 7+ D

Alarm to
guardian with
GPS location

Triaxis
accelerometer Accuracy: 96.33%

Pierleoni, P.
et al. [57] 2015

Android
v.4.4.4 OS

Motorola
Moto G D Alarm to

guardian

Triaxis
accelerometer

and
magnetometer

Sensitivity: 99.3%
Specificity: 96%
Accuracy: 97.7%

Qu, W. et al.
[58]
2016

Android
v.4.4.3 OS LG Nexus 4 D

Alarm to
guardian with
GPS location

through social
media

Triaxis
accelerometer Not sated

Shahzad, A.
et al. [59] 2018

Android
v.4.4.2 OS LG G3 D Alarm to

guardian

Triaxis
accelerometer
and gyroscope

Sensitivity: 99.52%
Specificity: 95.19%
Accuracy: 97.81%

Tran, H. et al.
[60] 2017

Android
v.5.0 OS

Sony Xperia
C4 D

Alarm to
guardian with
GPS location

Triaxis
accelerometer

Sensitivity: 60.46%
Specificity: 94.80%
Accuracy: 82.50%

Tran, T. D. et al.
[61] 2016 Android OS ASUS

Zenfone 2 D Not stated Triaxis
accelerometer Sensitivity: 93%

Tsinganos, P.
et al. [62] 2017 Android OS

LG D160 and
ASUS

Zenfone 2
D Not stated Triaxis

accelerometer
Sensitivity: 97.53%
Specificity: 94.89%

Viet V. et al.
[63]
2011

Android OS Google Nexus
One D Not

implemented Accelerometer

Accuracy per category
studied:
C1: 75%

C2: 87.5%
C3: 77.9%
C4: 84.2%

Viet V. Q. et al.
[64] 2012 Android OS Google Nexus

One D Not
implemented

Accelerometer
and orientation

sensor.

Sensitivity: 80%
Specificity: 96.2%

Accuracy: 85%
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Table 1. Cont.

Reference
and
Year

Smartphone
Operative

System
Device

Detection
(D)/Prevention

(P)

Consequence
Triggered by

the Fall
Parameter Performance

Vilarinho, T.
et al. [65] 2015 Android OS

Samsung
Galaxy S3
and Wear

Smartwatch
LG G Watch R

D Alarm to
guardian

9-axis motion
sensor

combining a
3-axis

gyroscope,
3-axis

accelerometer,
and 3-axis
compass

Sensitivity: 63%
Specificity: 78%
Accuracy: 68%

Yavuz et al. [66]
2010

Android
v2.0 OS

Google Nexus
One D

Alarm to
guardian with
GPS location

Accelerometer

Meyer wavelet can
distinguish falls from
nonfalls with an 85%
recall while retaining

95% precision

Yi, W. J.et al.
[67] 2014 Android OS Not stated D Alarm to

guardian
External triaxial
accelerometer Not stated

Yildirim, K.
et al. [68] 2016

Android
v.2.2 OS

Samsung
Galaxy SIII

mini
D Alarm to

guardian
Triaxis

accelerometer Not stated

2.4. Risk Bias Assessment

The bias risks of selected studies were assessed with the help of the ROBINS-I tool of
the Cochrane Library for nonrandomized studies. A description of individualized bias and
cross bias is shown in Figures 2 and 3, respectively.
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3. Results
3.1. Study Characteristics

A total of 44 studies were included following our inclusion and exclusion filtration of
manuscripts. Characteristics of the included studies can be found in Table 1. Out of these
studies, forty-three aimed to detect falls, two intended to detect and prevent falls, and only
one aimed to prevent falls. The totality of the studies used accelerometers as the method to
detect and/or prevent falls (Figure 4). Six manuscripts used the smartphone and external
sensors during their measurements. Alarm to guardian was the most prevalent course of
action following a fall event.
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information from sensors and trigger an alarm to caregivers and emergency services based on the
user’s capability to give feedback to the SP.

3.2. Fall Prevention Studies

Building on Dai et al.’s [25] work in 2010, Fontecha J.N. et al. [26] in 2013 described
a mobile system for detecting and diagnosing frailty in healthcare settings. This system
incorporated an accelerometer-enabled smartphone (SP) to collect movement data for two
basic gait and balance tests, as an extension of Dai et al.’s PerFallId platform for pervasive
fall detection using mobile phones.

Mellone S. et al. [27] presented in 2012 a fall detection application for SP use named
uFALL. This application can effectively transform an SP into a long-term monitoring device
with real-time fall detection capability. Furthermore, this same group of investigators
developed a fall prevention app called uTUG, which transforms an SP into a pocket-
sized mobility laboratory, allowing for quick screening, assessment, and follow-up. All of
the SP-based solutions presented by these researchers are capable of supporting clinical
research and practice in fall detection and prevention at various levels in a cost-effective
manner (Figure 5).
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Figure 5. Data processing. Based on specific parameters and with the help of algorithms fed by the SP
sensors, researchers can predict the risk of a patient falling. (A) Sensors in SP, such as accelerometers,
gyroscopes, and magnometers, monitor the patient’s daily activities. (B) Once a measurement exceeds
the threshold previously stablished, the SP collects and processes sensors data before responding to a
potential fall event by alerting emergency personnel and caregivers.

3.3. Fall Detection Studies

Several groups have conducted research into fall detection [25,27–69]. Yavuz et al. [66]
proposed two alternatives in 2010 to the then-current trending model for accelerometer
signals with varying frequency content over time in order to differentiate falling activity
from other activities. These two alternatives were the short-time Fourier transform (STFT)
and wavelet transformation, with the Meyer wavelet proving to be able to distinguish
between falls and nonfalls with an 85% recall and 95% precision. The Fourier transform is
a mathematical transform that decomposes functions into frequency components, repre-
sented as a frequency function by the transform’s output. Most commonly, time or space
functions are transformed, producing a function based on temporal or spatial frequency.

Following this, Viet et al. [64] developed a fall detection method using a one-class SVM
algorithm in 2011, and Cao et al. [39] presented a fall detection system for Android smart-
phones in 2012, while He Y. et al. [48] reported a system that uses an SP mounted on the
waist to classify human movements in real time. Viet, V. Q. et al. [64] proposed an algorithm
to detect falls using a popular smartphone’s accelerometer and orientation sensor in that
same year. Boehner et al. [38] proposed a new method for detecting activity patterns using
a smartwatch and smartphone connected via Bluetooth. Subsequently, Koshmak et al. [50]
proposed a framework for detecting falls using mobile phone technology and physiological
data monitoring, and Mehner et al. [55] developed an application to reduce smartphone
battery consumption. Aguiar et al. [37] developed an algorithm to detect falls using ac-
celerometer data from a smartphone, and Colon L. et al. [42] tested the accuracy of a sensing
device (smartphone) located on the user’s body. Lastly, Maglogiannis et al. [54] created a
fall detection app for smartwatches.

In 2011, Lee R. Y et al. [34] identified that the specificity and sensitivity of detecting a
fall event using a Smartphone (SP) were high, prompting Lopes I. C. et al. [35] to develop
an SP application named SensorFall with the main goal of detecting and notifying falls.
This application could accurately detect acceleration values, distinguishing between a fall
and false positives and negatives. Suh et al. [36] then studied a congestive heart failure
(CHF) remote patient monitoring system (WANDA), which included an SP version that
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was capable of detecting falls and sending alert messages to caregivers. Following this,
Bai et al. [28] in 2012 used three characteristics of the various patterns of SP acceleration
values to detect a user’s falling motion while also using the GPS module to determine the
fall’s location, expediting the arrival of assistance. Later, Lee J. V. et al. [33] designed and
reported a smart elderly home monitoring system (SEHMS) that featured an Android-based
SP with a three-axial accelerometer, connected to the system via Wi-Fi. In 2014, Castillo J. C.
et al. [29] developed a solution for activity monitoring and fall detection, while Kwolek
et al. [32] demonstrated how to improve fall detection using depth and accelerometric data.
Finally, Hsieh et al. [31] reported the first study to show that an SP can measure postural
stability and distinguish between older adults at low and high risk of falling, showing that
SP technology has the potential to improve balance screening in older adults.

Yi et al. [67] proposed a design that uses multiple accelerometers to identify body
posture and detect falls in real-time, which could be incorporated into a larger wire-
less body sensor network for continuous monitoring and providing immediate medical
attention. Casilari et al. [40] conducted a system evaluation for two detection devices
(smartphone/smartwatch) and found that combining them improved the system’s accu-
racy in avoiding false positives and false negatives. Madansingh et al. [53] designed a
smartphone-based fall detection system and tested its efficacy for daily living activities.
Kinematic movement analysis using sensors found in smartphones was used for continu-
ous monitoring, with no false positives. These findings are important for creating machine
learning algorithms to reduce false positives and negatives in fall detection.

Pierleoni et al. [57] had difficulty distinguishing between a fall event and a collapse on
an armchair in their study, so Vilarinho et al. [65] developed a system with both threshold-
based and pattern recognition techniques to help with specificity. Casilari et al. [41] 2016
demonstrated a smartphone-based architecture for automatic fall detection that included
a collection of small sensing devices and found that accuracy increased with the number
of sensing devices. Figueiredo et al. [44] analyzed smartphone sensors for their ability to
distinguish between falls and daily life activities and concluded that the accelerometer
was the most reliable sensor. Qu et al. [58] created a system that utilized a monitoring
time to detect dangerous falls, built on the Android platform and designed for low energy
consumption and fast processing. Tran et al. [61] implemented a fall detection system that
analyzed acceleration patterns and an additional long lie detection algorithm to improve
the fall detection rate while maintaining an acceptable false-positive rate. Yildirim et al. [68]
also created a system to detect dangerous falls using a monitoring time, built on the Android
platform and optimized for low energy consumption and fast processing.

Hakim et al. [45] developed a fall detection system using smartphones and standard
machine learning algorithms, such as support vector machines, to achieve near-perfect
accuracy. He, J. et al. [47] used a wearable motion sensor and a smartphone with two types
of algorithms—sliding window and Bayes network classifier—to mimic the fall detection
system. Islam Z. Z. et al. [49] created a system that stores accelerometer data generated
before and after a fall to detect patterns in accelerometer data prior to falling. The proposed
systems take advantage of wearable devices and smartphones as they can detect falls with
accuracy and provide timely help for the elderly.

Building upon the research of Tran H. et al. [60], who encountered numerous problems
using an analytical method in conjunction with machine learning techniques to distinguish
between fall events and common activities, and obtaining low accuracy, Tsinganos et al. [62]
employed a threshold-based algorithm with a k-nearest neighbor (kNN) classifier to im-
prove accuracy. Moreover, Lee Y. Y. et al. [52] studied the change in acceleration sensor
value and found that the acceleration sensor value’s signal vector magnitude value vari-
ation showed a significant difference in daily activities such as walking, running, sitting,
and falling. Similarly, Shahzad et al. [59] presented FallDroid, a two-step algorithm that
combines the threshold-based method (TBM) and multiple kernels learning support vector
machine (MKL-SVM) to effectively identify fall-like events and reduce false alarms. Fur-
thermore, Dogan et al. [43] gathered information from ten users to evaluate their proposed
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fall detection method, and tested five machine learning classifiers to find effective thresh-
old values. Finally, Harari et al. [46] presented a proof-of-concept fall detection system
implemented in a common smartphone to detect real-life falls in real time. This research,
combined with that of the aforementioned studies, demonstrates significant progress in fall
detection, and provides unique insights for future fall prevention, detection, and treatment.

4. Discussion
4.1. Background on Fall Detection and Prevention

The world’s elderly population of 60 years and older reached 251.6 million in 1950, 488
million in 1990, and is expected to reach 1205.3 million in 2025, according to United Nations
projections. These figures represent a 144% increase between 1950 and 1990 and a 146%
increase between 1990 and 2025 [70]. Even if their health deteriorates, the elderly or people
with disabilities prefer to remain in their homes [71]. As a result, the telehealth service has
been widely implemented and used to assist individuals (e.g., the elderly or people with
disabilities) in living independently at home [72–76]. As the aging and disability issues
converge, smart home-based health monitoring has emerged as a critical research area for
ubiquitous and embedded system computing.

Fall detection and prevention systems are devices designed to detect and prevent falls
in elderly individuals. These systems typically consist of sensors and a monitoring device.
The sensors are placed around the home in areas where a fall is more likely to occur, such
as bathrooms, stairs, and hallways. The sensors detect changes in movement, such as a
sudden stop or a decrease in pressure, which may indicate a fall. The monitoring device is
then triggered, and an alert is sent to a caregiver or family member. This alert allows them
to provide help and assistance if needed.

The primary benefit of fall detection and prevention systems is increased safety and
security for elderly individuals. These systems allow elderly individuals to remain inde-
pendent and safe in their own homes, reducing the risk of injury from falls. In addition,
these systems can provide peace of mind to family members and caregivers, knowing that
their loved ones are being monitored and that help is available if needed.

Since fragile old persons have trouble walking and are at significant risk of falling,
many devices have been developed to detect falls [77]. These technologies fall into two
categories. Systems based on sensors and portable devices are (1) nonportable systems and
(2) systems [78]. The monitoring area’s environmental sensors, typically artificial vision
systems based on cameras [79] or floor sensor systems (pressure, vibration, capacitive,
etc.) [80], are used by nonportable systems. Systems based on cameras and fixed sensors
do not protect outside of the observation area, necessitating the installation of a costly and
complex network of cameras and sensors to protect the home. Users also experience an
adverse reaction to feeling watched or monitored by these systems.

Motion sensors, such as accelerometers and gyroscopes, are typically the foundation of
portable systems. Due to its portability, affordability, and ability to give movement-related
information, accelerometry is a viable choice [77]. Its key drawbacks include battery life
limitations, limited processing power, and the necessity for practical algorithms to identify
falls in situations where motion artifacts can have the same intensity as falls themselves,
leading to many false positives [81]. Most commercial solutions use accelerometers on
bracelets or pendants because they are more sensitive to motion artifacts when it comes to
positioning portable sensors.

4.2. Smartphone Potential for Fall Detection and Prevention

In recent years, SP has been used to send patients reminders, track disease symptoms,
promote physical activity and healthy eating, and address various other health issues [82–84].

As of 2017, 31% of people aged 75 and older and 49% of people aged 70 to 74 own SPs,
respectively [85]. SPs offer a great deal of promise to be used as a tool for balance screening
outside of laboratories, because older persons are more likely than younger adults to own
an SP and because they are also portable and cost-effective.
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Body-worn accelerometers can also be used to assess balance and gait. A systematic
review investigated inertial sensors’ use to assess fall risk in older adults [86]. While
body-worn accelerometers have the potential to provide accurate and objective fall risk
assessment, almost all inertial sensors used in the investigation require personnel assistance
to operate, analyze, and interpret the data. SPs may overcome this limitation by taking
advantage of the public’s familiarity with SP technology and embedded accelerometers to
measure balance objectively. An objective balance assessment that requires little assistance
and is simple to use may increase older adults’ acceptance and use of technology. According
to a recent review on mobile technology to assess balance and fall risk, while SP technology
is becoming a promising tool to evaluate posture, few studies have validated SPs using
standard gold techniques [86].

SPs have accelerometers built in that can be used to assess equilibrium. Numerous
sensors are integrated into the newest generation of mobile phones. Today’s universal
accelerometer sensors included in SPs and mobile phones have the same accuracy qualities
as accelerometers designed for a particular application. Moreover, the potent processing
power found in SPs allows for the execution of algorithms and other computational activi-
ties. Additionally, data can be transferred from SP to other computing devices via wireless
technologies such as Bluetooth or WiFi, which is helpful if several sensors are linked to
SP to detect or prevent falls. The SP screen enables a simpler and more natural engage-
ment, which is another advantage of SPs over conventional sensors. It is assumed that
the inclusion of straightforward, approachable methods of concentration makes it simpler
to use these devices in healthcare settings because additional knowledge is not required.
The main benefit of the suggested solution is that SPs are widely accessible to most people,
and users are less likely to forget to wear SPs than other specialized microsensors.

4.3. Sensor Positioning

Despite the promising performance of the SP as a fall detection system reported by
multiple studies, it is not widely implemented due to certain limitations. To make SPs a
viable solution, two issues must be looked at. First, it is necessary to figure out how to
make people wear their smartphones on the waist daily instead of having them in their
pockets. To resolve this, external devices such as smartwatches may be used. Several
studies utilizing these external sensors have displayed outstanding results.

It is unclear if the system can detect falls if the phone is not mounted on the waist. To
address this issue, Aguiar et al. [38] studied whether the accuracy of the system would
be different if the phone was stored in the most common places such as the belt level or
pocket. The results showed that there were no significant differences in accuracy, with a
performance of 97%. To better understand how the system functions in real-life situations,
more research is necessary to test its capability of detecting falls while people are engaging
in activities such as talking on the phone, texting, putting the SP in their shirt pocket, or
trussers pocket.

4.4. Methods to Determine a Threshold for Fall Detection and Prevention

Different techniques can be employed to set a threshold for fall detection systems. For
example, accelerometer data can be used to obtain a detailed understanding of a person’s
movements, allowing for the detection of changes in motion that may signify a fall [25–68].
Machine learning algorithms are a type of artificial intelligence that can analyze data to
detect patterns and make predictions [32,39]. Machine learning algorithms can also be
utilized to establish a threshold based on the analysis of a dataset containing both falls and
nonfalls. They can also be used to predict the likelihood of a fall. This could be used to
provide an early warning system for elderly individuals who are at greater risk of falling.
By predicting when a fall might occur, medical personnel can take preventative measures
to reduce the chances of injury.

Furthermore, a threshold for future falls can be established by studying data from
previous falls [25–68]. Finally, user input can be used to develop a threshold for detecting
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future falls. Many of the studies included in this study used accelerometer data analysis,
machine learning, or data from previous falls to establish a threshold and improve detection
accuracy [25–68]. Some studies used user input to reduce false-positive fall events, usually
by asking the user if they had fallen on their cell phone screen [28].

Because specified thresholds can potentially reduce the number of false-positive fall
detection situations, we choose to investigate their application. The false alarms caused by
actions such as dropping the phone or a modest fall in which the user is unharmed could
be reduced, for example, by applications that use both acceleration and location data to
determine a fall. The false alarms are further reduced by allowing the amplitude’s upper
threshold to be adjustable. Further processing and comparison with a point are performed
on the data produced from the acceleration. A fall is suspected if the processed value
exceeds a predetermined threshold. Personal data such as age, weight, height, and degree
of activity have also been considered when solving the problem.

4.5. Future Applications

Smartphones can be used to detect and prevent falls in the future by utilizing advanced
sensors and artificial intelligence technology. Smartphones can be equipped with sensors
to detect changes in balance and posture, enabling them to alert the user when a potential
fall is imminent. Through the implementation of advanced motion sensing capabilities and
applications, smartphones can be utilized to provide reminders to take medications, check
in with family and friends, or complete physical therapy exercises. Healthcare professionals
can then utilize these data to monitor a person’s health and intervene if necessary.

With the help of artificial intelligence, the smartphone can analyze the user’s gait and
offer a variety of corrective actions, such as suggesting a slower walking speed or a more
stable posture. AI can also be used to identify hazardous surfaces or obstacles and offer
suggestions for avoiding them. Smartphones can also be used to provide reminders to
take regular breaks, as well as to alert family and friends if a fall does occur. In addition,
smartwatches can be used to provide additional fall prevention by tracking physical activity
and offering health tips. The use of smartphones to detect physical changes in a person’s
gait, balance, and posture holds the potential to reduce the risk of falls and improve the
quality of life for the elderly and disabled. Smartphones have the potential to become an
integral part of fall prevention strategies, and the future applications of these devices in fall
detection and prevention are abundant.

4.6. Limitations

This systematic review has certain limitations associated with it. To begin with, the
fact that only studies published in English were included can introduce bias. Moreover,
due to the lack of information reported in some cases, it becomes difficult to accurately
describe the methods of selecting thresholds and performance. Additionally, there is a risk
of misinterpretation of the data and results, which can lead to new variables to consider.

5. Conclusions

Fall detection and prevention systems are becoming increasingly important for elderly
individuals, allowing them to remain independent and secure in their homes. An upsurge of
technology-based applications has been developed to protect at-risk individuals from falls,
with the objective of providing more effective and efficient interventions than traditional
means. By utilizing convenient and functional fall prevention technology, primarily in the
home, elderly people can stay independent while engaging in interventions monitored
remotely by healthcare professionals. Successful healthcare technology implementation
requires close cooperation between engineers, clinicians, and administrators to understand
why falls occur and what interventions could potentially alter the outcome.
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