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Abstract: Tool wear is a key factor in the machining process, which affects the tool life and quality
of the machined work piece. Therefore, it is crucial to monitor and diagnose the tool condition. An
improved CaAt-ResNet-1d model for multi-sensor tool wear diagnosis was proposed. The ResNet18
structure based on a one-dimensional convolutional neural network is adopted to make the basic
model architecture. The one-dimensional convolutional neural network is more suitable for feature
extraction of time series data. Add the channel attention mechanism of CaAt1 to the residual network
block and the channel attention mechanism of CaAt5 automatically learns the features of different
channels. The proposed method is validated on the PHM2010 dataset. Validation results show that
CaAt-ResNet-1d can reach 89.27% accuracy, improving by about 7% compared to Gated-Transformer
and 3% compared to Resnet18. The experimental results demonstrate the capacity and effectiveness
of the proposed method for tool wear monitor.

Keywords: tool wear monitor; multiple sensors; ResNet; channel attention

1. Introduction

With the development of the manufacturing industry, machining processes play an
increasingly paramount role in the modern manufacturing industry. A major problem
of processing is tool wear, which will lead to poor quality of machined parts and low
production efficiency [1–4]. Studies have revealed that 20% of machine downtime can be
attributed to different forms of tool wear [5,6]. Specifically, if the tool wear exceeds the
failure standard and the tool cannot be superseded in time, it will directly affect the surface
quality of the workpiece [7,8]. However, if the tool is replaced too early, it will cause
waste and reduce productivity [9]. Tool wear can lead to unexpected downtime and extra
costs [10]. Specifically, reliable and accurate tool wear estimates can reduce downtime costs
by 10–40% [11]. Therefore, tool wear monitoring is of great significance.

Generally, tool wear diagnostic approaches are differentiated into direct method
and indirect method. Results of the direct method are accurate and intuitive, but the
operation of the machine tool must be stopped during monitoring, which will prolong
the processing time and reduce the production efficiency [12,13]. The monitoring results
are easily interfered with by cutting fluid and chips, so the direct method is not suitable
for the machine tool processing site [12,13]. The indirect method collects sensor signals,
such as force [14,15], vibration [16,17] and acoustic emission [13], extracts data features and
establishes a feature map relationship between monitoring signals and tool wear condition.

Generally speaking, feature extraction is mainly divided into two categories: model-
based and data-based methods. The model-based method uses a mathematical model to
simulate the relationship between tool wear and the machining process to obtain relevant
features [18]. Mathematical models are machine learning algorithms, such as the Hidden
Markov Model [19], Wiener and Gamma processes [20] and Kalman filtering [21]. Although
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the model-based approach is successful, it requires a wealth of expertise. This method is
susceptible to prior knowledge [22] and limits the maximum utilization of sensors signals.

To overcome these difficulties, data-based approaches have been proposed as more
attractive alternatives. The data-based approach has two main advantages. First, it does not
require extensive prior knowledge. Second, monitoring sensors can conveniently collect
real-time data of cutting tools [23]. Deep Learning (DL) is the epitome of this approach.

In industrial processing, enormous amounts of data are obtained through sensors for
tool conditions. DL technology has powerful characteristics, such as powerful nonlinear
learning ability. Xu et al. [24] realized multi-scale feature fusion by using the developed
parallel convolutional neural network and the channel attention mechanism of the re-
maining connections considered the weights of different feature graphs. Liu et al. [25]
proposed a new neural network model based on Transformer, based on the Transformer
model, self-attention mechanism and LSTM. Yin et al. [26] proposed a one-dimensional
convolutional neural networks (1D-CNN) and deep Generalized canonical correlation
Analysis (DGCCA) for multi-sensor-based tool wear diagnosis. Zhou et al. [27] proposed
an improved multi-scale edge marker map neural network, in order to improve the recogni-
tion accuracy of TCM medicines based on DL in small samples. Marei et al. [28] proposed
a hybrid CNN-LSTM with transfer learning in cutting tool prognostics. Cai et al. [29]
proposed a hybrid information system based on Long and Short Term Memory Network
(LSTM) for tool wear prediction. Dong et al. [30] proposed a new monitoring method of
woodworking tool wear condition by using the limit arithmetic mean filtering method and
particle swarm optimization (PSO) backpropagation (BP) neural network algorithm. Phani
et al. [31] proposed the deep CNN architecture by selecting appropriate hyperparameters
and established the CNN model of tool wear classification by selecting appropriate training
parameters. Achyuth et al. [32] proposed support vector machine (SVM) and convolutional
neural network (CNN) to analyze the audible signals generated during the machining
process to predict the changes of tool wear and workpiece hardness. Shi et al. [33] pro-
posed a new framework for the fusion of multiple heap toxic sparse autoencoders, which
mainly consists of a training model and a feature fusion structure. Jian et al. [34] adopted
short-time Fourier transform (STFT) for data preprocessing and based on ResNet’s feature
layer by layer dimension reduction optimization model.

In this paper, we propose a novel ResNet-based one-dimensional network (CaAt-
ResNet-1d) for tool wear condition monitoring. It consists of two kinds of channel attention
mechanisms. The dataset reported in the 2010 PHM Data Challenge (PHM Society Con-
ference Data Challenge, provided at https://www.phmsociety.org/competition/phm/10
(accessed on 1 January 2022)) is trained and tested after downsampling. The main contribu-
tions of this paper include the following:

1. CaAt-ResNet-1d is realized via ResNet18 of one-dimensional convolutional neural
network (1D CNN) and channel attention. Depending on the timing characteristics of
tool wear data, ResNet18 is composed of 1D CNN. ResNet residual connections retain
the depth advantage of multiple networks and the advantage of shallow networks to
avoid degradation problems. In view of the multi-channel features of time series data,
the channel attention was in addition to 1D CNN ResNet18 to improve the model’s
ability to automatically learn different channel features.

2. The original PHM2010 dataset downsamples and redivides. Three groups of different
models were trained and tested on the newly divided dataset, which proved the
accuracy and stability of the proposed model.

The rest of the paper is organized as follows: the basic structure of CNN, the residual
unit and channel attention are introduced and described in Section 2; Section 3 presents a
novel resnet-based one-dimensional network (CaAt-ResNet-1d) for tool wear condition
monitoring. In more detail, channel attention mechanisms combining with the residual
connections are developed to achieve tool wear classification. Section 4 presents the
experimental setup, results and a discussion. Finally, Section 5 presents the conclusion and
future work directions.

https://www.phmsociety.org/competition/phm/10
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2. Review of Related Work
2.1. Convolutional Neural Network (CNN)

CNN occupies a prominent position in the field of computer vision and can also
be used in time series. CNN has three basic parts: convolution layer (extraction of im-
age local features), pooling layer (data dimension reduction) and full connection layer
(output results).

The convolution operation can be written as:

xl
j = ∑

k∈Mj

xl−1
k ∗ω

l
kj + bl

j (1)

where xl
j represents the jth feature map; xl−1

k is the kth output feature map; ωl
kj means the

convolution operation;Mj is the input feature size, and bl
j is the bias; l represents the layer.

The pooling layer of 1D CNN can be written as:

xl
j = βl

j ∗ downsampling
(

xl−1
j + bl

j

)
(2)

where xl
j, xl−1

j represent the jth feature map of layer l and l − 1; βl
j and bl

j are the coefficient
and additive biases, respectively.

Pooling layer mainly includes several pooling operations: maximum pooling, average
pooling and so on. The maximum pooling function of the 1D CNN can be written as:

pj = max
xl

j∈S
xl

j (3)

where pl
j represents the value of the pooling operation; S represents the width of the pooling

layer; xl
j represents the input feature map.

The fully connected layer can be written as:

zl j = f
(
∑n

i=1 W l−1
ij a(l−1)i + bl−1

j

)
(4)

where W l−1
ij is the weight of the kernel; a(l−1)i is the input from the layer l − 1; bl−1

j is bias
value; f (.) is the activation function.

2.2. Residual Unit Connection

The residual unit network [35] adds the result of multiple convolution of the input to
the input, as shown in Figure 1. For a multi-layer convolution structure, when the input
is x, the original feature learned is denoted as H(x) = f (x) + x and one hopes to learn
the feature residual f (x) = H(x)− x. When the residual f (x) is 0, the deep network is
an identity map H(x) = x. The residual connection not only retains the depth advantage
of a deep network, but also retains the advantage of a shallow network to avoid the
degradation problem.

Figure 1. The architecture of residual network block.
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2.3. Channel Attention

In the DL network, the channel attention mechanism is to focus and learn the impor-
tance of different features between channels. Therefore, numerous technologies for channel
attention have emerged, such as SENET [36] and CBAM [37].

In SENET, firstly, the feature elements in each channel are globally average pooled
to obtain a one-dimensional vector. Secondly, a weight value is obtained through the two
convolution layers. The original feature elements of each channel are multiplied by the
weight of the corresponding channel to obtain the new feature map. The calculation process
can be written as follows:

zc = Fsq(uc) =
1
H ∑H

i=1 uc(i) (5)

s = Fex(z, W) = σ(W2δ(W1z)) where, W1, W2 ∈ R
C
r ×C (6)

where W1 represents the full connection layer parameter responsible for compression; W2
represents the full connection layer parameter responsible for dimension restoration; σ
represents the sigmoid function; δ represents the ReLU function; and the variable r is a com-
pression parameter; C represents channel; H represents the quantity of feature elements.

The channel attention in CBAM differs from SENET. When the channel dimension
of the input feature graph is compressed, not only is average pooling considered, but
also maximum pooling is introduced as a supplement. Two one-dimensional vectors are
calculated via two pooling functions. The one-dimensional vectors are added by the two
convolution eigenvectors, respectively, to produce a new eigenvector. Global average
pooling has feedback for every pixel on the feature map, while global maximum pooling
has feedback of the gradient where the response is the largest in the feature map. The
calculation process can be written as:

Mc(F) =σ(CNN(AvgPool(F))) + CNN(MaxPool(F))

=σ(W1(W0(Fc
avg))) + W1(W0(Fc

max))
(7)

where σ represents the sigmoid function; W0, W1 represent the CNN weights; F represents
the input feature map; Favg and Fmax represent the features calculated by global average
pooling and global max pooling, respectively.

3. The Proposed Method

CaAt-ResNet-1d is a modification based on the ResNet18 model. Depending on the
characteristics of the tool wear data, the model is composed of 1D CNN and the channel
attention mechanism. The channel attention mechanism is specially introduced into the
model to extract channel features and finally the full connection layer outputs the evaluation
results. The model uses the Adam optimizer, ReLU activation function. The overall diagram
is shown in Figure 2.
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Figure 2. The architecture of the proposed method.

3.1. ResNet with 1D CNN

Concerning one-dimensional CNN, as the name implies, the convolution kernel is
one-dimensional. The convolution kernel size of 1D CNN has the exact same dimension
as the input data size. The calculation principle of the convolution operation is the same
as that of 2D CNN. The difference is that the convolution kernel only has one moving
direction. According to the intuitive analysis from the sliding window, the one-dimensional
convolution kernel slides along the data length direction, extracting signal features quickly
and accurately, as shown in Figure 3.

Figure 3. Schematic diagram of 1D CNN.

One-dimensional CNN is more suitable for sequence analysis of signal data. One-
dimensional CNN is more apposite than 2D CNN with respect to extracting signal features
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for tool wear diagnosis. Based on the above reasons, ResNet18, which is widely used and
composed of 2D CNN, was adapted to 1D CNN in this paper, as shown in Figure 1.

3.2. ResNet with Channel Attention

The Basic block consists of a residual block and a channel attention mechanism, as
shown in Figure 4. The residual block and channel attention structure in each Basic block
are the same, respectively, with different parameters. CaAt1 firstly performs global average
pooling on each channel to obtain feature vectors. Secondly, the weight value of the feature
vector obtained by the two convolution layers is multiplied by the original feature vector
to obtain a new feature vector. The local depth and channel depth feature are extracted by
using the advantage of residual connection.

The features extracted from the multi-layer residual network block are input into the
CaAt5 structure. The structure diagram of CaAt5 is illustrated in Figure 5. When extracting
channel features, not only is average pooling considered, but also maximum pooling is
introduced as a supplement. The feature vectors are generated by two pooling functions,
respectively, and the new feature vectors are generated by adding the feature vectors after
two convolution calculations. Global average pooling has feedback for every pixel on
the feature map, while global maximum pooling has feedback of the gradient where the
response is the largest in the feature map. Feature calculation is carried out for each pixel on
the multi-channel and the one with the largest response in the feature map. This calculation
method is more suitable for the adaptive feature extraction of multi-channel time sequence
data and automatically learns the importance of features between different channels, as
shown in the overall figure in Figure 1.

Figure 4. (left) The architecture of CaAt1. (right) The architecture of Basic block.

Figure 5. The architecture of CaAt5.
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4. Experiments and Results
4.1. Dataset Description

The dataset which analyzes the performance of the proposed method is originally
made available from the PHM2010 data challenge. It is obtained from a high-speed CNC
machine which uses a three slot ball head tungsten carbide tool on the surface of stainless
steel workpiece processing. During milling processing, the three-way dynamometer is
installed between the workpiece and the processing table to measure the cutting force in
X, Y and Z directions, the piezoelectric acceleration sensor is installed on the workpiece
to collect vibration signals in X, Y and Z directions, the Kistler acoustic emission sensor is
installed on the processing table to monitor and record high-frequency stress wave changes,
as shown in Figure 6.

The details of CNC equipment are shown in Table 1, the setting of milling conditions
is shown in Table 2 and the signal data collected by the corresponding sensors of different
channels are shown in Table 3.

Figure 6. Schematic diagram of experimental setup and the data collected system.

Table 1. Details of the CNC equipment.

Name Type

CNC machine Roders Techy RFM760
Cutter Ball nose tungsten Carbide Cutter

Dynamometer Kistler 9265B
Vibration Kistler 8636C

Accelerometer Kistler 5019
Data Collector NI DAQ PCI 1200

Wear measuring device LEICA MZ12 microscope

Table 2. Working condition setting of milling process.

Parameter Name Value

Spindle speed r/min 10,400
Rate of feed mm/min 1555
Depth of cutting mm 0.2
Width of cutting mm 0.126

Frequency of sampling KHz 50
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Table 3. Signal channels and corresponding measured data.

Signal Channel Measured data

Channel 1 Vx—vibration with the x-axis
Channel 2 Vy—vibration with the y-axis
Channel 3 Vz—vibration with the z-axis
Channel 4 Fx—Cutting force with the x-axis
Channel 5 Fy—Cutting force with the y-axis
Channel 6 Fz—Cutting force with the z-axis
Channel 7 AE—acoustic emission

The workpiece machining surface used in the milling process is a square with a length
of 108 mm and the distance of each milling of 108 mm is marked as one cutting. After each
cutting, the tool wear amount of the back cutting surface is measured with a microscope
and recorded as the wear result. The number for the cutting time in each process is 315.

A total of six ball-end carbide milling cutters are recorded as C1, C2, C3, C4, C5 and C6.
Only C1, C4 and C6 are used in the model evaluation. The three-way force signal, three-way
vibration signal and acoustic emission signal of the tool are, respectively, collected in each
process, as shown in Table 3. Considering the convenience of measurement in industrial
application, the wear width VB of 1/2 cutting amount on the back tool face is selected as
the standard parameter of tool blunting, as shown in Figure 7. For carbide cutting tools, VB
above 0.3 mm reaches the standard blunt and the tool must be replaced. The average wear
value of the rear tool was calculated as the wear label. Maximum wear of the initial wear
stage is 0.086 mm. When the wear amount is greater than 0.12 mm, the tool has reached the
stage of severe wear and must be replaced immediately. The middle wear stage is between
0.086 mm and 0.12 mm.The tool wears curves of C1, C4 and C6 are shown in Figure 8.

As shown in Table 1, spindle speed is 10,400 RPM, indicating that the tool rotates
173 revolutions per second. The data sampling rate was 50 khz; consequently, approxi-
mately 289 data points are collected per rotation. The data points are too redundant and
the computation time is added without value. Therefore, it is indispensable to re-select
the appropriate signal length, which should be as brief as possible and be able to express
all the captured features. After calculation, the most appropriate length of the signal data
points is 256. The data of each milling process are analysed and calculated, respectively.
Taking C1 as an example, the number of cutting events in the initial wear stage is ap-
proximately 50, the number of the middle wear stage is about 160 and the number of the
severe wear stage is close to 100. If training data are generated by randomly sampling from
the complete dataset, the number of initial wear categories would be approximately 16%,
about 51% of the samples would be in the middle wear category and about 33% would
be in the severe wear category. The training sample generates the problem of class data
imbalance. To solve this problem, the dataset needs to be redefined using appropriate
downsampling operations.

Because a sufficient amount of data are collected in each milling process, downsam-
pling operations of the three categories can be performed separately. As an example, more
than 200,000 data points are collected per walk in C1 and 50 runs were in the initial wear
stage. Thus, a total of 10 million data points are gathered during the initial wear stage. In
order to ensure category balance, the initial wear stage is downsampled at a rate of 8% and
about 3000 samples of the initial wear stage are obtained. With the same downsampling
strategy, the downsampling rates of 2% and 4% are adopted in the middle wear and severe
wear stages, respectively. The C1 dataset redefined a dataset consisting of 8954 samples,
including 2990 samples in the initial wear stage, 3006 samples in the middle wear stage
and 2958 samples in the severe wear stage.
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Figure 7. Schematic drawing of blunt standard.

Figure 8. The measured tool wear of the three milling cutters.

4.2. Training and Test

After the dataset is downsampled, the average wear value of each cutting event is
calculated for label establishment. Initial wear, middle wear and severe wear correspond to
labels 1, 2 and 3, respectively.

Raw data collected from seven channels are worked in the CaAt-ResNet-1d model
for multi-sensor tool wear diagnosis. In order to fully verify the experiment, three sets of
verification experiments are conducted on C1, C2 and C3 datasets, as shown in Table 4.
In the first set of experiments, data from C1 and C4 cutters (a total of 17,684 samples) are
used as a training set to generate model M1+4, which is tested using data from C6 cutters.
In the second set of experiments, data from C1 and C6 cutters (17,190 samples in total)
are invoked as a training set to produce model M1+6, which is tested using data from C4
cutters. In the third experiment, the training set of C4 and C6 tool data (17,414 samples
in total) are used to obtain the model M4+6 and the data of the C1 tool are utilized to test
the model.

The computer system is Ubuntu 18.04, which uses two nVidia 1080Ti GPUs for parallel
training. The general flow is shown in Figure 9.

1. The collected C1, C4 and C6 datasets are subsampled and divided into new datasets;
2. CaAt-ResNet-1d model initialization parameters, learning rate is 0.0001, detailed

parameters are shown in Table 5;
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3. After data input to the model, the loss value, reverse transmission and correction of
the hyperparameter are calculated;

4. The model and output the evaluation results are tested.

Table 4. Strategy for training and testing data.

Model Training Dataset Test Data

M1+4 C1 and C4 C6
M1+6 C1 and C6 C4
M4+6 C4 and C6 C1

Table 5. The specific parameters of the developed method.

Name Filters Kernel
Size/Stride

Activation
Function

Conv1 Conv1d 64 7/2 ReLU

Basic block1 Conv1d 64 3/1 ReLU
Conv1d 64 3/1 ReLU

CaAt1
AvgPool1d 1/0

Conv1d 4 1/0 ReLU
Conv1d 64 1/0 Sigmoid

Basic block2 Conv1d 128 3/2 ReLU
Conv1d 128 3/1 ReLU

CaAt2
AvgPool1d 1/0

Conv1d 8 1/0 ReLU
Conv1d 128 1/0 Sigmoid

Basic block3 Conv1d 256 3/2 ReLU
Conv1d 256 3/1 ReLU

CaAt3
AvgPool1d 1/0

Conv1d 16 1/0 ReLU
Conv1d 256 1/0 Sigmoid

Basic block4 Conv1d 512 3/2 ReLU
Conv1d 512 3/1 ReLU

CaAt4
AvgPool1d 1/0

Conv1d 32 1/0 ReLU
Conv1d 512 1/0 Sigmoid

CaAt5

AvgPool1d 1/0
AvgPool1d 1/0

Conv1d 8 1/0 ReLU
Conv1d 512 1/0 Sigmoid

AvgPool1d 1/0

Binary cross entropy is used as a loss function in the evaluation and its mathematical
expression can be expressed as follows:

ln = −
(

yn ∗ log
(
∧
y
)
+ (1− yn) ∗ log

(
1−

∧
y n

))
(8)

loss(z, y) = mean{l0, l1, l2 . . . , lN−1} (9)

Accuracy is used as the evaluation index of the experiment and the test results can be
extensively quantified by accuracy. The specific formula is shown as follows:

ACC =
∑ TP

TP + TN + FP + FN
(10)
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where ACC represents the overall accuracy of the evaluation. TP, TN, FP and TN represent
the number of true positives, false negatives, false positives and true negatives

Figure 9. Flowchart of the steps for the training and test.

4.3. Experiment Results

In this part, we construct a CaAt-ResNet-1d model and evaluate the tool condition
through the actual tool data. C1, C4 and C6 in three test experiments (M4+6, M1+6 and
M1+4) are fully trained and tested, respectively. In order to further assess the perfor-
mance of CaAt-ResNet-1d, comparison is made with other popular algorithms, LSTM [38],
GRU [39], Gated-Transformer [40] and Resnet18 [35]. Table 6 presents the results of different
algorithms, respectively.

The experimental results demonstrate that different algorithm models produce dif-
ferent accuracy. The accuracy of the CaAt-ResNet-1d algorithm is greater than of other
popular algorithms in the three experiments, respectively. In the M1+4 tested dataset, the
proposed method improves by about 4% compared to LSTM, 4% compared to GRU, 12%
compared to Gated-Transformer and 5% compared to Resnet18. In the M1+6 tested dataset,
the proposed method improves by about 13% compared to LSTM, 9% compared to GRU,
20% compared to Gated-Transformer and 3% compared to Resnet18. In the M4+6 tested
dataset, the proposed method improves by about 7% compared to LSTM, 2% compared
to GRU, 6% compared to Gated-Transformer and 3% compared to Resnet18. The highest
accuracy of the LSTM model is 81.52%, GRU model is 85.82%, Gated Transformer model is
81.95% and ResNet18 model is 85.12%. The highest accuracy of the CaAt-ResNet-1d model
is 89.27%, which is more effective than other algorithms.

Table 6. Performance of different algorithms for the three cutter model.

Method ACC (M1 + 4) ACC (M1 + 6) ACC (M4 + 6)

LSTM 81.52 76.53 81.24
GRU 81.48 80.41 85.82

Gated-Transformer 72.84 69.51 81.95
Resnet18 80.52 85.92 85.12

CaAt-ResNet-1d 85.25 89.27 87.98
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4.4. Discussion

In this study, an improved CaAt-ResNet-1d model is proposed for the PHM2010
dataset. We completed the experimental verification on three sets of downsampling
datasets. The CaAt-ResNet-1d algorithm behaves more efficiently than LSTM, GRU, Gated-
Transformer and Resnet18. The accuracy of Gated-Transformer is the worst; a possible
reason is that the dataset sample is not sufficient. Gated-Transformer with Transformer [41]
as the core requires a large number of samples to reflect the superiority of the algorithm, so
it is not suitable for the dataset of small samples like PHM2010. LSTM and GRU are suitable
for time series data monitoring, but their accuracies are not the highest. A possible reason
is that the algorithm is too simple and does not extract rich features. Compared to the
baseline Resnet18, CaAt-ResNet-1d has been improved to obtain the highest accuracy. The
reasons for this may be as follows: 1. Residual connections retain the depth advantage of
multiple networks and the advantage of shallow networks to avoid degradation problems.
2. One-dimensional CNN and channel attention are more suitable for feature extraction
of multi-sensor series data. There are differences in the accuracy of CaAt-ResNet-1d on
the results of M1+4, M1+6, M4+6 datasets that cannot be ignored. LSTM, GRU, Gated-
Transformer and Resnet18 also have accuracy gaps that cannot be ignored in the three
test datasets, as shown in Table 7. The reasons for this may be as follows: the experiment
datasets could not fully include various feature spaces. In addition, it is worth noting that
the current results do not meet real-time machining requirements. The reasons for this may
be as follows: 1. The signal data collected by the sensor is vulnerable to the influence of
the milling process, resulting in the destruction of the actual characteristics of the data.
2. The dataset does not collect enough rich data samples and could not fully include various
feature spaces, resulting in failing to meet the standard for real-time detection. On the
algorithm level, we can try to design a more reasonable network to achieve the purpose
of real-time detection. For example, the combination design of CaAt-ResNet-1d and GRU
may obtain more ideal accuracy.

Table 7. The maximum accuracy difference of different algorithms.

Method Gap

LSTM 4.99
GRU 5.41

Gated-Transformer 12.44
Resnet18 5.40

CaAt-ResNet-1d 4.02

5. Conclusions and Future Work

A new tool wear diagnosis method based on multi-sensor data of CaAt-ResNet-1d
is proposed. Multiple sensors are utilized to collect the original data of the machine and
provide rich feature information. Features are extracted adaptively through 1D CNN
and channel attention mechanism and deep data features are extracted through residual
network blocks to output evaluation results. By training and testing on the PHM2010
dataset, the proposed method achieves 89.27% accuracy, indicating that this method has an
improved ability in accuracy. The following conclusions can be obtained:

1. Based on the data of multiple sensor signals (such as sound, vibration and force),
features are extracted adaptively through 1D CNN without any prior knowledge.
The channel attention mechanism is added to the network model to extract features
between different channels. The residual network block can extract the deep features
of the data.

2. The original data were downsampled and re-divided to maintain the balance of data
categories. The training and verification of the model were completed under three sets
of different datasets, respectively, proving the superiority of the proposed algorithm.
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This study can be used for tool wear applications on various machining studies, but the
algorithm’s limitations remain. As an example, whether there are other methods to improve
the accuracy remains to be further explored and whether the identification accuracy can
be achieved in the actual application process has not been verified. Future research work
includes further exploration of ways to improve accuracy and practical applications.
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