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Abstract: Anomaly detection has been known as an effective technique to detect faults or cyber-attacks
in industrial control systems (ICS). Therefore, many anomaly detection models have been proposed
for ICS. However, most models have been implemented and evaluated under specific circumstances,
which leads to confusion about choosing the best model in a real-world situation. In other words,
there still needs to be a comprehensive comparison of state-of-the-art anomaly detection models
with common experimental configurations. To address this problem, we conduct a comparative
study of five representative time series anomaly detection models: InterFusion, RANSynCoder,
GDN, LSTM-ED, and USAD. We specifically compare the performance analysis of the models in
detection accuracy, training, and testing times with two publicly available datasets: SWaT and HAI.
The experimental results show that the best model results are inconsistent with the datasets. For
SWaT, InterFusion achieves the highest F1-score of 90.7% while RANSynCoder achieves the highest
F1-score of 82.9% for HAI. We also investigate the effects of the training set size on the performance
of anomaly detection models. We found that about 40% of the entire training set would be sufficient
to build a model producing a similar performance compared to using the entire training set.

Keywords: anomaly detection; intrusion detection systems; industrial control systems; deep learning
model; unsupervised learning

1. Introduction

Industrial control systems (ICS) are automatic systems and associated instrumentation
used to control and monitor critical infrastructures such as power plants, water treatment,
smart factories, and many other facilities. Recently, ICS has been connected to the internet
to manage ICS more conveniently and reduce the cost of the industrial process. However,
connecting ICS to the internet increases harmful threats to critical infrastructures [1,2]. For
instance, attackers can compromise ICS by obtaining network control through a social
engineering attack on the system manager [3] or exploiting the security vulnerability of the
legacy physical device connected with the network [4]. The attacks on ICS are increasing
each year, which would impact human lives and economic losses [5]. For this reason,
building a system that can detect cyber-attacks is essential.

Using an intrusion detection system (IDS) is an effective method to defend ICS against
cyber-attacks. Recent research has explored the development of IDS mechanisms specifi-
cally targeted for ICS. An IDS monitors events and detects suspicious activities and intru-
sions. Existing approaches have been categorized into three types: (1) knowledge-based
detection [6,7], (2) behavior specification- based detection [8,9], (3) machine learning-based
detection [10,11]. The knowledge-based detection technique identifies the attacks based on
the knowledge of specific patterns of misbehavior and system vulnerabilities. However,
this approach is ineffective when detecting new unseen cyber-attacks that models have
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yet to train on before. Behavior specification-based detection tries to detect suspicious
behaviors that deviate from normal behaviors. This approach would more effectively
detect unknown and unseen cyber-attacks than knowledge-based detection. However, it
is challenging to develop models that understand the characteristics of normal behaviors
and accurately distinguish them from those caused by cyber-attacks, especially when both
normal and attack characteristics are highly similar. Machine learning-based detection is a
more generalized approach extended from behavior specification-based detection.

Since it is difficult to obtain labeled attack data in a real-world industrial environment,
existing machine learning-based anomaly detection studies have usually focused on an
unsupervised learning approach to build a model that detects abnormal behavior using
only normal data. A typical anomaly detection system monitors sensors in an ICS and
detects sudden changes in the monitored sensor values, which an attack attempt or system
fault would cause. Many previous studies demonstrate that deep learning models [12–16]
can effectively detect abnormal behaviors of ICS.

Despite the success of anomaly detection models for ICS, it is hard to determine which
existing anomaly detection models are the best to apply in an ICS environment because
their results were mainly evaluated with their datasets and under different experimental
settings and evaluation criteria. For example, Robles-Durazno et al. [17] used F1-score to
evaluate model performance, while Pankaj et al. [16] used the true positive rate (TPR) and
false positive rate (FPR) to evaluate the performance of models. Therefore, finding practical
IDS recommendations for ICS systems takes time and effort. Our work is motivated by the
need for comparative evaluation among the state-of-the-art anomaly detection models for
ICS. To facilitate direct performance comparisons, we used common datasets and the same
experimental settings to compare the performance of state-of-the-art anomaly detection
models: InterFusion [13], RANSynCoder [14], GDN [15], LSTM-ED [16], and USAD [12].
We first optimized those models and then compared their performance with two publicly
available ICS datasets. Further, we analyzed the effects of various training/testing scenarios
on the model performance.

1.1. Objectives and Contributions

The objectives of this study are (1) to provide a summary of the technical literature
of time series anomaly detection models for ICS, (2) to compare the performance of the
state-of-the-art models with two publicly available benchmark datasets, SWaT [18] and
HAI [19] datasets, under the same and fair settings to find the best time series anomaly
detection model for ICS environments, and (3) analyze the effects of the training dataset
sizes to find an appropriate training dataset size minimizing the training overhead. Our
main contributions are summarized as follows:

• We develop a framework to evaluate the performance of anomaly detection models
with two public ICS datasets [18,19] and standard evaluation criteria.

• We provide a comparative evaluation of five promising unsupervised anomaly de-
tection models: InterFusion [13], RANSynCoder [14], GDN [15], LSTM-ED [16], and
USAD [12].

• We implement those five models and optimize them with their hyperparameters.
• We analyze the effects of the training set size on anomaly detection models and found

that most models can achieve a high F1-score with a small portion of the training set,
which is comparable with the F1-score when the entire training set is used.

1.2. Structure of This Paper

The remainder of this paper is organized as follows: Section 2 provides the background
of ICS and the anomaly detection process of the time series dataset. Section 3 discusses
previous studies that are related to our work. Section 4 describes the overview of the
anomaly detection framework. Section 5 summarizes the five representative anomaly
detection models used in our evaluation. Section 6 provides end-to-end performance
analysis of the five models with varying training and testing data sizes. We discuss the
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insights gained from our experimental results in Section 7, followed by the conclusion in
Section 8.

2. Anomaly Detection in Industrial Control Systems

This section first introduces the concept of ICS and then provides an overview of the
time series-based anomaly detection process.

2.1. ICS Architecture

ICS manages physical processes in industrial sectors. Although ICS environments are
used in large-scale industrial applications (e.g., manufacturers, power plants, and water
treatment), the concept of finding optimal ways for the availability of protection and system
security is gaining in popularity. Furthermore, recent advances in industrial systems have
required integrating Information & Communication Technology (ICT) with the physical
process to provide convenient and efficient system management. However, networking and
its connectivity to the Internet lead to increased threats within an ICS. Therefore, detecting
cyber-attacks in ICS is a challenging task due to the increasing cybersecurity vulnerabilities
and diversity of the incidents. To tackle this issue, one basic approach is to continuously
monitor measurements of field devices and detect anomaly behaviors in advance to identify
the attack source in the real-world ICS.

ICS consists of a control system, a communication network, and field devices, as
shown in Figure 1. The field devices are connected with the physical process to collect
the raw dataset or execute the control system commands. For instance, sensors measure
the water treatment processes to get essential information to manage the system. The
programmable logic controller (PLC) reads the sensor datasets as input signals to conduct
programmed instructions sent from the control system. Then, the datasets are sent to
the control server through the wired or wireless link (e.g., radio tower, power line tower,
and satellite tower), which accumulates in a data historian for analysis. Next, the human
operator accesses to control server followed by standard protocol to monitor the datasets.
Finally, information on the dataset is presented in the human-machine interface (HMI) by
querying data historians.

Figure 1. Illustration of ICS structure.

Since the collected dataset contains raw sensor readings of normal and malicious
events on the ICS, a continuous analysis to detect anomaly data can help understand the
attacker’s behaviors. Therefore, in this paper, we focus on studying the validity of anomaly
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detection models on datasets collected from real-world ICS devices to improve the security
of industrial systems.

2.2. Anomaly Detection in ICS

The industrial process executes a series of steps for a given task. Therefore, a collected
dataset contains time series characteristics of observations made chronologically. Practically,
most time series datasets of ICS have high dimensionality and are collected continuously–
called multivariate time series (MTS) data in which logs are collected at every instant from
interconnected field devices [20].

While analyzing an MTS dataset of ICS, we have to care for the outliers–abnormal
observations collected from sensors and actuators during industrial processes that are pre-
dicted as unwanted and deviated from the usual and expected behaviors [21,22]. Generally,
there are two main approaches for detecting anomalies in the MTS dataset of ICS. The
first approach is based on computing the level of deviation in predicated values at each
time instant. Deep neural networks (DNNs) would be proper models for this approach
because DNNs can effectively learn non-linear relations of dynamical ICS systems. Using
DNNs, we can capture the dynamic nature of ICS datasets and detect outliers or suspicious
measurements–often referred to as anomaly detection. The second approach focuses on
finding unusual shapes of the MTS dataset; one-class classification models are suitable for
this task. However, other methods, such as clustering, would be challenging to handle
anomaly detection in MTS dataset due to the high dimensionality of devices [23].

3. Related Work

Cybersecurity of ICS attracts a lot of research attention, especially after connecting
systems and associated infrastructures to vulnerable networks, which integrate multiple
communication protocols and lack proper data detection mechanisms. Here, we highlight
studies that showed attackers could infiltrate the network and compromise the whole
control system, summarize defenses proposed to defend ICS against cyber-attacks, and
demonstrate recent deep anomaly-based models for cyber-attack detection in ICS.

3.1. Cyber-Attacks in ICS

Cyber-attacks against ICS have increased in the frequency and sophistication of tactics
to avoid detection mechanisms. Firoozjaei et al. [24] demonstrated the adversarial tactics
and analyzed the attack mechanisms of six significant real-world ICS cyber incidents in the
energy and power industries, namely Stuxnet [25], BlackEnergy [26], Crashoverride [27],
Triton, Irongate, and Havex [28]. He provided an evaluation framework for each attack’s
threat level of ICS malware and introduced a weighting scheme to rank their influences
on ICS. For example, Stuxnet is the world’s first publically known digital weapon that
attacked Iran’s nuclear program by targeting ICS and modifying the code running in PLCs
to make them deviate from their expected behavior. Triton is the recent malware attack
was targeted the control system of an oil and gas plant in Saudi Arabia and damaged the
monitoring process of the Schneider Electrics’ Safety Instrumented System (SIS). Besides
outside threats, insider threats that originate within targeted systems in ICS are more
difficult, destructive, and invisible. Chen et al. [29] evaluated insider threats into three
types: non-malicious attacks, malicious attacks, and accidental attacks. All of them can
threaten power monitoring systems, abnormal communication systems, and create illegal
operations in the industrial control system of power utilities.

3.2. Defenses against ICS’s Attacks

There are several surveys that summery defenses from different security aspects
and domains in ICS. Giraldo et al. [30] provided a systematic survey of the emerging
physics-based defenses in the field of cyber-physical systems (CPS) and proposed a unified
taxonomy that helps in developing theoretical foundations, tools, and metrics for different
detection methods. Other surveys have focused on defenses of different domains in
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cyber-physical systems, such as exploring vulnerabilities in smart grids [31–34], increasing
attention to risks in medical devices [35–37], and addressing privacy and security issues in
general systems [38–41]. Kayan et al. [42] presented an interesting survey that reviewed the
cybersecurity of overall industrial systems and infrastructures, such as Industrial Control
Systems (ICS), Industrial cyber-physical systems (ICPSs), Industrial Internet of Things
(IIoT), and Industrial Wireless Sensor Networks (IWSNs). However, his survey work
focused on proposing a framework to demonstrate current challenges, define systems’
unique characteristics, analyze communication protocols, present an attack taxonomy, and
evaluate real-life ICS cyber incidents. To improve cyber-attack detection between smart
devices’ communication links in ICS systems, Nedeljkovic et al. [43] proposed a CNN-based
method for the design of IDS algorithms over data obtained during normal operations. The
method has the ability to dynamically find suitable CNN hyperparameters and thresholds
using the training data to define a specific architecture that has good performance in online
attack detection.

3.3. Deep Anomaly-Based Detection in ICS

Umer et al. [44] presented a survey of methods from machine learning that fo-
cused on anomaly detection at the physical level in ICS and IDS at the network level.
Wanget et al. [45] addressed the problem of data imbalance in ICS systems which lead to
poor performance using traditional ML algorithms. He proposed a transfer learning method
by guiding target domain data (poor-to-classify samples) through source domain data (easy-
to-classify samples) during training for industrial control anomaly detection. Han et al. [38]
showed that the conventional threshold-based anomaly detection approaches of multi-
variate time series data from networked sensors and actuators in real-world ICS systems
suffer from dynamic complexities, especially with the requirement of large amounts of
labeled data and continuous monitoring for intrusion incidents. The author proposed a
system named MAD-GAN by utilizing Generative Adversarial Networks (GANs) with
LSTM to capture the temporal correlation and the entire variable set concurrently, then
evaluated MAD-GAN using SWaT and WADI datasets. Wang et al. [46] addressed false
data injection cyber-physical attacks (FDIAs) in modern smart grids when generating huge
amounts of data. The author proposed an analytical method based on the data-centric
paradigm and margin-setting algorithm (MSA) to detect FDIAs. Junejo et al. [47] discussed
the issue of late response to an attack, which takes a lot of time to detect the departure
of the system from its expected behavior. The author proposed a fast machine learning
intrusion detection method based on behaviors of the physical and control components
in a modern water treatment system. To enhance the protection of different devices (e.g.,
sensors, actuators, and controllers) on cyber-physical systems (CPSs), Elgendi et al. [48]
proposed a learned (MAPE-K) based model to monitor, analyze, plan, execute, and knowl-
edge against advanced cyber threats and alert users to any abnormalities behavior in an
industry environment. To detect attacks on sensors in Cyber-Physical Systems (CPSs),
Ahmed et al. [49] proposed a NoisePrint method by creating fingerprints for sensor and
process noise during the normal operation of the system. NoisePrint was evaluated using
two testbeds, a real-world water treatment (SWaT) and a water distribution (WADI), and
achieved an accuracy of higher than 90% against data integrity attacks. It is worth noting
that although these studies have been proposed to improve deep anomaly detections to
defend against cyber-attacks in ICS, it is hard to claim which model among them is the
best to apply and generalize for real-world applications due to their different internal
methodologies, diversity in experiments settings, and evaluation approaches. Therefore,
our work fills this gap by comprehensively comparing the five common anomaly detection
models and giving insights/recommendations to research/industry communities.

4. Design of the Time Series Anomaly Detection Framework

This section explains the framework architecture of time series anomaly detection
methods in ICS. We assume that an attacker can access field devices through the network
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and fully understand the target system. Then, the attacker aims to manipulate normal
operations to cause a target ICS malfunction and failures.

To fight against such attacks, we can use machine learning models to distinguish
normal patterns in input time series measurements from attack behaviors. As shown in
Figure 2, the process of unsupervised anomaly detection using deep learning includes three
major phases: preprocessing, anomaly scoring, and thresholding. In the preprocessing
phase, the raw MTS dataset collected from different field devices (e.g., PLCs, pumps, valves,
and motors) may contain noisy readings, missing values, and outliers.

Time series
Input

Pump

Valve

PLC

Motor

Preprocessing Anomaly score

Attack
(Anomaly)

Normal
(Benign)

Performance
Metric

Anomaly detection model

Compare the 
anomaly score 
with threshold

F1-score

Precision

Recall

FPR

FNR

Figure 2. Typical anomaly detection framework using machine learning models in ICS.

To develop anomaly detection solutions, we assume that the input MTS dataset in
ICS is clean measurements, free of outliers, and has no missing values. Therefore, it is
necessary to preprocess the raw dataset by applying operations such as normalization and
filtering before inputting the data to the models to perform anomaly analysis and detection.
However, this stage often results in discarding many time series measurements that fail to
meet the criteria of cleaned and scaled data required by models.

Another critical factor in the unsupervised anomaly detection framework is the scoring
operation to distinguish abnormal data points from the dataset. The key idea is to define an
effective scoring method that maximizes the gap between the normal and attack data (i.e.,
anomaly), resulting in better prediction performance in terms of false or missed detections.
So far, many scoring methods have been proposed in the literature, such as clustering-
based, histogram-based, isolation forest, and reconstruction error-based estimations of deep
learning autoencoders to detect outliers. For example, for each sample in the test dataset,
its score is computed based on how far its characteristics are from the nearest clusters
learned from the training dataset. However, one possible way to ensure the effectiveness
of a scoring method is to evaluate it on a variety of public MTS datasets and compare it
through different performance metrics.

Thresholding is based on the score (numerical value) computed from the previous
phase and uses the score as evidence for the final decision (normal or attack). We make a
comparison process between the computed score and the given threshold every time to
classify a data point. In other words, the threshold value represents the minimum required
score value in which the ICS can authorize input measurements. For example, if the input
measurements have a score above the threshold, the data will be classified as normal, and
the process will be granted. In contrast, suspicious measurements will be classified as
anomaly data (attack behaviors) when their score is below the threshold, and hence the
process will be denied. In summary, the measurements that provide scores significantly
above the threshold are considered strong evidence for a decision of normal operations on
ICS and visa-versa. Therefore, the choice of threshold is the crucial goal in this comparison
to validate the strength of the decision.

5. Anomaly Detection Models

This section introduces the five representative deep neural network models recently
developed for anomaly detection and showed a reasonable level of performance. We
selected the best-performing anomaly detection models with publicly available source
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code. The experiment results to evaluate the performance of those models are presented in
Section 6.

• InterFusion [13]: It is an unsupervised-based anomaly detection and interpretation
method that simultaneously investigates two main characteristics of MTS. First, a tem-
poral dependency that describes the periodicity attribute of the patterns within each
metric. Second, an inter-metric dependency that models the linear and non-linear rela-
tions among all metrics of the MTS at each period. Since previous anomaly detection
studies often use deterministic approaches (e.g., prediction-based and reconstruction-
based) with only one low-dimensional latent embeddings, they are poor in modeling
temporal changes or performing inter-metric anomaly detection. Therefore, the Inter-
Fusion detection method tackles this problem by providing a new network architecture
design. Specifically, they used Hierarchical Variational Auto-Encoder (HVAE) with
jointly two low-dimensional latent variables to explicitly and simultaneously learn
both temporal and inter-metric representations to capture normal patterns better. In
addition, two-view embedding was designed and added to the network to compress
MTS characteristics in both time and metric dimensions. To prove the validity of
InterFusion for real-world application in the industrial domains, they evaluated its
effectiveness over four different MTS datasets (three existing, which are SWaT [18],
WADI [50], and SMD [51], while the fourth, ASD, was newly dataset collected during
the InterFusion study). InterFusion is one of the current state-of-the-art anomaly
detection methods that provide high and reliable performance for monitoring MTS
data for industrial applications.

• RANSynCoder [14]: It is an unsupervised real-time anomaly detection framework with
large multivariate sets. The system architecture is based on multiple encoder-decoders
with a pretraining autoencoder. One of the main characteristics of the framework
is that the feature bootstrapping aggregation (bagging) [52] is utilized to randomly
select the sets of input features and build multiple autoencoders to reconstruct more
extensive time series output with smaller sets of input. For anomaly decision, the
framework infers anomalies by determining whether each dimension factor of the
input is involved between the upper and lower bound of the reconstructed threshold,
and when it is not involved, the factor is labeled as an anomaly. To determine the final
anomaly decision, the framework applies majority voting to compute the majority label
of the dimension factors and finally generate the overall decision. Other than anomaly
inference, the framework also provides anomaly localization to identify a significant
feature or attribute related to the anomaly alert by measuring the localization score of
each feature or attribute.

• GDN [15]: It is an unsupervised-based anomaly detection method with Graph At-
tention Network (GAT). GDN makes up for the weak points caused by not explicitly
learning with data inter-relationships shown in time series-based features using the
graph network method. In addition, each node in the graph structure has sensor
embedding, representing each sensor’s unique characteristics. Relationship with the
specific sensor is defined to compute the cosine similarity between the target embed-
ding node and other embedding nodes. The similarity score of the embedding vectors
utilizes to select the top k neighbor nodes with closed relation to a specific node. The
graph updates the state of edges and nodes, considering a node’s information with its
neighbors in the training step. Each node computes the anomaly score aggregating a
single anomaly score for each tick. If the anomaly score deviates from a fixed threshold,
the time tick is an anomaly.

• LSTM-ED [16]: It is an LSTM-based Encoder-Decoder scheme for anomaly detection
in multi-sensor MTS datasets. It uses an unsupervised learning method to train its
initial network only with unlabeled normal data. Its training involves an encoder
learning a fixed-length vector representation of the input MTS dataset, which will
help the decoder reconstruct the data accurately. The reconstruction error vector at
any future time instance is used to compute the likelihood of anomaly at that point
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using Maximum Likelihood Estimation (MLE). The intuition behind this is that since
the reconstruction error of the trained model is based on normal instances, it produces
higher reconstruction errors when anomalous sequences are given. LSTM-ED also
provides a threshold mechanism for computed anomaly scores, allowing further
tuning of the detection system within a supervised setting to maximize the Fβ score.

• USAD [12]: It is an unsupervised-based anomaly detection method based on an
autoencoder (AE) architecture whose learning is inspired by GANs. USAD provides a
new architecture design using two-phase with adversarial training. Training in USAD
is done with two autoencoders, AE1 and AE2. The first autoencoder AE1 generates
the reconstructed data for the original input dataset using a pair of encoders and
decoders. The second autoencoder, AE2, intentionally generates anomaly data by
adapting adversarial training to the output of the decoder and then giving feedback to
the encoder again. In the first phase, the objective is to train each AE to reproduce the
input. The second phase aims to train AE2 to distinguish the actual data from the data
produced from AE1. This two-phase training aims to minimize the reconstruction error
of W and the difference between W and the reconstruction output of AE2, respectively.
In this process, the model learns anomalies that cannot be seen in the original training
dataset, obtaining better results. The anomaly score used by USAD for testing is used
by multiplying the results obtained after training two autoencoders.

6. Evaluation

This section demonstrates the comparative evaluation results of the five anomaly
detection models and the effects of training dataset size on detection performance.

6.1. Datasets

Deep learning-based anomaly detection approaches need a large dataset to achieve
appropriate performance [53]. However, it is difficult to collect the dataset from the ICS that
is generally related to critical and fundamental infrastructures. For example, deploying an
attack in a real-world ICS can cause severe damage to the ICS and expose its vulnerabilities
to attackers. Therefore, collecting a sufficient amount of data from a real-world ICS would
be challenging and unacceptable for most ICS. For this reason, the anomaly detection study
in ICS uses a dataset collected from the testbed imitating the actual ICS.

In this study, we use two public datasets that are commonly used in anomaly detection
research in ICS: Secure Water Treatment (SWaT) [18], and Hardware-In-the-Loop (HIL)-
based Augmented ICS (HAI) [19]. Table 1 summarizes the characteristics of the datasets.

Table 1. Statistics of evaluation datasets.

Datasets Features Training Samples Testing Samples Prop. of Anomalies

SWaT 51 322,288 449,919 11.9%

HAI 79 921,603 402,005 2.2%

SWaT dataset coordinated by Singapore’s Public Utility Board (PUB) represents the
overall physical process to control and monitor system behavior. The dataset was collected
during 11 days of continuous operations. The first seven days were used to collect sensor
data under normal operations, while the remaining four days were used to collect sensor
data with attacks. In the SWaT dataset, an attacker intercepts data packets transmitted
through EtherNet/IP and Common Industrial Protocol (CIP). The total number of attack
types is 41. An attack is labeled 1 on the dataset; a normal operation is labeled 0.

There are several versions of the HAI dataset. Here, we specifically use HAI 21.03,
which was released in 2021, where the samples were collected for 19 days from a testbed
augmented with a HIL simulator that emulates steam-turbine power generation and
pumped-storage hydropower generation—the first five days were used to collect sensor
data under normal operations, while the remaining 14 days were used to collect sensor
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data with attacks. In the HAI dataset, an attacker causes constant errors in the physical
measure by manipulating packets. The total number of attack types is 25.

In general, it is important to choose optimal features in designing anomaly detection
systems [54]. Therefore, we used XGBoost algorithm [55] to analyze the relative importance
of the features for each dataset. Figure 3a shows the importance scores computed for
individual features for the SWaT dataset. Flow transmitter is the most important feature
with a score of 0.060. Pump controller is the second most important feature with a score of
0.043. Figure 3b shows the importance scores computed for individual features for the HAI
dataset. Turbine rotation is the most important feature with a score of 0.096. level switch,
water flow, and valve controller would also be important.

(a) SWaT (b) HAI

Figure 3. Feature importance score plots based on the SWaT and HAI datasets.

Figures 4 and 5 show the four key features of SWaT and HAI datasets, respectively, in
distinguishing normal samples from abnormal samples. From those features, we can see
clear differences between normal and anomaly distributions. Overall, feature values are
scattered across normal samples while located in a smaller range for anomalies.

(a) Flow transmitter (b) Pump controller (c) Motorized valve (d) Level transmitter

Figure 4. Box plots of normal and anomaly features in the SWaT dataset.

(a) Turbine rotation (b) Level switch (c) Water flow (d) Valve controller

Figure 5. Box plots of normal and anomaly features in the HAI dataset.

6.2. Evaluation Metrics

It is worth noting that both datasets are imbalanced in which a low percentage of
anomalies are collected (11.9% in the SWaT dataset and 2.2% in the HAI dataset). This
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class imbalance makes it difficult to accurately predict positive classes, misleading the
performance score of some metrics. For example, the positive class is 10% of the dataset, and
the model can achieve 90% accuracy even if all classes are predicted as negative. For this
reason, it is an important issue to determine what performance metrics are used to evaluate
the model. We explore 12 recent studies [12–15,50,51,56–61] of IDS research to figure out
which performance metrics are commonly used in evaluating anomaly detection models.
Most IDS research that applied deep learning models adopt three standard evaluation
metrics: Precision, Recall, and Fβ-score, as shown in Table 2.

Table 2. Performance metrics of state-of-the-art in time series anomaly detection.

Model Venue Precision Recall Fβ-score AUC

InterFusion [13] KDD X X X X

MAD-GAN [50] ICANN X X X -

RANSynCoder [14] KDD X X X -

GDN [15] AAAI X X X -

USAD [12] KDD X X X -

DAGMM [56] ICLR X X X -

LSTM-NDT [57] KDD X X X -

VAEpro [58] AAAI - - X -

DSEBMs [59] ICML X X X -

MSCRED [60] AAAI X X X X

OmniAnomaly [51] KDD X X X -

IWP-CSO with HNA-NN [61] KDD X X X -

Precision and Recall represent the proportion of false alarms for the number of the
true detected anomalies (i.e., True Positives). Prediction focuses on the output of a trained
model when tested using new data, regardless of whether the output is correct or wrong.
It is sensitive when a model wrongly predicts normal samples as anomalies (i.e., False
Positives)–it makes the system deny the normal processes in ICS. On the contrary, Recall
focuses on the error among the ground truth anomalies. It is also sensitive when a model
mistakenly accepts anomalies from an attacker as normal data (i.e., False Negatives)–this
leads to wrongly granting attackers access to the ICS.

Precision =
True Positive

True Positive + False Positive
(1)

Recall =
True Positive

True Positive + False Negative
(2)

Both metrics are influenced by thresholds used to predict labels. Therefore, measuring
the model’s performance may be inappropriate using only Precision or Recall alone. Fβ-
score is the harmonic mean of Precision and Recall, which is a popular metric for imbalance
problem [62,63]. The equation is depicted below:

Fβ-score = (1 + β2)× Recall × Precision
β2 × Recall + Precision

(3)

The parameter β is used to adjust the relative importance of Precision and Recall. For
example, if the β is higher than 1, Fβ-score allocates more weight to Recall. Otherwise,
Fβ-score gives weight to Precision. The models choose a value of 1 for β, except for the
LSTM-NDT using a value of 0.5. It is also important to reduce actual false alarms for



Sensors 2023, 23, 1310 11 of 21

availability in an industrial system in real-world ICS. For this reason, we choose the Fβ-
score to compare the models.

In this study, we consider Precision, Recall, and Fβ-score and two false alarm metrics:
False Positive Rate (FPR) and False Negative Rate (FNR) which are popularly used evalua-
tion metrics in intrusion detection systems [39]. FPR is the proportion of false positives
when the IDS misidentifies actual normal data as a predicted attack. In contrast, FNR is the
proportion of false negatives when the IDS misidentifies actual attack data as a predicted
normal. The equations of FPR and FNR are as follows:

FPR =
False Positive

False Positive + True Negative
(4)

FNR =
False Negative

False Negative + True Positive
(5)

6.3. Data Preprocessing

We suggest the two data processing techniques as preprocessing steps (data normal-
ization and constant feature exclusion) to process MTS data effectively.

• Data normalization (Normalization): It is one of the preprocessing approaches where
the values of each feature are either scaled or transformed to make an equal con-
tribution. Because, in an MTS dataset, many attributes have a different scale, data
normalization is required.

• Constant feature exclusion (Feature exclusion): In our work, we exclude constant
features, referring to unchanged features, because they would be unnecessary to build
a machine learning model. Therefore, a possible strategy is to exclude those features
for training. The constant features in each dataset are presented in Table 3.

Table 3. Constant features in the SWaT and HAI datasets.

Datasets Constant Features

SWaT P102, P201, P202, P204, P206, P401, P403, P404, P502, P601, P603

HAI

P1_PCV02D, P2_VTR01, P2_VTR04, P4_HT_PS, P1_PP02D
P4_ST_PS, P1_PP02R, P2_MSD, P2_VTR03, P2_TripEx, P1_STSP
P2_VTR02, P1_FCV02D, P3_LL, P2_AutoGo, P1_PP01BD, P3_LH

P1_PP01AD, P1_PP01AR, P2_OnOff, P2_RTR, P2_ManualGo

6.4. Model Optimization

Before we compare the performance of the five anomaly detection models for the
SWaT and HAI datasets, we first optimize each model with hyperparameters. We focus
on the four hyperparameters: epoch, batch size, learning rate, and window size. Table 4
shows the hyperparameter values used to optimize each model.

The epoch is a measure used to update all of the weight vectors for the training set. We
tried to find the optimal epoch ranging from 10 to 40 in the model optimization experiment.
The batch size means the number of samples for the training set to update the model weight.
We tried to find the optimal batch size ranging from 20 to 256. The window size means the
length of the input time steps size to forecast the next time based on the feature values. We
tried to find the optimal window size ranging from 5 to 1000. The learning rate means the
size of a step to reduce the error gradient. We tried to find the optimal learning rate ranging
from a small learning rate of 0.0001 to a large learning rate of 0.05. As explained in Section 4,
threshold plays a vital role in model performance for anomaly detection. Therefore, we
tried to find the best threshold for each model achieving the highest F1-score.
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Table 4. Hyperparameter values for model optimization.

Model

SWaT HAI

Epoch Batch Window Learning Threshold Normalization Feature Epoch Batch Window Learning Threshold Normalization Feature
Size Size Rate Exclusion Size Size Rate Exclusion

InterFusion 15 100 30 1× 10−4 −28,972 X - 30 100 100 1× 10−1 −1.29× 1027 X -

RANSynCoder 10 180 5 5× 10−2 7.366 × 10−1 X X 10 180 5 5× 10−2 5.798 × 10−1 X -

GDN 10 256 40 2× 10−2 10,776 × 102 X X 50 100 60 2 × 10−3 2095 X X

LSTM-ED 30 40 20 5× 10−2 5892 X - 30 200 4 1 × 10−3 −103.95 X -

USAD 10 512 6 1× 10−2 X - 10 6 512 1 × 10−3 8 × 10−3 X -
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As presented in Section 6.3, we consider two data processing techniques to improve
models’ detection accuracy. We found that data normalization is necessary for all models.
However, constant feature exclusion is selectively effective depending on the data and
model. For the SWaT dataset, the detection accuracy of RANSynCoder and GDN is only
improved, while for the HAI dataset, the detection accuracy of GDN is only improved.

6.5. Performance Results

To compare the state-of-the-art anomaly detection models’ performance, we implement
those models (we used existing code if available) and evaluate them using the same
experimental configurations. Table 5 shows the performance results of the five models
tested for the SWaT dataset (bold text indicates the highest value in each performance
metric). Our implementations achieved F1-score results that are slightly different from
the F1-score results presented in the original papers of those models. We use (x% [y])
to represent each model’s F1-score of x% presented in the paper [y]. We note that our
implementations’ (except LSTM-ED) F1-score are slightly lower than the F1-score results
presented in the original papers of those models.

Table 5. Performance of anomaly detection models for the SWaT dataset.

Model F1-Score Precision Recall FNR FPR TP FN FP

InterFusion 90.7% (92.8% [13]) 91.1% 90.3% 9.7% 1.2% 49,309 5312 4799

RANSynCoder 82.7% (84.0% [14]) 96.6% 72.3% 27.7% 0.4% 39,511 15,110 1380

GDN 80.6% (81.0% [15]) 97.8% 68.5% 31.5% 0.2% 37,403 17,218 836

LSTM-ED 81.2% (76.0% [64]) 98.9% 68.8% 31.2% 0.1% 37,586 17,035 410

USAD 75.0% (79.1% [12]) 91.6% 63.6% 36.4% 0.8% 34,856 19,940 3208

For the SWaT dataset, InterFusion produces the best results in F1-score, Recall, and
FNR compared to the other four models. Even though the three models (LSTM-ED,
GDN, and RANSynCoder) show relatively higher Precision than InterFusion, they achieve
significantly lower Recall values, indicating the inferiority of these models to correctly
detect anomaly samples and the possibility of false detections for normal samples as
anomalies. In contrast, InterFusion is more accurate and shows higher than 90% in both
Precision and Recall, indicating that InterFusion is less affected by imbalanced ratios of
normal/attack in the dataset than other models. Interestingly, all the anomaly detection
models achieve a low FPR, less than or equal to 1.2%, while FNR is over 27%, except
for the InterFusion model. We interpret the outperforming of InterFusion over other
models because of the model’s well-designed structure with two latent representations,
which differs from traditional hierarchical methods. Specifically, ICS produces MTS data
with many features (51 columns in SWaT and 79 columns in the HAI) and has non-linear
relationships among all of them. Therefore, the InterFusion model architecture was suitable
for learning temporal dependencies (intra-metric) and inter-metric relationships to improve
MTS’s anomaly detection performance.

Table 6 shows the performance results of the five models tested for the HAI dataset
(bold text indicates the highest value in each performance metric). Unlike the SWaT dataset,
RANSynCoder produces the best results for the HAI dataset in F1-score, Precision, and FPR.
Perhaps, RANSynCoder would be less affected by data imbalance of normal and anomaly
samples when considering the HAI dataset (including 2.2% anomalies) is relatively more
imbalanced than the SWaT dataset (including 11.9% anomalies). Although InterFusion
shows the second-highest performance in F1-score for the HAI dataset, its Recall score is
still higher than other models, indicating that it is better to detect attacks. In addition, all
the models achieve good Precision scores higher than 74%, while the Recall of GDN and



Sensors 2023, 23, 1310 14 of 21

USAD are going worse to less than 50%, indicating that GDN and USAD are ineffective in
detecting anomalies when normal and anomaly samples are highly imbalanced.

Table 6. Performance of anomaly detection models for the HAI dataset.

Model F1-Score Precision Recall FNR FPR TP FN FP

InterFusion 78.9% 74.4% 83.9% 16.1% 0.6% 7504 1443 2579

RANSynCoder 82.9% 89.1% 77.6% 22.4% 0.2% 6452 1866 793

GDN 59.7% 78.5% 48.3% 54.0% 0.2% 4323 4624 1054

LSTM-ED 71.7% 79.1% 65.5% 34.5% 0.4% 5864 3083 1547

USAD 58.8% 76.0% 48.0% 71.3% 0.2% 2447 6096 821

We also compare the anomaly detection models for the training and testing times for
the SWaT and HAI datasets, as shown in Table 7. Training time refers to the time taken
to train a model with training samples. Testing time refers to the time taken to perform
classification with all testing samples. We implemented models in Python 3 environment.
We used a GPU server that consists of a Tesla V100-PCIe with 34GB memory and Intel
Xeon(R) E5-2687w v3 @3.10 GHz with 264GB RAM in the experiments.

Table 7. Training and testing times of anomaly detection models in SWaT and HAI datasets.

Model
SWaT HAI

Training Time (s) Testing Time (s) Training Time (s) Testing Time (s)

InterFusion 6032 3563 107,550 8961

RANSynCoder 3945 13 12,100 20

GDN 471 361 2832 482

LSTM-ED 6787 215 1354 79

USAD 2578 8 2653 15

For the SWaT dataset, the experimental results show that GDN is the fastest model
and takes 471 s for training. Because GDN achieves an F1-score higher than 80%, and
InterFusion takes over 6000 s for training, we can consider GDN as an alternative to
InterFusion when we need to build a model promptly. Although the most efficient model is
USAD taking 8 s in testing time, when we consider that the F1-score of USAD is 75.0%, we
would not recommend using USAD. Instead, RANSynCoder would be a good candidate
model regarding its F1-score (82.7%) and testing time (13 s). In the case of LSTM-ED, model
training took significantly longer for the SWaT dataset than the HAI dataset, even if the
size of the HAI dataset is considerably larger. This result is due to the larger window size
(20 and 4 for SWaT and HAI datasets, respectively) and smaller batch size (40 and 200 for
SWaT and HAI, respectively) configured for the SWaT model training, as shown in Table 4.

Similarly, Table 7 shows the training and testing times of the anomaly detection models
for the HAI dataset. InterFusion requires a prolonged training time (over 100,000 s) for the
HAI dataset.

Moreover, InterFusion takes 8961 s in testing time, significantly higher than the other
models’ testing times. We interpret the high time consumption of InterFusion into two
aspects. First, it is due to the essential tasks involved in the model’s design of InterFusion,
such as the pretraining phase, prefiltering strategy, hierarchical structure, and two-view
HVAE embedding for MTS anomaly monitoring. Second, these specifically designed
structures require a considerable time when jointly training two stochastic latent variables
to capture complex temporal and inter-metric dependencies, especially for large MTS
datasets. Hence, we would not recommend using InterFusion with the HAI dataset; a
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more obvious recommendation would be to use RANSynCoder because it achieves 82.9%
F1-score and is significantly faster than InterFusion in training and testing.

6.6. Effects of Training Set Size

This section explains how the training data size can affect anomaly detection perfor-
mance. Deep learning models generally need a large amount of training data to perform
well. So naturally, the training time of deep learning models increases proportionally to
the training data size. However, an expensive training cost would be unacceptable or
unsatisfactory in some situations. Furthermore, it is challenging to collect the ICS data from
real-world ICS systems over a long period because the data collection process may expose
them to risk.

In this study, we investigate the effects of the training set size on the performance of
anomaly detection models by varying the size of the training set. To set up a testing envi-
ronment with time-series information preserved, we divide the training set into five parts:
p1, p2, p3, p4, and p5, as shown in Figure 6. We train each model with {p1} (20%), {p1, p2}
(40%), {p1, p2, p3} (60%), {p1, p2, p3, p4} (80%), and {p1, p2, p3, p4, p5} (100%), respectively.
For all those configurations, we use the entire testing set in the same manner. The accuracy
results are summarized in Tables 8 and 9, respectively.

Figure 6. Five training set configurations.
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Table 8. Performance of anomaly detection models by varying the size of the training set in SWaT.

Model Training F1-Score Precision Recall FNR FPR TP FN FPSet Size

InterFusion

20% 88.6% 94.1% 83.6% 1.6% 0.7% 45,690 8931 2861
40% 89.2% 96.9% 82.7% 17.3% 0.4% 45,168 9453 1458
60% 89.8% 94.3% 85.8% 14.2% 0.7% 46,845 7776 5585
80% 83.2% 88.5% 78.5% 21.5% 1.4% 42,895 11,726 5585

100% 90.7% 91.1% 90.3% 9.7% 1.2% 49,309 5312 4799

RANSynCoder

20% 83.2% 92.1% 75.8% 24.2% 0.9% 41,418 13,203 3546
40% 81.7% 94.3% 72.2% 27.9% 0.6% 39,411 15,210 2398
60% 80.5% 97.8% 68.3% 31.7% 0.2% 37,322 17,299 829
80% 82.2% 96.3% 71.7% 28.3% 0.4% 39,181 15,440 1489

100% 82.7% 96.6% 72.3% 27.7% 0.4% 39,511 15,110 1380

GDN

20% 76.9% 96.8% 63.8% 36.2% 0.2% 34,828 19,793 1162
40% 77.8% 97.8% 64.5% 35.5% 0.1% 35,212 19,409 778
60% 78.3% 96.7% 65.7% 34.2% 0.3% 35,909 18,712 1206
80% 78.1% 96.6% 65.6% 34.4% 0.3% 35,843 18,778 1272

100% 80.6% 97.8% 68.5% 31.5% 0.2% 37,403 17,218 836

LSTM-ED

20% 62.8% 82.9% 50.6% 49.4% 1.4% 27,626 26,995 5695
40% 68.9% 81.3% 59.8% 40.2% 1.8% 32,645 21,978 7492
60% 76.2% 98.9% 62.0% 38.0% 0.1% 33,860 20,761 369
80% 77.4% 99.0% 63.6% 36.4% 0.1% 34,729 19,892 348

100% 81.2% 98.9% 68.8% 31.2% 0.1% 37,586 17,035 410

USAD

20% 30.6% 19.1% 77.1% 23.0% 45.2% 42,216 12,580 178,658
40% 74.6% 92.1% 62.7% 37.3% 0.7% 34,343 20,453 2954
60% 74.3% 92.1% 62.3% 37.7% 0.7% 34,119 20,677 2909
80% 74.7% 92.5% 62.6% 37.4% 0.7% 34,297 20,499 2792

100% 75.1% 91.6% 63.7% 36.4% 0.8% 34,856 19,940 3208

Table 9. Performance of anomaly detection models by varying the size of the training set in HAI.

Model Training F1-Score Precision Recall FNR FPR TP FN FPSet Size

InterFusion

20% 75.9% 67.6% 86.5% 13.5% 0.9% 7738 1209 3712
40% 77.1% 66.4% 91.9% 8.1% 1.1% 8226 721 4158
60% 75.8% 69.4% 83.6% 16.4% 0.8% 7476 1471 3301
80% 80.2% 74.8% 86.4% 13.5% 0.7% 7734 1213 2610

100% 78.9% 74.4% 83.9% 16.1% 0.6% 7504 1443 2579

RANSynCoder

20% 69.1% 86.7% 57.4% 42.6% 0.2% 4775 3543 731
40% 88.5% 89.2% 87.8% 12.9% 0.3% 7305 1013 882
60% 71.3% 89.7% 59.1% 40.9% 0.2% 4918 3400 563
80% 70.8% 77.5% 65.1% 34.9% 0.5% 5417 2901 1572

100% 82.9% 89.1% 77.6% 22.4% 0.2% 6452 1866 793

GDN

20% 31.2% 85.0% 19.1% 80.9% 0.1% 1708 7239 301
40% 45.5% 63.3% 35.5% 64.5% 0.5% 3178 5769 1846
60% 53.1% 65.4% 44.4% 55.6% 0.5% 3975 4972 2054
80% 55.9% 73.3% 45.3% 54.7% 0.4% 4055 4893 1472

100% 59.7% 78.5% 48.3% 54.0% 0.2% 4323 4624 1054

LSTM-ED

20% 15.9% 9.0% 71.3% 28.6% 16.4% 6383 2564 64,573
40% 72.2% 79.0% 66.4% 33.6% 0.4% 5944 3003 1581
60% 71.8% 80.3% 64.9% 35.1% 0.4% 5807 3140 1421
80% 72.3% 80.0% 65.9% 34.1% 0.4% 5895 3052 1476

100% 71.7% 79.1% 65.5% 34.5% 0.4% 5864 3083 1547

USAD

20% 60.5% 92.5% 44.9% 73.0% 0.1% 2229 6244 383
40% 58.6% 94.8% 42.4% 73.8% 0.1% 2231 6312 354
60% 59.7% 81.5% 47.1% 70.9% 0.1% 2485 6058 608
80% 61.1% 88.4% 46.7% 71.8% 0.1% 2407 6136 467

100% 58.8% 76.0% 48.0% 71.3% 0.2% 2447 6096 821
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Table 8 represents performance variation in InterFusion, RANSynCoder, GDN, LSTM-
ED, and USAD models with the training set size. Surprisingly, all the models except USAD
show a reasonable F1-score with only 20% of all training samples. We note that those
models showed error rates of a very low FPR and relatively high FNR, like the cases
when the entire training dataset is used. Unlike the other models, USAD provides poor
performance when 20% of all training samples are used.

Similarly, we examined the performance of the five models by varying the size of the
training set in the HAI dataset. Table 9 shows the performance results of the models tested.
Interestingly, RANSynCoder outperformed InterFusion and showed the highest F1-score
when the model was trained using only 40% of all training samples. Regarding FPR and
FNR ratios with the HAI dataset, models’ performance improved compared to the SWaT
dataset and correctly detected normal and attack samples–this appears from the lower error
rates of FNR and FPR.

We also analyze how the training times of the models change with the training set size.
Figure 7 shows the training time results with the size of the training set.

The experimental results show that all the models’ training times proportionally
increase with the training dataset size. Specifically, InterFusion has the largest variation
in the training time compared with other models. In particular, it shows that the training
time of the Interfusion for HAI dataset takes longer than three times compared with the
SWaT dataset.
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Figure 7. Changes in training times of the anomaly detection models with data split ratio.

7. Discussion

This paper provides the performance comparison results of the state-of-the-art anomaly
detection methods for ICS. We implemented the five models, InterFusion [13], RANSyn-
Coder [14], GDN [15], LSTM-ED [16], and USAD [12], with two publicly large MTS datasets,
SWaT [18] and HAI [19]. Table 10 provides a summary of the five anomaly detection models
and their best detection results for both datasets, respectively.

Table 10. Summary of five representative anomaly detection models.

Model Type F1-Score for SWaT F1-Score for HAI

InterFusion VAE 90.7% 78.9%

RANSynCoder AE 82.7% 82.9%

GDN GNN 80.6% 59.7%

LSTM-ED LSTM 81.2% 71.7%

USAD AE 75.0% 58.8%

Our experimental results on anomaly detection models suggest the following findings:
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• InterFusion and RANSynCoder show superiority in detection accuracy with the SWaT
and HAI datasets. InterFusion might be preferred when Recall is more significant
than Precision. However, we note that InterFusion requires expensive costs in training
and testing times compared with the other models. Hence, we recommend using
RANSynCoder when training and testing times are critical to deploying a model in a
target ICS environment.

• Overall, FNR values are significantly worse than FPR values in all five models. We
surmise that each model can sufficiently learn the characteristics of normal data, but it
cannot detect new and unseen attacks effectively because the models are well-trained
on only normal data. Similarly, our classification result shows relatively higher TN
and lower TP when evaluating the performance of each model with both normal and
attack samples. We note that identifying attack samples would be more challenging
because our model is trained with the normal dataset alone. Therefore, normal samples
are relatively well-recognized than attack samples by each model.

Next, we also analyze the effects of dataset size on the performance of the anomaly
detection models. Our experimental setup reflects the characteristics of a series of observa-
tions arranged chronologically to split the training dataset. Our experimental results on
dataset sizes suggest the following findings:

• We found that a subset (e.g., 40% or 60%) of the entire training set would produce
a performance comparable with the entire training dataset. We surmise that this
is because SWaT and HAI datasets have some regular periodic normal behaviors.
Therefore, a part of the entire training set could be sufficiently used to build an
anomaly detection model that achieves reasonable detection accuracy.

• All the models’ training times proportionally increase with the training set size. There-
fore, we can control a model’s training time with the training set’s size when it is
important to reduce the training time. Model retraining would be necessary to main-
tain low error rates over time. To minimize the cost of retraining, we might need to
determine the optimal size of the samples for training.

8. Conclusions

This work presents a comparative evaluation of the five state-of-the-art time series-
based anomaly detection models for ICS. We first focused on finding their optimized
models producing the best performance results with two publicly available benchmark
datasets, SWaT [18] and HAI [19] datasets, under the same and fair settings.

The evaluation results show that InterFusion and RANSynCoder outperformed the
other models’ detection accuracy. For SWaT, InterFusion achieves the highest F1-score of
90.7%, while RANSynCoder achieves the highest F1-score of 82.9% for HAI. Although
InterFusion performed well with both datasets, when we consider how expensive the
training and testing phases of InterFusion are, we do not recommend using InterFusion.
Our more practical recommendation would be to use RANSynCoder regarding the time
overhead for training. In addition, we analyzed the effects of the training dataset sizes
to investigate whether we could reduce the training overhead and find an appropriate
training dataset size. We found that approximately 40% of the entire training set would be
sufficient to build a model producing a similar performance compared to the entire training
set. These findings help select and design the best model for ICS applications.

However, the detection accuracy of existing anomaly detection models still needs
improvement in the real world. A combination of several anomaly detection models could
be used together as an ensemble solution rather than just relying on one particular model.
Previous studies showed that well-designed ensemble classifiers could effectively produce
highly accurate anomaly detection results in other domains. As part of future work, we
plan to analyze the performance of various model combinations. Moreover, to alleviate the
data imbalance problem, we can use a technique called data augmentation to balance the
distribution of normal and anomaly samples and avoid performance degradation against
new and unseen datasets.
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