
Citation: Han, D.; So, J. Energy-

Efficient Resource Allocation Based

on Deep Q-Network in V2V

Communications. Sensors 2023, 23,

1295. https://doi.org/10.3390/

s23031295

Academic Editor: Josip Lorincz

Received: 29 December 2022

Revised: 18 January 2023

Accepted: 19 January 2023

Published: 23 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Energy-Efficient Resource Allocation Based on Deep
Q-Network in V2V Communications
Donghee Han and Jaewoo So *

Department of Electronic Engineering, Sogang University, Seoul 04107, Republic of Korea
* Correspondence: jwso@sogang.ac.kr; Tel.: +82-2-705-8464

Abstract: Recently, with the development of autonomous driving technology, vehicle-to-everything
(V2X) communication technology that provides a wireless connection between vehicles, pedestrians,
and roadside base stations has gained significant attention. Vehicle-to-vehicle (V2V) communication
should provide low-latency and highly reliable services through direct communication between
vehicles, improving safety. In particular, as the number of vehicles increases, efficient radio resource
management becomes more important. In this paper, we propose a deep reinforcement learning
(DRL)-based decentralized resource allocation scheme in the V2X communication network in which
the radio resources are shared between the V2V and vehicle-to-infrastructure (V2I) networks. Here,
a deep Q-network (DQN) is utilized to find the resource blocks and transmit power of vehicles in
the V2V network to maximize the sum rate of the V2I and V2V links while reducing the power
consumption and latency of V2V links. The DQN also uses the channel state information, the signal-
to-interference-plus-noise ratio (SINR) of V2I and V2V links, and the latency constraints of vehicles
to find the optimal resource allocation scheme. The proposed DQN-based resource allocation scheme
ensures energy-efficient transmissions that satisfy the latency constraints for V2V links while reducing
the interference of the V2V network to the V2I network. We evaluate the performance of the proposed
scheme in terms of the sum rate of the V2X network, the average power consumption of V2V links,
and the average outage probability of V2V links using a case study in Manhattan with nine blocks of
3GPP TR 36.885. The simulation results show that the proposed scheme greatly reduces the transmit
power of V2V links when compared to the conventional reinforcement learning-based resource
allocation scheme without sacrificing the sum rate of the V2X network or the outage probability of
V2V links.

Keywords: vehicular communications; deep reinforcement learning; deep Q-network; resource
allocation; energy efficiency

1. Introduction

Today, with the development of autonomous driving technologies, vehicular com-
munication technologies are receiving significant attention from both the industry and
academia [1,2]. The 3GPP has recently designed a new radio (NR) sidelink to support
direct vehicle-to-vehicle (V2V) communication without the help of a base station (BS) in a
low-latency, high-throughput, and high-connection-density network [1,3,4]. V2V networks
require ultra-reliable and low-latency communication (URLLC) services for use cases that
demand certain safety features, such as autonomous driving systems that send and receive
warning messages to and from nearby vehicles, even as the number of vehicles increases [5].
Therefore, it is important to manage radio resources efficiently to satisfy the quality of
service (QoS) of vehicles in the V2V network.

Radio resource management is often formulated as a set of combined optimizations
used to find the optimal solution of an objective problem, which is generally an NP-hard
problem. In recent years, machine learning has been successfully applied in a wide range
of areas, resulting in significant performance improvements. In particular, reinforcement
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learning (RL) has shown its superiority in solving the resource allocation problems in
communications [6,7]. Resource allocation can be dived into three categories according
to which layer of the OSI 7-layer model performs [8–10]. The first category is bandwidth
allocation at the network layer, which aims to provide call-level QoS guarantees. The
second category is the allocation of resource blocks (RBs) at the link layer. The link layer
determines which RB the transmitter will use, on the basis of the channel state measured in
the physical layer. The third category is the joint RB and power allocation at the cross-layer
between the link layer and the physical layer [9,10]. In this paper, we focus on the resource
allocation of the RB and the transmit power of V2V links at both the link layer and the
physical layer. Resource allocation is based on the channel state information (CSI), i.e., the
signal-to-interference-plus-noise ratio (SINR). We propose a deep Q-network (DQN)-based
spectrum and power allocation scheme for energy-efficient V2V communications while
maximizing the sum rate of the V2I and V2V links. The proposed Q-network uses the CSI of
V2I and V2V links and the latency constraints of vehicles to find the optimal RB and transmit
power of the V2V links. The contributions of this paper are as follows: First, we developed
a decentralized resource allocation problem that incorporates the power consumption as
well as the latency of V2V links while increasing the sum rate of the V2I and V2V links.
Second, we developed a DQN model to solve the resource allocation problem, where the
reward function includes the power consumption and latency conditions represented as
penalties. Third, the simulation results show that the DQN-based energy-efficient resource
allocation scheme greatly reduces overall power consumption in comparison with the
conventional RL-based scheme without sacrificing the sum rate and latency requirements
of V2V links.

The rest of the paper is organized as follows. Section 2 describes the system model.
Section 3 presents a DQN-based resource allocation scheme, where the state, action, and
reward functions of reinforcement learning (RL) are described in detail. Section 4 shows
the simulation results in a case study of Manhattan. Finally, Section 5 concludes the paper.

2. Related Work

The resource allocation mechanism in vehicle-to-everything (V2X) communications
has been studied in various ways. The authors of [11] introduced the deep reinforcement
learning (DRL)-based resource allocation scheme and showed experimental results for both
unicast and broadcast scenarios. They designed a reward function to ensure the latency
constraints of the V2V links were satisfied. The authors of [12] proposed a QoS-aware
resource allocation scheme based on the DRL framework in V2X communications, where
they took QoS parameters such as the priority of V2V messages into consideration. The
proposed scheme of [12] aims to maximize the sum rate of vehicle-to-infrastructure (V2I)
links while satisfying the latency constraints of V2V links. The authors of [13] developed a
power allocation problem in the cellular device-to-device (D2D)-based V2X communication
network and mathematically solved the problem. They showed that the proposed power
allocation scheme outperforms the existing algorithms in terms of power consumption. The
authors of [14] developed a multi-agent RL (MARL)-based resource allocation for V2V links
in the spectrum-sharing V2X network. They aimed to maximize the capacity of V2I links
while also improving the reliability of the payload delivery in V2V links. They showed the
MADRL-based resource allocation is efficient for the V2I and V2V network collaboration
although decisions are made locally and distributed at each V2V transmitter. The authors
of [15] proposed a MARL-based resource allocation scheme in order to maximize the sum
rate of V2I links while satisfying the latency and reliability requirements of V2V links. In
this work, they developed individual double-dueling deep recurrent Q-networks (D3RQN),
where they used interference power measurements instead of the conventional CSI under
the assumption that it is difficult to acquire the perfect CSI in the vehicular network.
They showed that the proposed MARL-based resource allocation jointly adjusts the sub-
channel and transmit power using only local interference measurements without inter-agent
communication. Some studies have focused on the energy consumption in V2X networks.
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The authors of [16] developed an energy efficiency problem in an NR V2X network, where
energy efficiency is defined as the ratio of the sum rate to power consumption. They
proposed a heuristic algorithm of traffic-density-based random selection to solve the
developed mixed-integer problem. The authors of [17] also developed an energy efficiency
problem of vehicle users while considering the QoS requirement of cellular users in the
cellular network underlying V2V communications. They transformed the latency constraint
into the constraint of the queue length and solved the virtual queue problem based on the
Lyapunov optimization. In V2X networks, the energy consumption of V2I links as well as
V2V links is important. Some studies have focused on optimizing energy consumption
across the entire wireless access network [18–20]. The authors of [18] proposed an energy-
efficient resource management scheme based on the transmit power scaling and on/off
switching of base stations. The authors of [19] formulated an optimization problem for the
energy consumption of a wireless location area network (WLAN) by adjusting the transmit
power and turning access stations on and off based on realistic traffic patterns. They
proposed integer linear programming (ILP) optimization models and heuristic algorithms
to minimize the energy consumption of the network. The authors of [20] developed an
ILP model for energy saving of wireless access networks, and also developed a heuristic
algorithm based on a greedy method to cope with the computational complexity of the
ILP model.

Recently, graph-based deep learning solutions have been proposed for resource al-
location in communication networks [7,21–24]. Graph neural networks (GNNs) have
achieved some success in solving resource allocation problems in various communication
networks, e.g., wireless networks, wired networks, and software-defined networks, because
of their abilities to learn to capture the dependencies of graphs and to learn non-Euclidean
structure data [21]. The authors of [22] presented a comprehensive review and analysis
of graph-based resource allocation methods in cellular, device-to-device, and cognitive
radio networks. Here, they classified the graph-based resource allocation methods in terms
of graph models, tasks solved via graphs, graph formulation, and optimization methods.
The authors of [23] proposed a heterogeneous bipartite GNN (HBGNN) to solve the joint
user association and power allocation problem in heterogeneous ultra-dense networks
(HUDNs). They modeled the downlink of the HUDN as a heterogeneous bipartite graph
and compared the performance of the proposed HBGNN with the fully connected neural
network and the convolutional neural network (CNN). However, the HBGNN requires su-
pervised learning, unlike RL. The authors of [24] developed a graph convolutional network
(GCN)-based DRL framework to perform joint channel selection and power adaptation in
the underlying cognitive radio networks, maximizing the data rate of secondary users while
maintaining the level of interference to primary users. They modeled the environment
of the cognitive radio network as a dynamic graph and adopted a DRL to explore the
optimal resource allocation strategy. However, the work of [24] did not take the energy
efficiency and the latency constraints of the secondary users into account. The authors of [7]
presented a GNN-augmented RL method to perform spectrum allocation for vehicular net-
works. They expressed the V2V network as a graph and exploited RL to perform resource
allocation. The deep Q-network was developed to select the spectrum for each V2V pair.

Deep learning technologies for Internet of vehicle (IoV) networks have been studied
previously [25–29]. The authors of [25] discussed deep learning applications for security
and collision prediction in the internet of vehicle (IoV) networks, and they proposed a
DRL-based resource allocation method to enhance multiple QoS requirements, such as
latency and suitable data rate requirements. They introduced an actor–critic framework
to achieve an intelligent resource allocation in the IoV network. The authors of [26]
discussed deep learning techniques to enhance the performance of the overall IoV system.
They addressed various learning networks, e.g., CNN, recurrent neural networks, DRL,
classification, clustering, and regression. The authors of [27] presented a comprehensive
review and analysis of machine learning technologies for IoV applications, e.g., energy-
and buffer-aware optimization, edge caching, intelligent decisions for network scheduling
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and adaptation, intelligent autonomous driving, etc. The authors of [28] presented a
comprehensive review of resource allocation and management for the IoV over 5G radio
access networks. They described learning-based resource allocation approaches to improve
the QoS and quality of experience in distributed and cloud-computing resource allocation
schemes, along with big data resource allocation. The authors of [29] conducted a critical
review and analysis of machine learning models used to resolve the challenge in IoV
applications. Moreover, they proposed a Markov decision-process-based, edge-computing
offloading model and evaluated its performance in terms of its power consumption and
task latency.

Moreover, vehicular edge computing (VEC) technologies have been studied to dy-
namically manage computing resources, caching, and networking [30]. The authors of [31]
proposed a generic approach to improve the performance of application outsourcing in the
caching-assisted VEC. They mathematically showed that application caching can optimize
the average response time while satisfying the long-term energy consumption constraint.
The authors of [32] addressed route planning in a navigation system that finds an opti-
mal route from the source to the target location. They proposed a real-time cache-aided
route planning system based on mobile edge computing with the aim of reducing the
communication delay between the access network and the remote central server and the
computational time of route planning queries. The authors of [33] proposed a caching-
enabled VEC scheme for jointly optimizing task caching and computation offloading in
a VEC system; task caching was shown to reduce response latency but increase energy
consumption. They then formulated an optimization problem that minimizes the weighted
sum of the service time and energy consumption in the caching-assisted VEC system and
used a genetic algorithm to solve the problem. The authors of [34] presented a compre-
hensive review and analysis of the vehicle routing problem (VRP). They mainly reviewed
machine learning-assisted VRP modeling and optimization approaches.

3. System Model

We consider a V2X network consisting of a V2I network and a V2V network as
shown in Figure 1. We focus on the uplink in the V2I network, where there are L V2I
links denoted by L = {1, 2, . . . , L}. In the V2V network, there are K V2V links denoted
by K = {1, 2, . . . , K}. In the V2I network, the spectrum is orthogonally allocated to the
vehicles, where the number of orthogonal RBs is NRB. However, the V2V links share the
resources, NRB, of the V2I network.

Figure 1. A system model.
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In the V2I network, the received SINR and capacity of the lth V2I link are represented
as follows:

SINRl =
PV2I

l hl

σ2 + ∑k∈K µk,l pkhk
(1)

Cl = W log (1 + SINRl) [bits/second], (2)

where PV2I
l is the transmit power of the vehicle and hl is the channel power gain in the lth

V2I link. Additionally, pk is the transmit power of the kth V2V link, hk is the channel power
gain from the transmitter of the k V2V link to the base station, σ2 is the noise power, and
W is the bandwidth. The indicator function, µk,l , denotes whether the resource is shared
between the kth V2V link and the lth V2I link. That is, if the kth V2V link shares the RB of
the lth V2I link, µk,l = 1; otherwise, µk,l = 0.

In the V2V network, the received SINR and capacity of the kth V2V link are represented
as follows:

SINRk =
pkgk

σ2 + IV2V
k + IV2I

k
(3)

IV2I
k = ∑

l∈L
µk,l PV2I

l gl,k (4)

IV2V
k = ∑

l∈L
∑

j∈K,j 6=k
µk,lµj,l pjgj,k (5)

Ck = W log (1 + SINRk) [bits/second], (6)

where pk is the transmit power of the vehicle and gk is the channel power gain in the kth
V2V link. Additionally, IV2I

k is the interference from the V2I link sharing the RB of the kth
V2V link, IV2V

k is the interference from the V2V link sharing the RB of the kth V2V link, and
gl,k is the channel power gain from the transmitter of the lth V2I link to the receiver of the
kth V2V link. The indicator function, µj,l , denotes whether the resource is shared between
the jth V2V link and the lth V2I link. That is, if the jth V2V link shares the RB of the lth V2I
link, µj,l = 1; otherwise, µj,l = 0.

In order for the BS to know the channel state of the V2V links, each receiver of the
V2V link reports its CSI to the BS, which results in a large signaling overhead. Hence, we
assume that the BS does not know the CSI of the V2V links. The BS independently controls
the resource allocation of the V2I links without considering the channel state of the V2V
links. Consequently, vehicles on the V2V link individually select the RB and determine
the transmit power based on the locally observed channel information. Here, the locally
observed channel information in the V2V link consists of the following: the CSI of the V2I
link, the interference power observed in the previous time slot, the instantaneous CSI of
the V2V link, and the information on the RB selected by nearby vehicles.

Our objective is to maximize the sum rate of the V2I links while increasing the proba-
bility of meeting the latency constraint of the V2V links by controlling the selection of RB
and the transmit power of each V2V link. However, finding the optimal allocations of the
RB and transmit power is an NP-hard problem. Hence, we propose a DQN-based approach
to solve the resource allocation problem.

4. Deep Q-Network for Energy-Efficient Resource Allocation
4.1. Reinforcement Learning

In RL, an agent observes a state in an environment that satisfies the Markov decision
process (MDP). Then, the optimal action is selected according to the given policy. Depend-
ing on the selected action, the agent interacts with the environment, receives a reward from
the environment, and transitions to the next state.
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The goal of RL is to maximize the expected return value after the episode ends. The
return formula is given as follows:

Rt:T = rt + γrt+1 + γ2rt+2 + . . . + γTrt+T−1, (7)

where rt denotes the reward obtained immediately at time t, T is the time step, and γ
denotes the discount factor. The structure of our RL is shown in Figure 2. The agent
observes the state of the environment at the time (t) and selects the best action according to
the given policy. When the agent selects an action for all V2V links, the actions are stored
in the joint action group and interact with the environment at the same time, and the agent
receives a reward. In our system model, we develop the RL with the following parameters:

1. State space: We use the following state, similar to the unicast scenario of [11].

st = {Ht, It−1, Gt, Nt−1, Ut, Lt}, (8)

where Ht is the CSI of V2I links at time t; It−1 is the interference power to the link at
time t− 1; Gt is the instantaneous CSI of the corresponding V2V link at time t; Nt−1
is the information of RBs selected by surrounding vehicles at time t− 1; Ut is the time
remaining to satisfy the latency constraints at time t; and Lt is the remaining data to
be received from the transmitter of the V2V link at time t. Ht, It−1, Gt, and Nt−1 are
vectors containing the state information of the corresponding RBs, and Ut and Lt are
scalar values that are the time remaining to satisfy the latency constraints and the
remaining data, respectively. Therefore, the dimension of the state space is given by
Dstate = (4× NRB) + 2.

2. Action space: The action determines the transmit power and the allocation of RBs.
Hence, the dimensions of the action space are given by Daction = Npwr × NRB, where
Npwr is the number of transmit power levels in the V2V link and NRB is the number
of RBs.

3. Reward: We formulate the following reward function taking two penalties into account,
the transmission time and the power consumption:

rt = λV2I ∑
l∈ L

Cl + λV2V ∑
k∈K

Ck − λlatency(T0 −Ut)− λpwr
1
K ∑

k∈K

pk
pmax

, (9)

where T0 is the maximum tolerable latency, and therefore, (T0 −Ut) means the trans-
mission time. Moreover, pmax is the maximum transmit power in the V2V link. λV2I
and λV2V represent the weight for the sum rate of the V2I links and the sum rate
of the V2V links, respectively. λlatency and λpwr represent the weight of the penalty
according to an increase in the transmission time and the penalty according to an
increase in the transmit power, respectively. As the sum rate of the V2I or V2V links
increases, a positive factor is added. However, as the transmission time or power
consumption increases, a negative factor is added.
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Figure 2. The structure of the RL for the vehicular network.

4.2. Deep Q-Network

A frequently used framework in the RL is a DQN [35–38]. The DQN framework is
a structure that includes a Q-network consisting of a deep neural network (DNN) in the
Q-learning structure. In order to train the Q-network in the DQN framework, several
learning methods need to be applied [39].

In Q-learning, the Q-value means the expected return when reaching the terminal
state from the state observed in time t, as follows:

Q(s, a) = E[Rt:T |st = s, At = a]. (10)

The Q-value is updated as follows:

Q(st, at) = Q(st, at) + α[rt + γ max
a

Q(st+1, a)−Q(st, at)], (11)

where α denotes the learning rate. The agent’s behavior is determined based on the ε-greedy
policy. The ε-greedy policy is a method of randomly selecting an action if the randomly
sampled value is lower than the value of ε and selecting the action with the highest Q-value
is greedy if it is high. However, because Q-learning uses a lookup table called a Q-table
that stores Q-values in order to find the state and action pairs, it has several disadvantages:
First, the probability of visiting the same state is very low. Second, a very large storage
device is required to store an exponentially increasing number of state and action pairs. A
DQN framework has been developed to overcome these disadvantages.

As shown in Figure 3, the DQN framework calculates Q-values using a Q-network
in which weights and biases are stored. Therefore, when an agent needs a Q-value that
matches a state, the agent puts the state as input to the Q-network and obtains the appro-
priate Q-value as output. The loss function for training the Q-network is as follows:

Loss(θ, β) = ∑
st ,at∈E

(y−Q(st, at, θ, β))2 (12)

y = rt + γ max
a

Q(st+1, a, θ, β), (13)
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where θ and β mean the weights and biases in the Q-network, respectively. Q(st, at, θ, β)
means the Q-value. E is a mini-batch sampled from the experience replay memory that
stores the state, action, and reward of the next-state tuples collected while the agent interacts
with the environment. However, in order for the Q-network to perform an approximation
function in the DQN framework, a training process that adjusts the weights and biases
stored in the Q-network is required.

Figure 3. A Q-network of the DQN framework.

4.3. Training and Testing Algorithm

We train the DQN with the following methods: First, we use a data sampling method
with experience replay memory. Data sampling is used to remove the temporal relationships
between the used data to learn the Q-network. Here, the experience replay memory is a data
storage technique in which the agent collects data while interacting with the environment.
The data consist of tuples of the state, action, reward, and next state. The Q-network is
trained by randomly sampling data tuples from experience replay memory. In this paper,
the experience replay memory is denoted by D. Second, we use a fixed target network
method that includes two Q-networks, the target network and the online network, in the
training process. Q(st+1, a, θ, β) of (13) is calculated as the target network, and Q(st, at, θ, β)
of (12) is calculated as the online network. Additionally, the weights of the online network
are periodically copied to those of the target network.

The training process is described in Algorithm 1. Parameters of the online and target
networks are initialized (lines 1–3). The agent observes the state in the environment and
selects the action according to the ε-greedy policy (lines 10–11). That is, the agent performs
a random selection with the probability of ε, inputs the current state to the online network
with the probability of ε− 1, and selects the largest value among the observed Q-values as
output. The selected action is saved in the joint action group (line 12). If the agent selects
the actions for all V2V links, the joint action group interacts with the environment and
acquires a reward (line 14). The data tuples collected through the above process are stored
in the experience replay memory (lines 15–16). The sampled data tuples are used to update
the online network. When the online network repeatedly updates the weights and biases,
the weights and biases of the online network are copied to those of the target network (lines
17–25).

The testing process is described in Algorithm 2. Unlike the training process, the testing
process greedily selects an action based on the Q-network learned by the training process
(lines 8–9). After that, the action is stored in the joint action group in the same way as the
training process (line 10). If the agent selects the action for all V2V links, the joint action
group interacts with the environment (line 12). When the time step t reaches the simulation
end time, the performances are evaluated in terms of the sum rate of the V2I and V2V links,
the outage probability of V2V links, and the average power consumption of V2V links
(lines 14–17).
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Algorithm 1 Training algorithm

1: Initialize the online Q-network with random weights θ and random biases β;
2: Initialize the target Q-network with random weights θtarget and random biases βtarget;
3: Generate Experience replay memory D;
4: for each episode e do
5: Initialize environment;
6: Generate V2V and V2I networks;
7: for each time step t do
8: Generate a joint action group A;
9: for each V2V links do

10: Get state st from the environment
11: Choose an action at based on the ε-greedy policy;
12: Append the at to A;
13: end for
14: Interact with the environment based on A and Calculate reward rt;
15: Get all V2V links state st+1 from the environment;
16: Append the st, at, rt, st+1 to D;
17: for each update step i do
18: Sample a mini-batch of experience set E from the D;
19: Calculate the loss:
20: y=rt+γ maxa(Q(st+1, a, θtarget, βtarget));
21: Loss(θ,β)=∑st ,at∈E(y−Q(st, at, θ, β))2;
22: Update the online Q-network with θ, β;
23: end for
24: Update weights, θtarget ← θ

25: Update biases with βtarget ← β
26: end for
27: end for

Algorithm 2 Testing algorithm

1: Load the Q-network with trained weights θ and biases β;
2: for each episode e do
3: Initialize environment;
4: Generate V2V and V2I networks;
5: for each time step t do
6: Generate a joint action group A;
7: for each V2V link do
8: Get state st from the environment
9: Choose the at with the maximum value among the estimated Q-values by

inputting the st into the Q-network;
10: Append the at to A;
11: end for
12: Interact with the environment based on A;
13: end for
14: Calculate the sum rate of V2I links;
15: Calculate the sum rate of V2V links;
16: Calculate the outage probability of V2V links;
17: Calculate the average transmit power of V2V links;
18: end for

5. Simulation Results

We consider a single-cell system with one base station and 20 V2I links. We follow
the simulation setup for the urban case study of Manhattan with 9 blocks of 3GPP TR
36.885 [11,40]. The models of vehicle drops, mobility, and channels all follow the evaluation
scenario of 3GPP TR 36.885. Vehicles are dropped on the road according to a spatial Poisson
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process, and the vehicle locations are updated every one time slot in the simulation. A
vehicle moves at a constant speed defined in Table 1. The vehicle changes its direction at the
intersection to go straight with a probability of 0.5, to turn left with a probability of 0.25, and
to turn right with a probability of 0.25. Figure 4 shows the movement of vehicles for 20 s,
where there are eight vehicles and one BS. The V2V channel model and V2I channel model
are both described in Table 1, according to 3GPP TR 36.885. Each vehicle communicates
with a vehicle nearby. We perform a time-driven simulation, where the simulation clock
is advanced in increments of time slot units and the state variables are updated for every
time slot. For each slot in the simulation, we calculate the CSI of the V2I and V2V links and
the interference power, which results in the state of the DQN. The simulation parameters
are summarized in Table 1.

Figure 4. Vehicle movements.

Table 1. Simulation parameters.

Parameter Value

Road intersection size 430 m× 250 m
Simulation area size 1300 m× 750 m

Absolute vehicle speed 36 km/h
Vehicle drop and mobility model Urban case of A.12 in 3GPP TR 36.885 [40]

V2V path loss model WINNER + B1 Manhattan [41]
V2V shadowing Log-normal with σ2 = 3 dB

V2I path loss model 128.1 + 37.6 log(R), where R in kilometers
V2I shadowing Log-normal with σ2 = 8 dB

V2V and V2I fast fading Rayleigh fading
Noise power −114 dBm

Carrier frequency, fc 2 GHz
Sub-carrier frequency 1.5 MHz

Number of V2I links, L 20
Number of V2V links, K, [60, 120, 180, 240, 300]

Antenna height of eNode B type RSU 25 m
Antenna gain of RSU 8 dBi

Noise figure of RSU’s antenna 5 dB
Antenna height of vehicles 1.5 m
Antenna gain of vehicles 3 dBi

Noise figure of vehicle’s antenna 9 dB
Latency constraints for V2V link 100 ms

V2V payload size 30 Mbits
Update time slot duration 2 ms

Simulation time 400 ms
transmit power level of V2V links [5, 10, 23] dBm

In the proposed Q-network, the number of neurons in the input layer is set to 82,
the number of neurons in the hidden layers is set to [500, 250 120], and the number of



Sensors 2023, 23, 1295 11 of 15

neurons in the output layer is set to 60. The activation function of the hidden layers uses
the ReLU function. The optimizer for training the Q-network uses RMSProp. The detailed
parameters of the DQN framework are summarized in Table 2. The DQN is trained for
20,000 episodes, where an episode means 1 simulation time and new vehicles are dropped
each time an episode starts. After training the DQN, the simulation is run 1000 times, and
the 1000 results are averaged.

Table 2. DQN framework parameters.

Parameter Value

Number of neurons in the input layer 82
Number of neurons in each hidden layer 500, 250, 120
Number of neurons in the output layer 60

Reward discount factor 0.99
Hidden layer activation function ReLU

Optimizer RMSProp
Learning rate α 0.001

Values of λV2I, λV2V, λLatency, and λpwr 0.1, 0.9, 1, and 0.2, respectively

The proposed resource allocation is compared with the random resource allocation
and the conventional RL-based resource allocation of [11] in terms of the average transmit
power of the V2V links, the average outage probability of the V2V links, and the average
sum rates of the V2V and V2I networks. In the random resource allocation, the transmitter
of the V2V link transmits data with randomly selected transmit power through a randomly
selected RB.

Figure 5 shows the average transmit power of V2V links according to the number
of V2V links. As the number of V2V links increases, the average transmit power of
vehicles increases in the proposed scheme and the conventional RL-based scheme, but the
average transmit power in the random allocation scheme is fixed. Because the interference
increases according to the increase in the number of V2V links, the transmit power of
vehicles increases in order to overcome the interference, in the proposed scheme and the
conventional RL-based scheme. The proposed scheme significantly reduces the power
consumption of V2V links in comparison with the conventional RL-based scheme because
of the penalty function of the transmit power in the reward. In the random allocation
scheme, because the transmitter randomly selects the transmit power, the transmit power
of the V2V link is fixed on average, regardless of the amount of interference caused by
other V2V links. In the simulation environment of this paper, the random allocation scheme
shows a low power consumption due to the low transmit power but shows an outage
probability that is too high.

Figure 5. Average transmit power of V2V links.
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Figure 6 shows the sum rate of V2V links as the number of V2V links increases.
As the number of V2V links increases, the sum rate of V2V links increases in all the
resource allocation schemes. The sum rate of the conventional RL-based scheme is slightly
higher than that of the proposed scheme because the proposed scheme suppresses the
transmit power of vehicles for the purpose of energy efficiency. The sum rate of the
random allocation scheme is the worst because it randomly selects the RBs regardless of
the interference to others.

Figure 6. Average sum rate of V2V links.

Figure 7 shows the sum rate of V2I links as the number of V2V links increases. Because
the number of V2I links is fixed at 20, the interference from the V2V links increases according
to the number of V2V links, and thus the sum rate of V2I links decreases with the increase
in the V2V links. In particular, the performance of the proposed scheme is slightly better
than that of the conventional RL-based scheme. Moreover, because the interference from
the V2V links to the V2I link increases according to the number of V2V links, the sum rate
of the random allocation greatly decreases with the number of V2V links.

Figure 7. Average sum rate of V2I links.



Sensors 2023, 23, 1295 13 of 15

Figure 8 shows the outage probability as the number of V2V links increases. Here,
the outage probability is defined as the probability that a transmitter on the V2V link fails
to transmit data within the maximum allowable latency, T0. The outage probability is
inversely proportional to the sum rate. Hence, the outage probability increases according
to the number of V2V links. Moreover, the outage probability of the random allocation
scheme is much higher than that of other schemes. That is, in order to efficiently allocate
resources, RL-based resource allocation is required.

Figure 8. Average outage probability of V2V links.

The major concerns with deep-learning-based approaches are the computational
complexity and the memory space, which depend on the number of parameters to be
stored and to be computed. In the proposed RL, from (8), the dimension of the state space
is Dstate = (4× NRB) + 2 (=82 in our simulation) and the dimension of the action space
is Daction = Npwr × NRB (=60 in our simulation), where NRB is the number of RBs and
Npwr is the number of the transmit power levels. Consider a feed-forward network with l
layers, where layer 0 is the input layer and layer l − 1 is the output layer. Let the number
of neurons of each layer be n0, n1, . . . , nl−1. Then, the number of parameters (weights)
of the network, including biases, is given by NDNN = ∑l−2

i=0 nini+1 + ∑l−1
i=1 ni (=204,130

in our simulation). Because the DQN framework calculates Q-values using a DNN, the
total number of parameters becomes Dstate + Daction + NDNN. Moreover, because of the
use of two Q-networks, the online network and the target network, the total number of
parameters to be processed doubles, and the replay memory is required to store a collection
of experience tuples, i.e., the parameters of the online network. In our simulation, we
set the replay buffer size to 100 tuples. The computational complexity is similar to [11].
In our implementation, each selection takes less than 10−4 s using GPU 2080 Ti. The
computational speed is acceptable for vehicles thanks to the power of the GPU. The
computational complexity of the DNN can be reduced by using lightweight DNNs [42,43].

6. Conclusions

Vehicular communications or V2X are key to the development of autonomous vehicles.
In the V2X network, it is important to manage radio resources efficiently to provide low-
latency and energy-efficient services. In this paper, we developed a DQN-based energy-
efficient resource allocation scheme in a V2X communication network in which V2I and
V2V networks share resource blocks. We formulated the reward of the DQN model by using
two penalties and two positives. Here, the two penalties are the transmission time and
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the transmit power, and the two positives are the sum rate of the V2I and V2V networks.
The proposed scheme significantly reduces the power consumption of vehicles in the V2V
network without sacrificing the sum rate and outage probability. The results show that
an energy-efficient resource allocation scheme is crucial in order to meet the latency and
power consumption requirements of mission critical V2V applications.
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