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Abstract: The use of wearable sensors for calculating gait parameters has become increasingly
popular as an alternative to optoelectronic systems, currently recognized as the gold standard. The
objective of the study was to evaluate the agreement between the wearable Opal system and the
optoelectronic BTS SMART DX system for assessing spatiotemporal gait parameters. Fifteen subjects
with progressive supranuclear palsy walked at their self-selected speed on a straight path, and six
spatiotemporal parameters were compared between the two measurement systems. The agreement
was carried out through paired data test, Passing Bablok regression, and Bland-Altman Analysis. The
results showed a perfect agreement for speed, a very close agreement for cadence and cycle duration,
while, in the other cases, Opal system either under- or over-estimated the measurement of the BTS
system. Some suggestions about these misalignments are proposed in the paper, considering that
Opal system is widely used in the clinical context.

Keywords: gait analysis; optoelectronic system; wearable device; spatiotemporal parameters;
progressive supranuclear palsy

1. Introduction

Progressive supranuclear palsy (PSP) is a rare neurodegenerative disease characterized
by oculomotor gaze palsy, akinesia, postural instability, and cognitive dysfunction. Gait
abnormalities represent one of the cornerstones of PSP and determine an increased risk
of falls from the earliest stages of the disease [1–3]. The PSP Rating Scale (PSP-RS) is a
semi-quantitative clinician-based scale considered the gold standard to evaluate disease
severity in both clinical and research settings. However, only a few items of the PSP-RS are
dedicated to gait and to axial impairment in general [4].

Beyond clinical scales, gait analysis is considered one of the main tools to measure
quantitative gait-related parameters [5,6]. In detail, the instrumented gait analysis can
assess an individual’s gait patterns through the calculation of quantitative gait-related
parameters, namely kinetic, kinematic, and spatiotemporal variables. In neurodegenera-
tive diseases, gait analysis has been used for monitoring disease progression over time,
quantifying parkinsonian symptoms [7], evaluating treatments’ outcomes, implementing
algorithms for diagnosis through the recognition of soft signs [8], and predicting the risk of
falls [9–12]. As for PSP, recent evidence suggests that quantitative evaluation of gait may
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provide further insights in both the diagnostic process and in the evaluation of disease
progression [1,13,14].

Optoelectronic motion capture systems are recognized as the gold standard in the
evaluation of quantitative gait parameters [15,16]. These laboratory systems are based on
passive light-reflecting markers, infrared cameras to track the trajectory of markers, and
force platforms to extract kinetic data [17,18]. However, the limitations of optoelectronic
systems consist of high equipment costs, the need for large capture volume, technical
and clinical trained personnel, and time-consuming acquisitions [19]. These aspects have
recently boosted the development of wearable sensors based on Inertial Measurement Units
(IMUs) for calculating gait parameters [20–23]. IMU sensors can be used in several real-life
environments, both indoor and outdoor, reducing the costs of lab-based systems and the
complexity of the acquisitions. Additionally, these devices are easy to wear, require less
patient preparation, and, consequently, can be used by a larger number of users [24,25].

Recently, inertial sensors and gold standard systems have been compared in gait
parameters assessment (kinematic, spatiotemporal, or both) in healthy subjects [26–28].
González et al. studied the reliability of the Kinovea (version 0.8.15) software, a video anno-
tation tool designed for movement analysis, and the agreement with a three-dimensional
motion system, Vicon Motion System®, for extracting hip, knee, and ankle joint angles
parameters [29]. The same kinematic parameters were extracted by Piche et al. to compare
the iSen IMU sensor with the optoelectronic gold standard system OptiTrack [30]. Finally,
Bartoszec et al. compared the IMU-based MyoMotion system and the optoelectronic BTS
SMART DX system, simultaneously recording the upper and lower limb joint angles [31].
Furthermore, the comparison of the above-mentioned measurement systems is also carried
out to develop an algorithm for the accurate calculation of spatiotemporal gait parameters
from wearable IMUs for Parkinson disease (PD) rehabilitation [32]. The Vicon Motion
System® was also used as gold standard reference against the system proposed in [33],
based on a single RGB-D sensor to estimate the gait parameters in a limited space such as
the domestic setting. Previous studies have also investigated the interoperability of IMUs
sensors and optoelectronic systems in PD subjects [11,34].

In this context, the aim of the study is to evaluate the agreement between two systems
for the measurement of the spatiotemporal gait parameters in patients with PSP. The BTS
SMART DX optoelectronic system by BTS Bioengineering Inc. is used as reference device to
the wearable Opal System by APDM Inc. To the best of our knowledge, no study has ever
investigated the agreement between these two measurements systems in a population of
patients with a rare disease such as the PSP. In this work, spatiotemporal parameters calculated
by the two measurement systems were evaluated by means of different statistical techniques
to assess their level of agreement. Since, as said above, a hard limit of the optoelectronic
systems relies in the fact that they cannot be used outside the laboratorial context, the overall
objective of this study is to prove that the Opal wearable system can guarantee a performance
comparable to that one of the BTS SMART DX optoelectronic system.

2. Materials and Methods
2.1. Study Population and Clinical Assessment

Fifteen patients diagnosed with PSP, aged between 60 and 75 years, were recruited
from the Center for Neurodegenerative diseases (CEMAND) at the University of Salerno,
Italy, between January 2021 and January 2023. The diagnosis was established using the
Movement Disorders Society clinical criteria [1], and all patients met the criteria for either
probable or possible PSP [32]. Exclusion criteria included patients with gait requiring
bilateral assistance, dementia according to the Diagnostic and Statistical Manual of Mental
Disorders (DSM-V) criteria, significant comorbidities possibly impacting on gait (including
other neurologic disorders, orthopedic diseases, or cardiovascular/respiratory diseases
and/or brain surgery). All enrolled patients were treated with levodopa with a mean
Levodopa Equivalent Daily Dose (LEDD) of 322.00 ± 177.13 [35]. The protocol was ap-
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proved by the local ethics committee and all patients were enrolled upon signing a written
informed consent form.

Disease severity was evaluated with the PSP-RS, administered by expert clinicians. The
scale is composed of 28 items, distributed into 6 domains: history, mentation, bulbar, ocular
motor, limb motor, gait/midline. The total score ranges from 0 to 100, where 100 represents
the more severe outcome [4].

Demographic and clinical data are shown in Table 1.

Table 1. Patients’ anthropometrics and clinical data (n = 15; 5 females and 10 males).

Clinical Parameters Mean ± SD

Age (years) 68.13 ± 4.97
Disease duration (years) 3.13 ± 2.07

PSP-RS limb 3.33 ± 2.29
PSP-RS gait/midline 5.20 ± 4.78

LEDD (mg) 322.00 ± 177.13
BMI (kg/m2) 27.48 ± 3.84

Abbreviations: BMI = Body Mass Index; LEDD = Levodopa Equivalent Daily Dose; PSP-RS = Progressive
Supranuclear Palsy Rating Scale.

2.2. Gait Analysis Systems

Two different systems were compared for gait analysis in PSP patients: the BTS SMART
DX-400 System (BTS Bioengineering Corp., Milan, Italy) and the Opal System (APDM Inc.,
Portland, OR, USA).

The BTS SMART DX-400 is an optoelectronic system made up of six infrared digi-
tal cameras that record at a sample frequency of 100 Hz, two dynamometric platforms,
twenty-two retro-reflective passive markers (each one with a diameter of 14 mm), two
video cameras, and an elaborator, as shown in Figure 1. For data acquisition, the Davis
protocol [36] was applied, consisting of the following steps:

• anthropometric measurements,
• positioning of passive markers on patients’ body (from the feet to the shoulders)

according to the Davis protocol,
• standing phase,
• walking phases.
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Figure 1. BTS Gait Lab: (a) Movement analysis laboratory at the University Hospital of Salerno;
(b) Dynamometric platform; (c) Retro-reflective passive markers; (d) Infrared-camera.

Then, the acquired data were transferred to the elaborator using a dedicated propri-
etary software, able to store and compute spatiotemporal parameters, as reported in other
studies [13,37,38].
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The Opal System is a wearable inertial system made up of three IMU sensors, each one
containing three-axes accelerometer with 14 bits resolution and selectable ±16 g or ±200 g
ranges, three-axes gyroscope with 16 bits resolution and ±2000 deg/s, and three-axes
magnetometer with 12 bits resolution and ±8 Gauss range. Opal sensors were placed on
the patients’ body by means of straps, including one sensor on each foot and one sensor
on the lumbar region. Thanks to the Access Point, sensors were wirelessly connected
by Bluetooth to a laptop equipped with the Mobility Lab (version 4) software capable of
processing movement-related data. In addition, the Docking Station was used for charging
and configuring the sensors. Figure 2 illustrates the Opal Systems parts.
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2.3. Study Protcol

Gait analysis tasks were performed in the movement analysis laboratory at the Univer-
sity Hospital of Salerno. First, all patients were trained to walk at their normal speed on a
10 m straight pathway four times; overall, a straight path of 40 m has been considered. Then,
the four walking phases were averaged. The trials were recorded by the optoelectronic
system BTS SMART DX. Before conducting the analysis with the Opal sensors, patients
rested for 15 min to allow them to perform the new test without feeling tired. After such
resting time, patients repeated the trials on a straight path for 10 m, walking at their normal
speed for two minutes while wearing the Opal sensors. All patients were evaluated more
than once.

The spatiotemporal parameters analyzed were as follows:

• Cadence (steps/minute): stepping rate.
• Cycle duration (s): duration of a complete gait cycle.
• Speed (m/s): walking speed.
• Stance phase (% gait cycle time): average percentage of a gait cycle that either foot is

on the ground.
• Swing phase (% gait cycle time): average percentage of a gait cycle that either foot is

off the ground.
• Stride length (m): distance between two consecutive foot falls at the moments of

initial contacts.

For the current analysis, the spatiotemporal parameters from the trials were averaged
for each subject in order to obtain the mean value of both sides (right and left).

2.4. Statistical Analyses

All statistical analyses were performed using the SPSS® (version 28, IBM Corp.,
Armonk, NY, USA) and MATLAB (version 2021b, Mathworks Inc., Natick, MA, USA)
software. In order to evaluate the agreement between the optoelectronic system (BTS
SMART DX-100, BTS Bioengineering Inc., Milano, Italy) and the inertial sensors (Opal,
APDM Inc., Portland, OR, USA), a two-tailed paired test was carried out. The paired data
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test, in its parametric and non-parametric form according to the Shapiro–Wilk normality
test, was used to identify statistically significant differences between the means or the
medians of the spatiotemporal variables measured by the two systems [39]. The absence of
a statistically significant difference implies an overall agreement between the variables.

Passing–Bablok (PB) linear regression analysis was employed to evaluate the presence
of systematic errors in the measurements. In particular, the slope of the regression line
indicates a proportional systematic error, while the intercept of the regression line with
the y-axis indicates a constant systematic error; such errors have a physical meaning
whenever the slope and the intercept 95% confidence intervals contain the 1 and 0 values,
respectively. The PB method was applied after verifying the linear relationship between
the measurements [34,40].

The Bland–Altman (BA) method is a visual representation of the agreement between
the two systems by means of a scatterplot in which the mean of the two measurements is
plotted on the x-axis and the difference between the measurements is represented on the
y-axis. To obtain the limits of agreement, defined as the mean of the differences ±1.96 times
the standard deviation (i.e., 95% of the confidence interval), the mean of differences (bias)
and the standard deviation of differences were calculated. In this context, the presence of
errors can be assessed through the bias distance from the 0 value, which implies a constant
systematic error, the width of the limits of agreement and any trends in the distribution of
data around the bias [29,41]. In particular, possible errors could be a fan-shaped distribution
within the limits of agreement, known as heteroscedasticity of variance, a non-causal but
systemic distribution in absolute value, or a linear distribution of points which determine a
systematic proportional error [42,43].

In all the performed analyses, the uncertainty level was set at α = 0.05.

3. Results

Table 2 shows the paired data test results in terms of p-value. Additionally, Table 2
reports the mean and standard deviation values for each spatiotemporal variable for both
systems and test types, parametric or non-parametric, depending on the normality test.

Table 2. Two-tailed paired test analysis to test the overall agreement between each couple of parame-
ters of the systems.

Spatiotemporal Parameters BTS SMART DX System Opal System p-Value Test Type

Cadence (steps/min) 91.72 ± 14.23 99.14 ± 14.28 0.002 Wilcoxon test
Cycle duration (s) 1.36 ± 0.33 1.21 ± 0.30 0.003 Wilcoxon test

Speed (m/s) 0.61 ± 0.20 0.65 ± 0.19 0.192 Wilcoxon test
Stance phase (% gait cycle time) 63.96 ± 2.92 62.12 ± 2.11 0.037 Wilcoxon test
Swing phase (% gait cycle time) 36.83 ± 3.92 36.88 ± 2.11 0.159 Wilcoxon test

Stride length (m) 0.41 ± 0.10 0.78 ± 0.20 <0.001 T-Student test

The PB linear regression results of cadence, cycle duration, and speed, illustrated in
Table 3, exhibited a confidence interval containing 1 for the slope and 0 for the intercept.
Other parameters deviated from such values.

Table 3. PB linear regression analysis.

Spatiotemporal Parameters m * LB_m UB_m q ** LB_q UB_q

Cadence (steps/min) 1.09 0.74 1.81 −3.02 −67.89 30.17
Cycle duration (s) 1.03 0.63 1.74 −0.10 −1.04 0.40

Speed (m/s) 1.02 0.71 1.45 0.05 −0.17 0.22
Stance phase (% gait cycle time) 0.63 0.46 0.85 23.09 8.78 33.34
Swing phase (% gait cycle time) 0.58 0.32 0.74 15.96 10.13 25.68

Stride length (m) 2.10 1.64 2.69 −0.06 −0.28 0.13

* m is the slope of Passing-Bablok regression line; ** q is the intercept of Passing-Bablok regression line. Abbrevia-
tions: LB = Lower Bound of confidence interval; UB = Upper Bound of confidence interval.
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The results of the BA analysis for each spatiotemporal parameter included in the study
are shown in Table 4 in terms of bias (the difference between two measurement systems),
the 95% lower and the upper bounds of bias, and the BA lower and upper bounds, known
as limits of agreement. The bias approached zero, and the bias limits containing the zero
value demonstrate a good agreement between the measured parameters.

Table 4. BA analysis applied per each couple of parameters of the systems.

Spatiotemporal Parameters Bias LB_b UB_b LB_LA UB_LA

Cadence (steps/min) −7.43 −11.36 −3.50 −28.95 14.10
Cycle duration (s) 0.15 0.05 0.25 −0.40 0.70

Speed (m/s) −0.03 −0.08 0.02 −0.31 0.25
Stance phase (% gait cycle time) 0.84 0.11 1.57 −3.17 4.84
Swing phase (% gait cycle time) −0.05 −1.37 1.27 −7.30 7.20

Stride length (m) −0.37 −0.42 −0.32 −0.63 −0.11

Abbreviations: LA = Limit of Agreement; LB = Lower Bound; UB = Upper Bound.

Figures 3–8 show, in pairs, the PB plot and the BA graph for all parameters (i.e., ca-
dence, cycle duration, speed, stance phase, swing phase, and stride length).
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4. Discussion

The current study aimed to compare the performance of Opal wearable sensors by
APDM with the BTS SMART DX system in assessing spatiotemporal parameters in PSP
patients during walking. Among all the spatiotemporal parameters evaluated, gait speed
showed a perfect agreement between the two measurement systems, meaning it can be
interchangeably evaluated with either of them. Cadence and cycle duration showed a very
close agreement due to the presence of a constant systematic error, which could be removed
by zeroing the bias. On the other hand, constant and proportional systematic errors were
detected for the remaining parameters, meaning those cannot be interchangeably evaluated
by the two systems.

Regarding speed, first, the overall agreement was demonstrated by the Wilcoxon
test with no significance between the groups (p-value = 0.192). The agreement was then
confirmed by the PB analysis (Table 3 and Figure 5) with the slope (m = 1.02) and the
intercept (q = 0.05) values of regression line close to 1 and 0, respectively, and their 95%
confidence intervals containing such values. Moreover, points were equally distributed
around the identity line (OPAL = BTS), as shown in Figure 5 on the left. The BA analysis in
Table 4 showed the presence of a small bias equal to −0.03 and its 95% confidence interval
contained the 0 value. In the BA plot, points were randomly distributed around the 0 line
(Figure 5). Therefore, even though there is a very small bias, there is an absolute agreement
between the two measurement systems regarding speed.

Concerning cadence, the paired data test showed a significant overall difference
(p-value equal to 0.002), with Opal overestimating the parameter. This result was confirmed
by the PB plot (Figure 3) in which the majority of points were over the identity line
(OPAL = BTS). Additionally, the slope of the PB regression line was 1.09 and its 95%
confidence interval (0.74–1.81) included the 1 value, assuring the absence of a proportional
systematic error, while the intercept value was equal to −3.02 with a quite large 95%
confidence interval (−67.89–30.17) containing 0. Nevertheless, there may be a constant
systematic error due to the width of the confidence interval. Indeed, the BA analysis,
illustrated in Table 4, confirmed the presence of a constant systematic error for the presence
of a bias (bias = −7.43), which was quite different from 0, and its 95% confidence interval
did not include 0, as shown in Figure 3.

Similarly, as for the cadence parameter, Wilcoxon test for cycle duration showed a
statistical overall difference (p-value equal to 0.003). In this case, the Opal system under-
estimated the evaluation of the cycle duration variable (Table 2 and Figure 4). The slope
and the intercept of the PB regression line were close to 1 and 0, respectively (m = 1.03;
q = −0.10), and their 95% confidence intervals contained the 1 and 0 values, which allows
to suppose the presence of agreement. Despite this, the presence of a constant systematic
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error has been detected by the BA analysis (Table 4 and Figure 4). Indeed, there was a small
bias, equal to 0.15 with a confidence interval, ranging from 0.05 to 0.25. The BA plots for
cadence and cycle duration illustrated a random distribution of points around the zero-line,
confirming the presence of only a constant systematic error. In conclusion, due to a constant
systematic error, there is no agreement between the BTS systems and wearable sensors for
both cadence and cycle duration parameters, which could be achieved by zeroing the bias.

Concerning the stance phase, the paired data test exhibited a significant overall dif-
ference (p-value = 0.037), implying the absence of an overall agreement. The slope of
the PB regression line was 0.63 and its 95% confidence interval ranging from 0.46 to 0.85
did not include the 1 value, showing the presence of a proportional systematic error; the
intercept was 23.09 with a 95% confidence interval that did not contain the 0, indicating
the presence of a constant systematic error; the presence of such errors has emerged also
from the analysis of BA (Table 4 and Figure 6). The bias of the stance phase was close to 0
(bias = 0.84) but its 95% confidence interval did not include the 0 value. Furthermore, the
points distribution followed a linear trend around the bias, as shown in Figure 6. In conclu-
sion, there is no agreement between the two measurement systems due to the presence of a
constant systematic error and a proportional systematic error.

Regarding the swing phase, no significance between groups was found (p-value = 0.159)
from Wilcoxon test, suggesting the presence of an overall agreement. Nevertheless, the
slope and the intercept of the PB regression line (m = 0.58; q = 15.96) were far from the
identity line values and their 95% confidence intervals did not include 1 and 0, respectively,
showing the presence of a proportional and a constant systematic error (Table 3). The BA
analysis, illustrated in Table 4, confirmed the presence of both errors for the presence of bias
(bias = −0.05), whose 95% confidence interval contained 0, and for the linear distribution
of points around the bias (Figure 7). Therefore, due to a constant systematic error, we can
conclude that there is no agreement between BTS and Opal systems for the swing phase.

Regarding stride length, the T-Student paired test showed a statistical overall dif-
ference (p-value < 0.001) with Opal overestimating the parameter (Table 2). This result
was confirmed by the PB scatter plot in Figure 8. The PB analysis, in Table 3, illustrated
the presence of a proportional systematic error with a slope value far from 1 and its 95%
confidence interval, ranging from 1.64 to 2.69, which did not include it. The intercept of
the PB regression line was −0.05 and its 95% confidence interval (−0.28–0.13) contained
the 0 value, assuring the absence of a constant systematic error. The absence of a constant
systematic error was not confirmed by the BA analysis due to the presence of a small bias
equal to −0.37, and its 95% confidence interval did not include the 0, as shown in Table 4.
In addition, the BA plot in Figure 8, where the linear trend of points around the bias is
shown, implies the presence of a proportional systematic error. In conclusion, there is
no agreement between the two measurement systems due to the presence of a constant
systematic error and a proportional systematic error. Results are summarized in Table 5.

Table 5. Agreement results.

Spatiotemporal Parameters Level of Agreement Error Types

Cadence (steps/min) Very close agreement Constant systematic error
Cycle duration (s) Very close agreement Constant systematic error

Speed (m/s) Agreement /
Stance phase (% gait cycle time) No agreement Constant and proportional systematic errors
Swing phase (% gait cycle time) No agreement Constant and proportional systematic errors

Stride length (m) No agreement Constant and proportional systematic errors

Recently, Zago et al. compared the BTS SMART DX optoelectronic system to the
G-Sensor wearable system, assessing spatiotemporal parameters in patients’ diagnosis with
PD [11]. The variables cadence, stride length, stride duration, step duration, stance duration,
swing duration, and double support showed no statistical significance from Wilcoxon
rank-sum test (p-value > 0.05) except for velocity showing a p-value equal to 0.01. The
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Spearman correlation analysis obtained a good correlation between the two measurement
systems, reaching high correlation coefficient values (from 0.64 to 0.91) except for step
duration that achieved a correlation coefficient value equal to 0.41. High values, over
10% of the mean absolute error, were obtained for stride length, step duration, stance,
and double support duration. The overall results reached by the IMUs system were
sufficiently accurate for spatiotemporal parameters evaluations, showing a discrepancy
with our results. The same optoelectronic system in comparison with an IMU-based
system was used in another study for kinematic gait parameters assessment in healthy
subjects [31]. A high relationship between the two measurement systems was obtained
by the correlation coefficient r for shoulder flexion-extension, ankle dorsi-plantar flexion,
elbow flexion-extension, knee flexion-extension, hip abduction-adduction, and hip flexion-
extension. The BA analysis results showed that the IMU-based system overestimates or
underestimates the joint angles measurements, reaching bias values greater than 10 degrees.
Moreover, Vítecková et al. achieved results comparable to ours by means of different
measurement systems (the GAITRite optoelectronic system and the wearable G-Walk
system) [34]. Compared to our study, other parameters were additionally evaluated,
namely stride duration, double, and single support. Cadence, speed, stride length, and
stride duration demonstrated no statistical differences from the paired t-test. The PB
analysis showed slope and intercept values very close to 1 and 0 for cadence and stride
duration, whereas the interclass correlation coefficient exhibited high correlation value
(r > 0.75) for speed, stride duration, cadence, and stride length. In particular, the agreement
was reached for the speed variable in both studies, whereas parameters that could not
be considered interchangeable for the two systems and for both studies were stance and
swing phase.

The use of gait analysis systems in movement disorders is of utmost importance for
regular outpatient follow-ups and for research purposes. Recent evidence demonstrated
that Opal wearable sensors present a good correlation with PSP-RS and can effectively
detect disease severity and progression in PSP [14,44,45]. Wearable sensors present several
advantages compared to more sophisticated systems gathering spatiotemporal parameters
of gait for both clinical and research settings. First, set-up and placement are swift and
straightforward and only require a short training. Then, the report is promptly provided
by the parent company software and normal and previous evaluation values are always
shown on the output, making it easy to be interpreted even by non-expert clinicians. As a
matter of fact, in just a few minutes, the clinician can have a complete overview of patients
gait impairment. Moreover, since PSP patients usually suffer from a severe and rapidly
progressive disability, it could be easier for them to use wearable sensors at home or in
their outpatient clinic rather than reaching a specific movement analysis laboratory. From a
research point of view, wearable sensors can be easily added to a protocol evaluating the
efficacy of disease treatments and implemented even in research centers lacking a specific
gait lab with more sophisticated instruments.

One limitation of the present study concerns the acquisitions that could not be con-
ducted at the same time due to the incompatibility of the two systems (positions of sensors
and markers in the same points of the body and possibility of infrared ray reflection), but
they were conducted in the same conditions to reduce the risk of bias at the minimum.
Other studies in the literature emphasized the small sample size [11,28,31,32,34] in addition
to the fact that patients walk straight paths in lab-based or clinical settings; nevertheless,
our study focused on a rare disease, which means that our sample size is consistent with
other studies investigating PSP [11,13]. It could also be useful for evaluating a cohort
of patients with several gait-related conditions. Furthermore, the different algorithms
implemented in the measurement systems can introduce discrepancies in the measurement
of parameters.
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5. Conclusions

This study proposed a comparison between the wearable Opal system, and the opto-
electronic lab-based system, BTS SMART DX, for assessing gait-related parameters in PSP
patients. The agreement study conducted between the two measurement systems does not
allow the conclusion that the two devices can be used with a complete interchangeability,
due to the presence of two types of errors: a constant systematic error detectable with
bias zeroing (cadence and cycle duration), and a proportional error (stance phase, swing
phase and stride length). This result does not apply to the speed variable that showed
perfect agreement between the two measurement systems. This is a first step in defining the
reliability of a wearable sensor system compared to the actual gait analysis gold standard.
Given the increasing importance of implementing wearable technologies in both clinical
and research settings, the feasibility for non-expert clinicians and the known sensitivity of
the Opal system, the present data represent a further step forward the implementation of
quantitative evaluation of gait in PSP patients. A further development could be focused
on the need to study the algorithm to detect gait events underlying systems by reducing
the offset.
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