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Abstract: Trampolines are recognized as a valuable tool in exercise and rehabilitation due to their
unique properties like elasticity, rebound force, low-impact exercise, and enhancement of posture,
balance, and cardiopulmonary function. To quantitatively assess the effects of trampoline exercises,
it is essential to estimate factors such as stiffness, elements influencing jump dynamics, and user
safety. Previous studies assessing trampoline characteristics had limitations in performing repetitive
experiments at various locations on the trampoline. Therefore, this research introduces a robotic
system equipped with foot-shaped jigs to evaluate trampoline stiffness and quantitatively measure
exercise effects. This system, through automated, repetitive movements at various locations on the
trampoline, accurately measures the elastic coefficient and vertical forces. The robot maneuvers based
on the coordinates of the trampoline, as determined by its torque and position sensors. The force
sensor measures data related to the force exerted, along with the vertical force data at X, Y, and Z
coordinates. The model’s accuracy was evaluated using linear regression based on Hooke’s Law, with
Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Correlation Coefficient Squared
(R-squared) metrics. In the analysis including only the distance between X and the foot-shaped
jigs, the average MAE, RMSE, and R-squared values were 17.9702, 21.7226, and 0.9840, respectively.
Notably, expanding the model to include distances in X, Y, and between the foot-shaped jigs resulted
in a decrease in MAE to 15.7347, RMSE to 18.8226, and an increase in R-squared to 0.9854. The
integrated model, including distances in X, Y, and between the foot-shaped jigs, showed improved
predictive capability with lower MAE and RMSE and higher R-squared, indicating its effectiveness
in more accurately predicting trampoline dynamics, vital in fitness and rehabilitation fields.

Keywords: trampoline; robot manipulation; elastic constant and force estimation; Hooke’s law;
linear regression

1. Introduction

Trampoline exercises are renowned for their significant benefits in enhancing lower
limb muscular strength, physical fitness, and rehabilitation [1–3]. Prior research indicates
that individuals of diverse age groups and health conditions can readily participate, with
energy expenditure varying based on specific bouncing styles. This exercise is notably
effective in improving physiological indicators [4–7]. The current trend in utilizing research
and technology to maximize the health benefits of trampoline exercises highlights the
importance of sensor-based quantitative evaluation tools.

Actions performed on the trampoline are categorized based on acceleration data
obtained from a smartwatch [8]. A sensor attached to the trampolinist’s back measures
jumping actions in coordinates, subsequently categorized into various jump types employ-
ing machine learning techniques [9]. Periodic G-force loads experienced by trampoline
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users under various conditions are measured through a characterization analysis of trampo-
line bounce using acceleration data [10]. Trampoline motion is categorized by attaching an
inertial sensor to the trampolinist’s body [11]. In trampoline competitions, the correlation
between the flight time of straight jumps and the balance of skeletal muscle mass and oc-
clusal balance is analyzed [12]. Employing a three-axis accelerometer and gyroscope sensor
device on the trampolinist, various dynamic conditions are determined [13]. By comparing
the acceleration characteristics of three different trampoline models, differences in maxi-
mum acceleration and jerk based on these models are confirmed [14]. Table 1 outlines the
methodological approaches utilized by various systems for the sensor-based quantitative
evaluation of trampolines, along with the main limitations each system encounters.

Table 1. Sensor-based quantitative assessment system for trampoline.

System Methodology/Limitation

Smartwatch-based trampoline
exercise monitoring [8].

Methodology CNN with smartwatch data for trampoline motion detection.

Limitation Inaccurate in distinguishing complex motions.

Inertial Measurement Units (IMUs)- based
jump detection and classification in

trampoline gymnastics [9].

Methodology Utilizes IMUs and machine learning for detailed classification
of 50 trampoline jumps.

Limitation Challenged by reliance on high-quality sensor data for
general applicability.

Tri-axial Accelerometer-based characterization
of trampoline bounce using acceleration [10].

Methodology Incorporates a tri-axial accelerometer and high-speed camera
for trampoline biomechanics analysis.

Limitation Complex and equipment-specific, with a narrow
biomechanical focus.

Inertial Sensor-based classification of
trampoline jumps [11].

Methodology Applies inertial sensors for automated trampoline
jump classification.

Limitation Reliant on sensor quality and precise placement, affecting
broad applicability.

Impact of muscle mass and dental occlusion
on trampoline jump flight time [12].

Methodology Assesses how muscle mass and dental occlusion affect
trampoline jump flight time.

Limitation Narrow focus on internal biomechanical factors, limiting
broader applicability.

Deep-learning-based image recognition for
analyzing trampoline movements [13].

Methodology Applies deep learning for image recognition to analyze
trampoline movements from videos.

Limitation Relies heavily on video quality and computational power, with
a narrow focus on trampoline movements.

Analyzing bounce characteristics on
trampolines with a triaxial accelerometer [14].

Methodology Uses a triaxial accelerometer to analyze bounce characteristics
on different trampolines with experienced athletes.

Limitation Focuses on a small, skilled athlete group, limiting
broader applicability.

Sensor-based quantitative assessment systems for trampoline use have limitations,
such as the need to attach sensors to the user’s body or install them on the trampoline.
In previous research, we utilized a deep-learning-based image-processing algorithm to
estimate the three-dimensional position of the user’s feet on the trampoline using shadow
images of the feet [15,16]. However, estimating the physiological indicators of trampoline
exercise based on the shadow images of the user’s feet proved challenging. Since we
estimated the depth coordinate of the feet using shadow images, we suggest that if the
elastic modulus of the trampoline can be estimated, it would enable quantitative evalu-
ation of trampoline exercises, such as jump power and calorie consumption. Therefore,
estimating the trampoline’s elastic modulus is essential for a comprehensive evaluation of
trampoline exercise.
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The mechanical and kinetic energy characteristics of the double bounce phenomenon
are analyzed based on a trampoline dynamic model, incorporating factors like stiffness,
damping, air resistance, and friction [17]. The study assesses the control of lower muscle
stiffness and the impact of mechanical energy processes during drop jumps on a sprung sur-
face [18]. It also examines the impact on leg stiffness and the subjective experience during
jumping on the trampoline’s elastic surface [19]. A mathematical model is established by
estimating the trampoline user’s body mass and inertial characteristics while measuring the
elasticity and damping characteristics of the trampoline surface [20]. The study evaluates
the acute effects of trampoline training sessions on leg stiffness and reactive power, simul-
taneously exploring correlations with the participants’ gender [21]. Notably, both children
and adults maintain their coordination structure while jumping on the mini trampoline, but
children demonstrate an increase in vertical body stiffness to compensate for the reduced
surface stiffness [22]. The investigation delves into the physical determinants of maximum
flight time on the trampoline [23]. Trampoline safety and performance are evaluated by
dropping weights onto different trampolines, measuring dynamic parameters [24]. Table 2
provides a detailed overview of the methodological approaches employed in each study
focused on the elastic mechanics of trampolines, alongside a discussion of the primary
limitations encountered in these studies.

Table 2. Studies in trampoline elasticity dynamics.

Studies Methodology/Limitation

Elastic Dynamics and Double Bounce
Analysis in Trampoline Use [17].

Methodology Employs simulations and experiments to study trampoline
dynamics and the double bounce effect.

Limitation Concentrates solely on the double bounce, overlooking other
aspects of trampoline dynamics.

Biomechanical Analysis of Leg Stiffness in
Trampoline Jumping [18].

Methodology Examines leg stiffness and energy dynamics in jumping using
biomechanical analysis.

Limitation Lacks real-world applicability in trampoline jumping scenarios.

Motor and Sensory Adaptations in
Trampoline Jumping Aftereffects [19].

Methodology Examines motor and sensory changes after transitioning from
trampoline to stiff surface jumping.

Limitation Primarily studies aftereffects, not ongoing trampoline use.

Elastic Dynamics of Somersaults on
Trampolines [20].

Methodology Models and analyzes the elastic dynamics of somersaults
on a trampoline.

Limitation Specifically targets the elastic dynamics of somersaults, limiting
broader application.

Assessing Acute Effects of Mini Trampoline
Training on Leg Stiffness and Reactive Power

in Adults [21].

Methodology Assesses acute changes in leg stiffness and reactive power
post-mini trampoline training.

Limitation Immediate, single-session effects without a control group.

A Comparative Study of Hopping Dynamics
on Stiff and Elastic Surfaces in Children

and Adults [22].

Methodology Motion and force data were collected as participants hopped on
two surfaces.

Limitation The fixed 1.5 Hz hopping frequency on the mini-trampoline
may not reflect individual children’s preferences.

Exploring the Kinetics of Elite Trampolining:
Physical Performance Measures and Jumping

Time Analysis [23].

Methodology Elite trampolinists’ jumping time of flight was analyzed using
floor-based physical tests and countermovement jumps.

Limitation Small sample size and extrapolated load–velocity measures.

Impact Dynamics and Performance Analysis
of Domestic Trampolines [24].

Methodology Trampolines were evaluated by dropping varying weights from
a set height.

Limitation Findings specific to tested trampolines, excluding spring and
bed properties.
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Other studies of trampoline elasticity have struggled to derive accurate estimates due
to limitations in the methodology used to estimate the modulus of elasticity. The com-
mon limitations of these studies on trampoline elasticity are methodological constraints
such as narrow focus, limited generalizability, short-term analysis, and small sample size.
Therefore, it was essential to measure the stiffness of trampolines through an objective
and advanced method. To quantitatively evaluate trampoline motion, this study intro-
duced a robotic system equipped with a foot-shaped jig to precisely measure vertical forces
for different jumping motions at different locations on the trampoline. The system per-
forms automatic repetitive motions to facilitate accurate and numerous data collection. In
Section 2, we estimate the elastic constants and forces received by the robotic system
through a linear regression model based on the vertical force data as a function of trampo-
line depth. Section 3 details the analysis of the performance metrics of the linear regression
model, along with an analysis of the actual versus predicted values. Section 4 describes the
proposed methodology for estimating the elastic constants and forces of the trampoline.
Finally, Section 5 presents the conclusions.

2. Methods
2.1. Experiment Diagram

Figure 1 diagram depicts the system of interaction for control and data acquisition
and in robot manipulation. Central to the system is a personal computer (PC) that con-
ducts two-way communications with a robot controller. Movement commands sent from
the PC to the robot controller are deciphered and implemented by a KUKA iiwa LBR 14
R820 robot. Affixed to the robot’s end-effector are foot-shaped jigs. Torque and position
sensors, installed on the robot’s joints, control the movements, and force sensors attached
to the end-effector amass vertical force data exerted on the robot. The collected force
data are subsequently transmitted back to the PC for analytics. The force data are ana-
lyzed using Linear Regression according to Hooke’s Law to estimate the forces applied to
the trampoline.
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Figure 1. A robotic system for control and data measurement in manipulation tasks.

2.2. Experimental Environment and Equipment Description

Figure 2 shows an experimental setup with a robot set up next to a trampoline for
data acquisition with a jig. The jig is attached to the end-effector of this robot manipulator.
The trampoline used is a Jumping Corporation ‘J6H130 FLEXI’ model, with dimensions of
1360 mm× 1360 mm× 285 mm and a maximum load of 130 kg [25]. Jumping Corporation’s
trampoline “J6H130 FLEXI” is made of high-quality steel circular profile with a wall
thickness of 2 mm, which offers excellent strength and rigidity, making it durable and
safe. Its polygonal shape and light weight of less than 13 kg increase its flexibility and
ease of movement. The trampoline’s load-bearing structure features a unique hexagonal
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tubular steel skeleton, elastic rubber ropes for the fixing strings and six support legs.
Characteristics such as material composition, surface strength, and structural design are
important in estimating the elastic modulus of a trampoline. The material of the trampoline
plays an important role in estimating the modulus of elasticity. Trampolines made of rubber
or synthetic fibers can have greater elasticity than other materials. The surface strength
of the trampoline determines its response to the forces applied by the robot. A stronger
surface can withstand more force. The frame and support structure of the trampoline
affects how the forces are distributed and transmitted. A stable and rigid structure allows
for a more uniform distribution of forces, which helps with more accurate modulus of
elasticity estimation.
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In the conducted experiment, the KUKA LBR iiwa 14 R820 model served as the
robotic manipulator. This multifunctional and accurate robotic limb boasts a payload of
14 kg, demonstrating its capacity for carrying substantial weight. With a reach extending
to 820 mm and encompassing 7 axes, it provides adaptable automation across varied
positions. The robot’s precision is highlighted by its ability to repeat movements with
a fine margin of 0.1 mm. Its weight, around 30 kg, makes it compatible with diverse
mounting setups [26]. Equipped with a suite of sensors, including torque and position
sensors, accelerometers, gyroscopes, and mechanisms for collision detection, the robot
demonstrates a comprehensive sensory capacity. Each joint incorporates torque sensors
to quantify forces and moments, and position sensors to ascertain angles and locations.
Situated at the robot’s end-effector, the force sensor assesses linear forces, capturing both
pressure applied to objects and tensile forces. This plethora of data is meticulously recorded
at a rapid frequency of 1000 Hz. The robot’s manipulator end-effector comes fitted with a
“Media flange Touch pneumatic” interface. A specific load, shaped like a foot, was affixed
to this flange to facilitate the KUKA load identification routine, a process in which the robot
autonomously calculates the weight, center, and inertial characteristics of the attached tool,
seamlessly integrating these calculations into its motion control algorithms.

In Figure 3, the CAD model depicted in Figure 3a serves as a linkage between the
CAD model of Figure 3b and the foot-shaped jig shown in Figure 3c, allowing for angular
adjustments of the jig. The CAD model in Figure 3b facilitates the connection between
the CAD models of Figure 3a,d, ensuring that the foot-shaped jig can be mounted onto
the manipulator. The CAD model in Figure 3c features foot-shaped jig sizes ranging from
210 mm to 300 mm at 10 mm intervals, based on maximum length, for both left and right
feet. The CAD model in Figure 3d is designed to adjust the distance between the dual
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foot-shaped jigs, with a predetermined spacing of 50 mm between the large circular slots.
The jigs are fabricated from SUS (Stainless Steel).
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2.3. Manipulator Coordinate System Configuration and Movement Range Analysis

Before initiating manipulator movement, it is imperative to establish the coordinate
system through Robot Programming. The robot’s position can be identified in Figure 4a.
The initial position of the manipulator is set to the center of the trampoline with (X, Y)
coordinates (0, 0), and the point where the trampoline mat meets the manipulator is set
as the starting point for the Z coordinate. The X direction of the manipulator is horizontal
to the robot platform, indicating forward and backward movement. +X points forward,
while −X points backward. Similarly, the Y direction is horizontal to the robot platform,
indicating left and right movement. +Y signifies left, and −Y denotes right. The Z di-
rection is vertical to the robot platform, indicating upward and downward movement.
+Z points upwards, while−Z points downwards (vertical direction of the trampoline’s elas-
tic surface). Since the distance the manipulator moves is measured in mm, the unit will be
omitted in subsequent coordinate data descriptions. In Figure 4b, the yellow-marked area
illustrates the two-dimensional (X, Y) maximum workspace by the manipulator on the tram-
poline. Given the trampoline’s symmetry, the vertex coordinates of this maximum area are
A (0, 225), B (0, −225), C (−250, 125), and D (−250, −125), which accounts for half of the
trampoline. Depending on the distance between the two foot-shaped jigs, Y coordinates
range from +Y to −Y, X coordinates from 0 to −X, and Z coordinates from 0 to −Z. Data on
three-dimensional (X, Y, Z) coordinates and the applied force at each point on the trampo-
line were collected. The end-effector’s workspace permits movement in the +X direction
to a certain extent but cannot reach the maximum +X point of the trampoline mat. The
maximum torque for Z-direction movement of the robot diminishes as it moves in the +X
direction, and the trampoline’s elasticity imposes restrictions on pressing beyond a certain
depth in the Z direction.
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2.4. Analysis of Manipulator Movement Range

The distance between the dual foot-shaped jigs is adjusted using the function presented
in Figure 3d in 100 mm intervals based on the center of the end-effector of the manipulator.
Data were collected by installing jigs of various foot shapes for each distance setting. In
Figure 5, the blue areas of Figure 5a–e indicate the (X, Y) coordinate range when the distance
of the two foot-shaped jigs is 100, 200, 300, 400, and 500 mm, respectively. All coordinates
in (X, Y) decrease at intervals of 25 mm, and at each (X, Y) position, along the Z-axis, they
decrease from 0 to −100 mm at intervals of 5 mm. The distance between the dual foot-
shaped jigs is referred to as “FD” and the foot size is referred to as “FS”. As the FD value
increases, the two-dimensional (X, Y) movable area on the trampoline by the manipulator
reduces. With the FD at 100 mm in Figure 5a, the movement in Y-axis was 450 mm at
X coordinate of 0 and the movement in Y-axis was 250 mm at X coordinate −175 mm. In
Figure 5b, where the FD was 200 mm, the Y-axis movement was 400 mm at X coordinate 0
and the Y-axis movement was 200 mm at X coordinate −175 mm. In Figure 5c, where the
FD was 300 mm, the Y-axis movement was 300 mm at X coordinate 0 and Y-axis movement
was 100 mm at X coordinate −175 mm. In Figure 5d, where the FD was 400 mm, the
Y-axis movement was 200 mm at X coordinate 0 and Y-axis movement was 50 mm at
X coordinate −175 mm. In Figure 5e, with a FD of 500 mm, the Y-axis movement was
100 mm at X coordinate 0 and Y-axis movement was 50 mm at X coordinate −100 mm.
Table 3 summarizes the manipulator movement range coordinate information by FD.

Table 3. Summary of manipulator movement coordinates based on jig spacing.

FD [mm] Coordinate Start [mm] Finish [mm]

100

Y1 225 −225
X1 0 −75
Y2 175 −175
X2 −100 −150
Y3 125 −125
X3 −175 −250

200

Y1 200 −200
X1 0 −75
Y2 150 −150
X2 100 −150
Y3 100 −100
X3 −175 −250

300

Y1 150 −150
X1 0 −75
Y2 100 −100
X2 −100 −150
Y3 50 −50
X3 −175 −250

400

Y1 100 −100
X1 0 −75
Y2 75 −75
X2 −100 −150
Y3 25 −25
X3 −175 −250

500

Y1 50 −50
X1 0 −75
Y2 25 −25
X2 −100 −150
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2.5. Data Acquisition and Distribution

An external computer running a Python client application was employed to commu-
nicate in real-time with the KUKA iiwa robot’s controller. The experiment’s focus was
on using the force sensor located in the robot’s manipulator end-effector. This sensor
played a crucial role in pushing against a trampoline and accurately measuring the vertical
forces applied. For programming and controlling the KUKA robot, the KUKA Sunrise
Workbench-1.16.2.16 software was utilized. The robot’s movement sequence was carefully
programmed. It started from a pre-set HomePosition, moving to a specified targetXY
location. This movement was executed using point-to-point (PTP) motion, calibrated at a
relative joint speed of 0.5, equivalent to 50% of the robot’s maximum speed. Upon reaching
the targetXY coordinates, the robot was then directed to proceed to the targetZ position.
This phase of the movement was accomplished through linear motion, executed at a Carte-
sian speed of 500 mm/s. The distinction between joint speed and Cartesian speed in this
context is significant. Joint speed refers to the relative speed of each individual joint in
the robot’s structure, while Cartesian speed relates to the speed at which the robot’s tool
end, or the end-effector, moves. The robot then paused for 5 s to collect force data at that
location, and repeated the rest of the way, changing the X, Y, and Z coordinates.

The data collected at varying FDs yield the following results. At a FD of 100 mm,
3466 data points for X coordinates, Y coordinates, Z coordinates, and force data were
gathered, totaling 34,660 data points. Similarly, at 200 mm, 3004 data points were collected,
amounting to a total of 30,040 data points. For 300 mm, 2080 data points were obtained,
resulting in a total of 20,800 data points. At 400 mm, 1450 data points were gathered, with
a total of 14,500 data points. Finally, at 500 mm, 610 data points were acquired, totaling
6100 data points. Altogether, 106,100 data points encompassing X coordinates, Y coor-
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dinates, Z coordinates, and force data were compiled. To enhance clarity regarding the
correlation between the Z value and N, the depth values along the Z-axis were converted
from negative to positive and stored. Figure 6 presents a two-dimensional distribution
based on the force values at (Y, X) coordinates with respect to Z. Each (Y, X) coordinate
group is distinctively colored using a random color scheme. The X-axis, representing
Z values, is marked at intervals of 5 mm up to a total of 100 mm. The Y-axis, depicting
Force values, is scaled at intervals of 100 N, extending up to 800 N.
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the trampoline’s ability to swiftly return to its original state and its capacity to absorb and 
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Figure 7 shows a three-dimensional representation of the X, Y, Z coordinate data,
colored according to Force values. Higher Force values are represented in shades of yellow,
while lower values are depicted in shades of blue. The X-axis, indicating X values, is
marked at intervals of 50 mm up to a maximum of −250 mm. The Y-axis, representing
Y values, is scaled from−200 mm in 100 mm intervals up to 200 mm. The Z-axis, displaying
Z values, is marked at intervals of 20 mm, covering a total range of 100 mm.
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2.6. Trampoline Elastic Response: Linear Regression Analysis Using the Extended Hooke’s Law

The elasticity of the trampoline constitutes a crucial variable in understanding the
relationship between its depth and the vertical force it generates. This elasticity governs
the trampoline’s ability to swiftly return to its original state and its capacity to absorb and
release energy. Achieving height on the trampoline necessitates an adequate depth and
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force. When a user jumps onto the trampoline, it absorbs energy, causing it to depress,
and subsequently releases this energy during recovery to its initial state. This released
energy propels the user to a higher position. In this context, accurately comprehending
the relationship between the trampoline’s depth and the generated vertical force is of
paramount importance. To analyze this relationship, Hooke’s law was applied.

Hooke’s law, a fundamental principle of physics, elucidates the linear relationship
between the deformation of an elastic object and the resulting restoring force. It un-
derscores the direct relationship between the force generated when extending or com-
pressing an object and the amount of deformation. This relationship is expressed in the
following equation

F = −k× ∆x, (1)

where F refers to the restoring force, k is the elastic constant, and ∆x is the amount of
deformation.

The applicability of this principle extends to the case of the trampoline. Given that
Hooke’s law embodies a linear relationship and bears similarity to a linear regression
model, it becomes plausible to perform linear regression analysis. When an individual
jumps on the trampoline or applies pressure to it, the trampoline’s surface deforms. The
extent of deformation directly corresponds to the generation of a restoring force, facilitating
the trampoline’s return to its initial state. To forecast the trampoline’s response using
Hooke’s law, an extended model that accounts for several additional features is necessary.
The extension of Hooke’s law enables a more accurate prediction and description of the
trampoline’s complex response.

In the application of the extended Hooke’s law, linear regression analysis was executed
concerning the vertical force received in correspondence to the trampoline’s depth. This
analysis encompassed various combinations of features, including X, Y, FD, and FS. The
dataset was partitioned into a training dataset and a test dataset, at an 80:20 ratio. The
features were grouped into a total of eight combinations: X and FS, X and FD, Y and FS, Y
and FD, X and Y, X, Y, and FS, X, Y, and FD, and X, Y, FD, and FS. The elastic modulus and
force of the trampoline in relation to the vertical force received based on the depth of the
trampoline were estimated for each feature group. Figure 8 showcases the linear regression
lines for X and FS in Figure 8a, X and FD in Figure 8b, Y and FS in Figure 8c, Y and FD in
Figure 8d, X and Y in Figure 8e, X, Y, and FS in Figure 8f, X, Y, and FD in Figure 8g, and X, Y,
FD, and FS in Figure 8h. We also use a color map to provide different colors for each group.
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Figure 8. Linear Regression lines of force based on trampoline Z for different feature groups:
(a) X and FS; (b) X and FD; (c) Y and FS; (d) Y and FD; (e) X and Y; (f) X, Y and FS; (g) X, Y and FD;
(h) X, Y, FD and FS.
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3. Results

In Figure 9, the model’s performance is evaluated through a visual comparison of
actual measured force data and predicted force data. Specifically, Figure 9 depicts the distri-
bution of predicted values in relation to the actual values for various feature combinations:
X and FS in Figure 9a, X and FD in Figure 9b, Y and FS in Figure 9c, Y and FD in Figure 9d, X
and Y in Figure 9e, X, Y, and FS in Figure 9f, X, Y, and FD in Figure 9g, and X, Y, FD, and FS
in Figure 9h. Notably, the model’s performance is deemed better when the predicted values
closely converge to the y = x line. A visual assessment of model performance reveals that
Figure 9b,d,g,h exhibit exceptional performance. Notably, these groups share the common
feature of FD.
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The evaluation of the linear regression model’s performance in estimating the elastic
constant and force of the trampoline focused on four exceptional cases among the various
feature combination groups in Figure 9. To assess performance, three evaluation indicators
were selected: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Corre-
lation Coefficient Squared (R-squared). From MAE, RMSE, and R-squared, we found Min,
Max, Q1 (First Quartile), Q3 (Third Quartile), median, and mean. Q1 is the median of the
lower half of the dataset. It represents the 25th percentile, which means 25% of the data
points are below this value. Q3 is the median of the upper half of the dataset. It represents
the 75th percentile, meaning 75% of the data points are below this value. The range from
Q1 to Q3 is called the interquartile range (IQR). A wide IQR range means that the data are
spread out. This indicates that the data are inconsistent and vary a lot. It can be affected by
extreme values or outliers. On the other hand, a narrow IQR range means that the data as a
whole tends to be stable and consistent. In this way, Q1 and Q3 can help you understand
the central tendency and variability of your data, and whether outliers are present.

MAE is defined by Equation (2), where yi is the actual value, ŷi is the predicted value,
and n is the observed value. MAE is the mean value of the sum of the absolute difference
between the actual value and predicted value, representing the average error size of the
predicted value. This indicator is robust against outliers due to its consideration of the
absolute values of individual error. Thus, the MAE loss function does not distinguish
between large and small errors, implying that the prediction model approaches the actual
observed value as the MAE value becomes smaller.
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MAE =
1
n∑n

i=1|yi − ŷi| (2)

In the boxplot of MAE, lower values indicate smaller errors. As listed in Table 4, the
group with features X, Y, FD and FS has a higher Max value compared to other groups,
and as illustrated in Figure 10, several outlier values are present. With the other three
groups, the groups with features X and FD, and Y and FD have a larger Median and Mean
value compared to the group with features X, Y and FD. The Q3-Q1 values of the groups
with features X, FD and X, Y and FD were 5.2958 and 5.7326, respectively, which showed a
consistent level of predictability.

Table 4. The box plot values and the mean value for MAE.

Feature Group
Combination

MAE [N]

Min Max Q1 Q3 Median Mean

X and FD 13.6902 24.2691 15.5118 20.3577 17.7471 17.9702

Y and FD 10.7176 27.4522 14.3071 20.6843 17.5435 17.7580

X, Y and FD 8.3368 26.5930 13.2603 17.6679 14.9969 15.7347

X, Y, FD and FS 1.1094 69.6129 12.5340 20.4346 16.0294 16.9649

1 
 

 

 
 
 

 

Figure 10. Comparison of MAE model performance by feature group.

RMSE is defined as Equation (3) and is the square root of MSE. MSE is defined as
Equation (4), where yi is the actual value, ŷi is the predicted value, and n is the observed
value. MSE is the mean value of the squared difference between the actual value and
predicted value. RMSE allows the size of the prediction error to be interpreted in the same
scale as the actual units. This evaluation indicator aids to interpret the size of the prediction
error in units of the original data. Akin to MSE, this indicator responds sensitively to large
errors and is sensitive to outliers. This indicates that the smaller the RMSE value, the better
the model fits the data and the average error between the predicted value and the actual
value is smaller. MSE and RMSE are related metrics, but they serve different purposes.
MSE is valuable during model training, while RMSE is more suitable for reporting and
understanding the model’s performance in the context of the original data.

RMSE =
√

MSE (3)
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MSE =
1
n∑n

i=1(yi − ŷi) (4)

In the boxplot of RMSE, lower values indicate smaller errors. In Table 5, the group
with features X, Y, FD and FS has a higher Max value compared to other groups, and in
Figure 11, there are many outlier values. With the other three groups, the groups with
features X and FD, and Y and FD have a larger Median and Mean value compared to the
group with features X, Y and FD. The Q3-Q1 values of the groups with features X, FD
and X, Y and FD were 5.2958 and 5.7326, respectively, which showed a consistent level
of predictability.

Table 5. The box plot values and the mean value for RMSE.

Feature Group
Combination

RMSE [N]

Min Max Q1 Q3 Median Mean

X and FD 16.2817 29.3807 18.8800 24.1758 21.0593 21.7226

Y and FD 13.4311 35.1588 17.8992 25.6800 22.1676 22.3381

X, Y and FD 9.9059 31.5727 15.6367 21.3694 18.1531 18.8226

X, Y, FD and FS 1.2562 14.2552 14.2552 23.4618 18.2725 19.4996

1 
 

 

 
 
 

 
Figure 11. Comparison of RMSE model performance by feature group.

R-Squared, as defined in Equation (5), offers insights into the model’s ability to explain
data variability, with values ranging from 0 to 1. In the formula are two key components
used to calculate the R-squared value, which is a statistical measure of how close the data
are to the fitted regression line. SSres (Sum of Squares of Residuals) measures the amount
of variance in the dependent variable that is not explained by the independent variable(s)
in the model. In other words, it quantifies how much the data points deviate from the fitted
line. Mathematically, it is the sum of the squares of the differences between the observed
values and the values predicted by the model. SStot(Total Sum of Squares) measures the
total variance in the dependent variable. It is calculated as the sum of the squares of the
differences between the observed values and their mean. Essentially, it quantifies how
much the data points deviate from their mean value. A value closer to 1 indicates a strong
capacity to elucidate data variability. While R-Squared is an intuitive indicator, it lacks
information about the absolute size of errors. Consequently, higher R-squared values
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signify that the model closely fits the data, and the model’s predictions closely align with
actual data.

R2 = 1− SSres

SStot
(5)

In the context of the box plot for R-squared, higher values indicate a greater explana-
tory power of the model. The group with X, Y, FD, and FS features displays a lower
minimum value when compared to other groups, and Figure 12 presents numerous outlier
values. For the other three groups, median and mean values are distributed at similar levels.
In Table 6, the Q3–Q1 values of the groups with features X, FD and X, Y and FD were 0.0029
and 0.0046, respectively, which were lower than those of other groups, indicating a higher
level of consistency in predictability.
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Table 6. The box plot values and the mean value for R-Squared.

Feature Group
Combination

R-Squared

Min Max Q1 Q3 Median Mean

X and FD 0.9790 0.9890 0.9825 0.9854 0.9841 0.9840

Y and FD 0.9686 0.9910 0.9735 0.9856 0.9825 0.9800

X, Y and FD 0.0961 0.9938 0.9832 0.9879 0.9858 0.9854

X, Y, FD and FS −427.0800 0.9999 0.9641 0.9877 0.9808 0.8225

4. Discussion

In this study, we estimated the elastic constant of the trampoline and the force received
using a robot equipped with two foot-shaped jigs. The foot-shaped jig was mounted in
a single direction on the robot for data collection. This method does not encompass all
possible movements of the foot; hence, it is not a complete solution. However, it offers
the advantage of efficiently collecting a large amount of data in an automated manner,
compared to previous studies. We established a linear regression model based on an
extended Hooke’s law, which provides a reliable linear regression estimation within a
certain depth range. However, it is important to note that in cases where the force applied
to the trampoline exceeds a certain threshold, a force larger than what a linear addition
would suggest may be required. This can lead to a shift towards nonlinear data distribution.
While it is recognized that in such situations, the elastic constant of the trampoline and the
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force received should be estimated using a nonlinear regression model, the results of this
study offer a simplified approach for estimating these parameters.

The experimental results reveal a substantial variation in the trampoline’s response,
contingent upon the FD feature within the estimation model. Furthermore, when compar-
ing Figure 9g,h, it becomes evident that the FS feature has a limited impact. In addition,
based on the metrics of MAE, RMSE, and R-squared, the FS feature can be considered rela-
tively inconsequential, despite the presence of outliers exhibiting minor error deviations.

The determination of the elastic constant of the trampoline’s motion and the resulting
vertical force carries significant implications for both manufacturers and users. From the
manufacturer’s perspective, precise data pertaining to the elastic constant of the trampoline
and the force generated serve as a pivotal reference during the product design and develop-
ment phase. These data play a critical role in optimizing the performance and safety of the
product. For the end-users, understanding the elastic constant of the trampoline and the
associated force is paramount in ensuring a secure exercise environment. This knowledge
empowers users to exert better control over their exercise techniques and allows them to
harness the maximum benefits of trampoline exercise. The data collected in our study
enable the identification of methods to enhance the effectiveness of trampoline workouts.
By analyzing factors such as jump height or modifications in technique based on the elastic
constant, training methods can be fine-tuned.

It is imperative to recognize that research into the elastic constant of trampolines
and the resultant forces is a central factor in maximizing safety and efficacy within the
realms of fitness and rehabilitation. Such knowledge equips users to experience a more
secure and effective exercise environment, contributing to an overall improved exercise
experience. In future research plans, a camera will be installed beneath a trampoline to
capture video during the moments when a foot-shaped jig, mounted on a robot, compresses
the trampoline. The aim is to develop a system that can estimate force using only the visual
data collected from these recordings.

5. Conclusions
This study introduced a robotic system designed for the estimation of the elastic

constant and the applied force on a trampoline. A specially designed robot, equipped
with precision jigs, was positioned adjacent to the trampoline. These jigs, constructed from
stainless steel, were intricately connected by several CAD parts. The robot’s manipulator’s
range of movement, relative to the trampoline’s coordinates, was contingent upon the
spacing between these foot-shaped jigs. A comprehensive dataset of 106,100 data points
was collected for analysis.

To estimate the force applied to the trampoline, a linear regression model was de-
veloped, employing various combinations of input features. The model’s performance
was systematically evaluated using well-established metrics such as MAE, RMSE, and
R-Squared. Particularly noteworthy was the model’s performance when certain combi-
nations included the “FD” feature. For the combinations involving X and FD, as well as
X, Y, and FD, the three performance indicators demonstrated excellence. Specifically, the
mean values for MAE, RMSE, and R-Squared for the X and FD combination were 17.9702,
21.7226, and 0.9840, respectively. In the case of X, Y, and FD, the mean values for MAE,
RMSE, and R-Squared were 15.7347, 18.8226, and 0.9854, respectively.

For future investigations, there is a need to enhance prediction accuracy by minimizing
the disparity between actual and predicted values. This can be achieved by implementing a
nonlinear regression model to analyze the elastic constant of the trampoline and the vertical
force it receives. For estimating the elasticity modulus of trampolines, the implemented
robotic system facilitates automated collection of extensive data based on varying foot posi-
tions. This approach enhances estimation accuracy and enables quantification of trampoline
exercise effects, such as calorie expenditure. Such an improvement not only reduces the
risk of injury but also allows for the provision of personalized exercise programs to users
through precise analysis. Consequently, the fields of home fitness, remote rehabilitation,
and related industries are anticipated to witness substantial growth.
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