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Abstract: Sensor-based human activity recognition is becoming ever more prevalent. The increasing
importance of distinguishing human movements, particularly in healthcare, coincides with the advent
of increasingly compact sensors. A complex sequence of individual steps currently characterizes
the activity recognition pipeline. It involves separate data collection, preparation, and processing
steps, resulting in a heterogeneous and fragmented process. To address these challenges, we present
a comprehensive framework, HARE, which seamlessly integrates all necessary steps. HARE offers
synchronized data collection and labeling, integrated pose estimation for data anonymization, a
multimodal classification approach, and a novel method for determining optimal sensor placement to
enhance classification results. Additionally, our framework incorporates real-time activity recognition
with on-device model adaptation capabilities. To validate the effectiveness of our framework, we
conducted extensive evaluations using diverse datasets, including our own collected dataset focusing
on nursing activities. Our results show that HARE’s multimodal and on-device trained model
outperforms conventional single-modal and offline variants. Furthermore, our vision-based approach
for optimal sensor placement yields comparable results to the trained model. Our work advances the
field of sensor-based human activity recognition by introducing a comprehensive framework that
streamlines data collection and classification while offering a novel method for determining optimal
sensor placement.

Keywords: human activity recognition; multimodal classification; privacy preservation; real-time
classification; sensor placement

1. Introduction

As part of pervasive computing, sensor-based human activity recognition (HAR) in-
volves the classification of time series data produced by inertial measurement units (IMUs).
IMUs primarily capture and measure quantities, such as acceleration and angular velocity,
generating discrete temporal data. These data can be segmented into windows and classi-
fied, typically utilizing machine learning (ML) models. By leveraging these models, the
activity recognition system can classify various activities based on the analyzed patterns
within the time series data. The range of movements encompasses both low-level activities,
such as walking and standing, as well as high-level activities that involve combinations
of multiple low-level activities. HAR demonstrates promising applications across diverse
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domains, including healthcare, sports, and smart environments [1–3]. Similar to other re-
search in ML, achieving reliable classification results in HAR necessitates a well-structured
data pipeline encompassing qualitative data collection, preparation, and classification
stages [4]. Each step within this pipeline is crucial in influencing the final classification
outcome. Traditional approaches involve a fragmented and complex process, from data
collection to processing, often leaving researchers grappling with disjointed methodologies.
None of the available solutions adequately cater to the researchers’ needs for data acqui-
sition, synchronization, anonymization, and enrichment with 2D landmarks of the users’
body, enabling a multimodal classification approach in an integrated software environment.
Furthermore, there is a lack of solutions that guide optimal IMU placement for improved
classification results prior to conducting a study on specific activities. Additionally, an
integrated solution incorporating human-in-the-loop feedback, allowing users to receive
real-time activity feedback on specific activities and retrain a personalized model based on
their specific execution patterns, is currently absent. These gaps highlight the necessity for
a comprehensive framework that addresses these critical aspects and empowers researchers
in their endeavors [5].

To bridge this gap in human activity recognition, we introduce HARE (human activity
recognition engineering), a comprehensive framework that revolutionizes the traditional
HAR process as illustrated in Figure 1. HARE stands out by offering a holistic approach,
catering to essential researcher needs ranging from data collection and synchronization
to advanced privacy-preserving techniques using 2D body landmarks. This integration
facilitates a multimodal classification approach, enhancing the analysis and recognition
of human activities. HARE’s innovation lies in its ability to efficiently handle all aspects
of HAR data, ensuring seamless synchronization between multiple IMUs and video data.
This synchronization facilitates label refinement and respects privacy by converting video
data into 2D human pose estimations. Additionally, HARE introduces a novel sensor
placement strategy based on these pose estimations, optimizing classification outcomes
while reducing the reliance on IMUs. The framework’s flexible model training, offering
both on-device and server-based options, its real-time feedback capabilities, and privacy-
preserving adjustments on the device set it apart from existing methods in the field.

Application
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Dataflow

Cross Validated
Feature Metric

TFLite Model

User

Data Recording &
Labeling

Real-time Activity
Recognition

Report / Dashboard

On-Device Training Offline Training

Inertial
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Metadata
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Figure 1. The application’s architecture can be divided into two parts—mobile app and server—to
ensure efficient data handling and processing. Mobile app: The app comprises different views
depicted as rectangles, each important to conduct a study for human activity recognition. The arrows
illustrate the dataflow, which can be of different data modalities. Server: The collected data can be
uploaded to a server, and a lightweight deep learning model can be trained and embedded into
the app.
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To assess the effectiveness of HARE, we employed a two-fold evaluation approach.
Firstly, we utilized publicly available datasets commonly used in sensor-based HAR. Sec-
ondly, we conducted a controlled laboratory study involving ten subjects who performed
nursing activities. The combination of existing datasets and a proof-of-concept study allows
us to evaluate the performance and applicability of the HARE framework comprehensively.
The evaluation allowed us to assess HARE’s performance in data collection, labeling, sensor
placement, and real-time feedback, as well as its ability to preserve privacy during these
processes. Through our evaluation, we found that multimodality increased the F1 score by
up to 4.4% and on-device training by up to 58.7%. Moreover, HARE’s sensor placement
recommendations demonstrated similarity to the optimal placements suggested by the
best-performing deep learning model, specifically a CNN-LSTM architecture. Our findings
demonstrate the effectiveness of HARE in addressing the current challenges in the field
of HAR.

Our research makes the following contributions to the field of HAR:

• Combining synchronized data collection from wearable devices, a mobile phone
camera, and 2D keypoints from pose estimation. This coordination enhances robust
data acquisition and supports a multimodal classification approach to HAR from
IMUs and 2D keypoints.

• Presenting an on-device working lightweight method using 2D pose estimation for
determining optimal sensor placement, requiring only 500 data points, even from
publicly available video footage of target activities.

• Accommodating diverse classification tasks using wearable, video, or skeleton inputs,
with options to modify underlying classification and landmark detection models for
specific cases, like face, eye, or hand recognition.

• Employing transfer learning for on-device training, which preserves data privacy
and enhances model performance. The integration of active learning, demonstrated
through a returned confusion matrix of each activity’s performance, supports continual
data recollection and model refinement.

• Providing instant activity recognition and detailed statistics on person-specific and
activity-based metrics. These insights can enhance business processes and support
further research.

In the following sections of this paper, we provide a detailed roadmap of our study.
Section 2 offers an in-depth exploration of related work, comparing the distinct features of
HARE with other frameworks. In Section 3, we delve into HARE’s various features and
functionalities, offering a comprehensive understanding of its core components. Moving
on to Section 4, we present our evaluation of HARE’s capabilities across diverse datasets,
including a self-recorded dataset capturing nursing activities. In Section 5, we shed light
on our findings and their implications. Finally, in Section 6, we draw our conclusions,
encapsulating the essence of our work and its contributions to HAR.

2. Related Work

Sensor-based HAR utilizing wearable sensors boasts diverse applications, extending
from healthcare to surveillance [6–8]. HAR frameworks present a myriad of opportunities,
serving various purposes such as monitoring activity levels to prevent injuries or for
documentation [9–12]. Moreover, they can be used in threat detection and prevention [13].
The extensive array of potential applications has given rise to a substantial body of literature,
encompassing a variety of research sub-domains within HAR [14–18]. While previous
approaches have made significant contributions to these sub-areas, our approach seeks to
bridge the gaps and address the limitations present in the existing literature. We provide an
end-to-end solution for HAR tasks that can be applied to any area of interest where physical
activities are present. To provide a comprehensive overview of the existing research,
this section examines the current state-of-the-art techniques for HAR data collection and
classification, as well as existing approaches to optimizing sensor placement for improved
classification accuracy. In addition, we explore the current landscape of privacy-preserving
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on-device approaches for HAR. Throughout this section, we highlight the strengths and
limitations of the existing approaches and compare them to HARE.

2.1. Data Acquisition and Labeling

Data collection and labeling in sensor-based HAR are significant challenges [19]. Ex-
isting research studies, such as those conducted in [20], have attempted to address these
issues, highlighting the impact of additional data on performance and proposing meth-
ods to predict the performance improvement of HAR models after collecting additional
data. However, these methods often encounter limitations when synchronizing data from
multiple standalone IMU devices or collecting video recordings alongside IMU data for
relabeling and quality assurance. The labor-intensive, time-consuming, and error-prone
nature of data collection in HAR was emphasized in [5]. They proposed practical guidelines
for efficient data collection based on control variable experiments involving over 240 sub-
jects. Their insights could be further enhanced by leveraging synchronized multimodal
data collection technology.

HARE offers a comprehensive and promising solution that addresses the challenges of
data collection and labeling. It leverages real-time pose estimation from video recordings to
facilitate data anonymization and relabeling, which mitigates privacy concerns associated
with video data. Beyond this, HARE integrates capabilities for synchronized data collection
from multiple standalone IMU devices and video recording. This enables a single or
multimodal real-time classification approach not confined to a specific area of interest.

2.2. Sensor Placement

The issue of sensor placement arises as a crucial aspect when conducting studies in
HAR. The classification accuracy heavily relies on the data received, which varies based
on the location and number of sensors employed for different body parts [21]. Previous
research indicates optimal results are achieved by placing sensors on the chest, ankles,
and thighs [1]. Moreover, studies suggest simultaneously utilizing accelerometers on both
the upper and lower torso significantly enhances activity recognition precision [22,23].
In a study examining accelerometer placement for categorizing physical activities and
estimating energy expenditure in older adults [24], five different body positions were
compared: wrist, hip, ankle, upper arm, and thigh. The study concludes that careful
consideration of accelerometer placement is essential for optimizing the accuracy of HAR.
In [25], the impact of sensor position on HAR system performance is discussed. Given a
fixed number of sensors, the authors propose an optimization scheme to determine the
optimal sensor position from a range of possible locations. By employing virtual sensor
data and leveraging low-cost access to the training dataset, the system enables accurate
decisions regarding sensor position selection through feedback mechanisms. There is also a
study that investigates the optimal sensor placement by leveraging keypoints derived from
pose estimations [26]. This research explores the correlation between body landmarks and
the positioning of sensors, aiming to enhance the accuracy and performance of sensor-based
HAR systems.

Building upon the approach introduced in [26], we extend and elaborate on the
methodology by examining its effectiveness across various datasets and models, encom-
passing a broader range of activities. In contrast to existing approaches, our method
eliminates the need for a physical sensor setup, instead relying on human pose estimations
derived from either self-recorded videos or existing videos of the target activities within
HARE. This approach significantly reduces the setup and calibration efforts typically as-
sociated with HAR, which improves user experience. Furthermore, our technique entails
less computational complexity than classical approaches involving extensive training and
testing with large datasets, enabling the use of mobile devices without external computing
resources. This streamlined approach enhances efficiency and offers a practical solution for
real-world applications.
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2.3. Real-Time Feedback

Real-time activity recognition [27] has emerged as a crucial topic across numerous fields
due to its potential to facilitate instant feedback and action, such as in healthcare [28–30].
The relevance has prompted a wealth of research studies, each contributing to the collective
understanding and development in this field. In [31], they leverage the array of sensors in
mobile devices to develop a user-independent, real-time activity recognition system using a com-
bination of convolutional neural networks and statistical features. In [32], a novel deep learning
model—the bidirectional-gated recurrent unit-inception using IMUs—was introduced. The
model’s accuracy and robustness were evaluated on three datasets, demonstrating superior
performance while using fewer sensors. In [33], an unsupervised online domain adaptation
algorithm for smartphone accelerometers, addressing the challenge of personalizing models
to new users and changing motion patterns was proposed. The authors’ solution involves
real-time, incremental alignment of feature distributions across all subjects in hidden neural
network layers, with user-specific mean and variance statistics. In [34] a computationally
efficient deep learning method, specifically a conditionally parameterized convolutional
neural network for real-time HAR on mobile and wearable devices was introduced. The
proposed method effectively balances accuracy and computational cost.

Our proposed approach provides several additional features that make it particularly
well-suited for use in real-world scenarios, unlike the aforementioned approaches, which
have focused primarily on accuracy and computational complexity. For example, our
model is both adaptable and uses less computing power, which allows it to be trained
on-device and run efficiently on resource-constrained devices. Furthermore, we provide
accuracy on all activities performed, which gives the opportunity to recollect data on poorly
recognized activities. In addition, we include metadata statistics on the performed activities
and persons, which provides the possibility for further analysis and process mining. These
features are an improvement upon previous work and highlight its potential for practical
use cases.

2.4. Privacy-Preserving On-Device Approaches

Privacy is a major concern in the field of HAR, where the collection and processing of
personal data are an integral part of the process [35]. Several existing approaches, such as
federated learning, differential privacy, and homomorphic encryption, have been proposed
to address this issue and enable the training of HAR models on personal devices without
compromising privacy [36,37]. However, challenges remain in ensuring the fidelity and
security of the collected data. To address these challenges, recent research has made use of
on-device learning and inference. In [38,39], models that support on-device incremental
learning and inference—leading to a significant efficiency boost during inference—were
proposed. A dynamic active learning-based approach that selects informative samples and
identifies new activities to improve performance and reduce annotation cost was proposed
in [35]. Further, in [40], a way to minimize the task of labeling data through an active
learning approach is explored. These approaches allow for adaptive daily activity analysis
and the detection of novel activities and patterns, with experimental results demonstrating
their effectiveness on synthetic and benchmark datasets.

HARE stands out in this facet by offering on-device training aided by pre-trained
models, which ensures that data are not leaving the device and thus maintains data privacy.
Additionally, HARE provides a confusion matrix that encourages the collection of new data
on poorly recognized movements, fostering active learning and improving performance.

2.5. Multimodal Classification Approaches

Building upon the work introduced in [26], we delve into multimodal HAR, which
has gained significant attention in recent years. Integrating multiple sensory data sources
offers the potential for more accurate and robust activity recognition compared to unimodal
approaches [41,42]. For instance, in [43], the MMHAR-EnsemNet approach was proposed,
which leverages four different modalities for sensor-based HAR and has been evaluated
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on two standard benchmark datasets. Previous studies, such as [44], have also explored
methods for fusing and combining different representations of sensor data using deep
convolutional neural networks, achieving promising results.

In contrast to these multimodal approaches, HARE takes a unique approach by utiliz-
ing a single device to collect data from IMUs and videos. These data are then transformed in
real-time into 2D human pose estimations, resulting in an inherently given multimodal data
stream that facilitates recording and classification processes. This distinctive methodology
distinguishes HARE from existing multimodal approaches in sensor-based HAR.

HARE represents a significant advancement for the HAR community. Several studies
have investigated some features independently to a limited extent. However, such studies
remain narrow in focus as they cover just one aspect. We highlight the need for the
unification of the features. HARE combines all necessary features for sensor-based HAR
in one application and enriches it with newly developed functionalities. It offers a more
comprehensive set of features, including support for a wide range of sensors, synchronized
multimodal recording and classification, real-time classification, on-device training, and
active learning. The framework is highly adaptable and, therefore, a versatile tool for a
wide range of use cases. A comprehensive comparison of HARE with other tools and
research methods in the HAR field, showcasing the unique and enriched functionalities, is
shown in Table 1.

Table 1. Comparison of sensor-based HAR frameworks and methods.
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Data Collection
External Sensor Connectivity 7 3 3 7 7 7 7 7 7 7 7 3

Multimodal Recording 7 7 3 ∼ 7 7 7 3 7 7 7 3

Extendability * ∼ 7 3 3 3 7 7 7 7 7 7 3

Classification Real-time 3 3 3 ∼ 7 7 7 7 7 7 3 3

Multimodality 7 7 3 7 7 7 7 3 7 7 7 3

Labeling Refinement 7 7 7 3 7 7 7 7 3 3 7 3

Anonymization 7 7 7 7 7 7 3 7 3 3 3 3

Sensor Placement Pose Estimation 7 7 7 7 7 7 7 7 3 3 7 3

Optimal Position 7 7 7 7 7 3 7 7 7 7 7 3

ML-based Feedback
On-Device Training 7 7 7 7 3 7 7 7 7 7 7 3

Human-in-the-Loop 7 7 7 3 3 7 7 7 7 7 7 3

Extended Logging ¶ 7 7 7 7 7 7 7 7 7 3 7 3

∼: Partially supported. *: Adaptable to different domains through extending the landmark model. ¶: Additional
statistics per person and activity .

3. Application Functionalities

As depicted in Figure 2, HARE integrates several essential features for HAR, including
(1) data collection, (2) labeling and label refinement, (3) anonymization, (4) pose estima-
tion, (5) optimal sensor placement, (6) multimodal HAR, (7) meta-analysis, (8) offline
training, and (9) on-device active learning. The framework is developed for Android
operating systems, specifically in Android 13, the latest version at the time of writing.
Designed using TensorFlow Lite (TFLite), HARE benefits from TFLite’s operator version-
ing schema, which ensures backward compatibility (allowing newer implementations to
handle older model files) and forward compatibility (enabling older implementations to
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handle new model files, provided no new features are used) [54]. This approach guarantees
robust functionality across various Android devices and versions. We have rigorously
tested HARE on various models, including Google Pixel Phones 6 and 7 Pro, confirming its
adaptability to different hardware configurations. The Google Pixel 6 features a 6.4-inch
display, 8 GB LPDDR5 RAM, and 128 GB storage, while the Google Pixel 7 Pro comes with
a 6.7-inch display, 12 GB LPDDR5 RAM, and 256 GB storage. Both devices are equipped
with Google’s Tensor processors and support high-resolution video recording capabilities,
essential for the app’s pose estimation functionality. While initially developed for these
models, the underlying technology in HARE is flexible enough for potential compatibility
with a wide range of Android devices.

(a) (b) (c) (d)

Figure 2. Different functionalities of the application highlight the versatility of HARE . (a) Connection
overview for connecting and synchronizing the Xsens DOT sensors. (b) Recording interface for
saving inertial, camera, and pose estimation data together with labeling activities in each timestamp.
(c) Data dashboard allows exploring the recorded data. (d) Prediction overview allows real-time
activity recognition for the incoming data.

3.1. Architecture and Key Components

HARE’s architecture revolves around a single MainActivity, containing four primary
screens, as depicted in Figure 2, managed by distinct packages and classes. This modular
structure enhances the app’s functionality, with each screen dedicated to specific tasks such
as managing sensor connections, data recording, and label management. The Connection-
Screen class, interfaces with Xsens DOT sensors by Movella in Enschede, Netherlands,
utilizing the Xsens DOT SDK for seamless sensor management and data collection.

The following libraries and modules integrated into the app are instrumental in its
functionality:

• Xsens™ DOT ([55]): Guides the integration of Xsens DOT sensors.
• WebDAV Client ([56]): Enables data storage on WebDAV cloud.
• Charts Library ([57]): Facilitates on-device data visualization.
• Tree View Library ([58]): Assists in organizing and presenting hierarchical data.

3.2. Connection

Due to its compact size and lightweight design, we opted to utilize the Xsens™ DOT
sensor as a standalone device for unobtrusive data recording. We developed our frame-
work using the Xsens DOT Android software development kit (SDK version v2020.4). This
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SDK enabled functionalities such as scanning, connecting, and receiving data seamlessly.
The Xsens DOT sensor communicates with the host device via Bluetooth for data trans-
mission. While there is no specific connection limit in the Xsens DOT SDK services, the
maximum number of sensors that can be connected simultaneously depends on the central
devices’ hardware and operating system constraints. In the case of Android, up to seven
sensors can be connected. The output rate for real-time streaming can be adjusted, ranging
from 1 Hz to 60 Hz, while the recording mode supports rates up to 120 Hz. All sensors
are time-synchronized after the initial synchronization process. Sensor connection and
synchronization are achieved within 3 to 5 s. The transmitted data from the Xsens DOT
sensor includes calibrated orientation data (quaternion), inertial data, and magnetic field
data. This comprehensive set of information allows for accurate and precise analysis of
human movements.

3.3. Recording

Connecting the IMUs to the app enables data recording with various sensor data
outputs, including quaternions, (free) acceleration, angular velocity, and magnetic field
normalized to the earth’s field strength. The raw data from these sensors, including
the quaternion data representing sensor orientation, are used directly without extensive
preprocessing. The app provides functionality to adjust the output rates of these sensors
based on the requirements of the activity recognition task.

For video data, frames are captured at a rate dependent on the device’s hardware
capacity, and the data are used to generate real-time pose estimations. The pose estimation
data and the raw inertial sensor data form a comprehensive dataset for activity recognition.
This multimodal dataset enhances the robustness of the model by incorporating both
positional and movement data. If not required, video data can be excluded, retaining only
pose estimation and/or inertial sensor data for analysis.

All recorded data, including metadata, inertial sensor data, and pose estimation data,
are synchronized and formatted into a consistent dataset. The deep learning model is adept
at handling this multivariate time series data, applying neural network architectures to
extract relevant features directly from the raw sensor inputs. This methodology leverages
the strength of deep learning to analyze complex patterns in raw data, facilitating accurate
activity classification without the need for traditional feature engineering or extensive
preprocessing steps.

3.3.1. Pose Estimation

Pose estimation is a computer vision technique for detecting human figures and
their corresponding poses from image and video data (OpenPose [59]). In HARE, we
harness the video feed from the same smartphone that collects IMU data to perform pose
estimations. Pose estimation is performed in real-time, ensuring immediate feedback based
on the video input. This simultaneous use of a single device for both video and IMU data
collection ensures synchronous data capture and aids in maintaining data integrity. We
employ MoveNet Thunder’s pre-trained TFLite model for pose estimation, which processes
each frame to generate key body joint landmarks [54]. The model’s output comprises
17 keypoints in 2D space, representing critical body locations such as the ankles, knees,
hips, wrists, elbows, shoulders, and certain facial features.

To facilitate real-time performance, video frames undergo preprocessing to meet the
model’s input specifications. This includes normalizing pixel values, resizing frames to
the required resolution, and maintaining a consistent frame rate, which is essential for the
subsequent time series analysis. The deep learning algorithm employed by the MoveNet
model identifies and tracks keypoints, applying a confidence threshold to ensure landmark
detection accuracy. Any occlusions or instances of partial visibility are managed through
post-processing techniques designed to smooth the temporal trajectories of the keypoints.

HARE is designed to enhance pose estimation capabilities by enabling the inte-
gration of additional pre-trained models suitable for various use cases. For instance,
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MediaPipe offers a suite of pre-trained models that include face detection, face mesh, iris
landmarking, and hair segmentation, which can be leveraged to extend the functionality
of our application [60]. As demonstrated in Figure 3, our current framework incorpo-
rates hand and pose landmark estimations, showcasing HARE’s adaptability to diverse
application requirements.

Figure 3. HARE’s adaptability to different use cases is demonstrated by leveraging diverse landmark
estimation models. The top row shows examples of 2D pose estimations, while the second row
illustrates hand landmarks with specific annotations (e.g., right hand with red circles and green
connection lines, left hand with green landmarks and red connection lines). By utilizing different
models, HARE can accommodate a wide range of applications.

3.3.2. Multimodal Data Integration and Synchronization

Integrating pose estimation sequences and IMU data is pivotal in HARE. These data
sequences differ in their informational content. Pose sequences, derived from video data
captured by the same smartphone’s camera used for IMU data collection, store relative
positions, detailing spatial relationships of specific body points. In contrast, IMU data
comprise position-independent sensor readings, providing a complementary perspective.
Fusing these data types results in an enriched informational set.

Both data types are treated as time series, allowing their integration to be treated as a
multivariate time series. This is suitable as input for a deep learning model designed to
classify activities from sensor data alone. To achieve this integration, the pose estimation
data undergo specific preparation. Pose sequences are recorded at a frequency of 10 Hz
and are synchronized with the higher-frequency IMU data, typically collected at 60 Hz. An
interpolated data series of pose estimation for each sensor datum’s timestamp is created
for synchronization. More significant gaps in the data are addressed using value imputa-
tion [61], a method where missing values are replaced with a predetermined value (−1 in
our case). This strategy ensures that the temporal alignment between the pose and IMU
data is maintained, facilitating the creation of a cohesive and synchronized dataset.

Additionally, keypoints in all pose data series are centralized and reduced to 12 key-
points, focusing on the most informative points to eliminate redundancy. This reduction,
combining stationary keypoints such as those from the head and hips, streamlines the
dataset for efficient processing and analysis.

The final step involves concatenating the resultant pose sequences along the time axis
with the IMU sequences to create a comprehensive multimodal input. This integration
is crucial for the HARE system’s effectiveness, ensuring that time-aligned multimodal
data enhances the activity recognition’s accuracy and reliability. Through this process,



Sensors 2023, 23, 9571 10 of 23

HARE leverages the full spectrum of data modalities, providing a robust foundation for
the application’s deep learning models.

3.3.3. Optimal Sensor Placement

The outcome of the pose estimations yields 2D keypoints for each timestamp. Since
the position data exhibit a causal relationship with acceleration, we consider each keypoint
an accelerometer. Consequently, we interpret each keypoint as a potential location for
sensor placement [26].

To calculate the optimal sensor placement, we employ a three-phase algorithmic
procedure. In the first phase, we pre-process the selected pose estimations by consolidating
specific keypoints. Head-related and hip keypoints are replaced with a single average
keypoint, while the remaining 12 keypoints are centralized around a center of mass point
(0.5, 0.5) within each data series. To align with real-life scenarios, we reduce the number of
keypoints to five, selecting the wrists, ankles, and pelvis. This subset of keypoints has been
shown to provide rich information for full-body pose estimation [62]. The head is excluded
from sensor placement as it is considered less relevant to the studied movements.

In the second step, we introduce a cross-validated feature metric, denoted as Dk.
It is the core of our methodology and derived from the concept of cosine similarity, a
measure traditionally used to determine the angle between two non-zero vectors in a
multi-dimensional space. Each vector represents the potential sensor data over time for a
given keypoint. A lower cosine similarity, or conversely, a higher cosine distance, signifies
a more significant movement distinction between activities, which is desirable for sensor
differentiation and placement optimization. The vectors, denoted as Ai

k, capture the
positional data over time for each activity and keypoint subset and are assessed for their
dissimilarity to determine the ideal sensor locations. To clarify, in the expression Ai

k:

• k refers to the k-th keypoint, which is a potential position for sensor placement.
• i represents the i-th activity out of the total number of different activities present in

the dataset.
• Each vector Ai

k embodies the data for a specific activity as observed at the k-th
keypoint.

Each activity requires a minimum sequence length of 500 data points (corresponding
to a 50-s recording at 10 Hz), making it possible to run efficiently on a mobile device. The
Dk metric is computed as follows:

Dk :=
n−1

∑
i=1

n

∑
j=i+1

|1−
Ai

k ·A
j
k

‖Ai
k‖‖A

j
k‖
|. (1)

In this formula:

• The term Ai
k ·A

j
k represents the dot product of the activity vectors for two different

activities i and j at the same keypoint k.
• The denominator ‖Ai

k‖‖A
j
k‖ is the product of the norms of these vectors, ensuring

that the cosine similarity is normalized.
• A higher Dk value suggests greater dissimilarity between activities at a given keypoint.

In the concluding phase of our sensor placement optimization, we prioritize sensor
locations based on the Dk metric, sorting them in descending order of their values. Sensor
locations with higher Dk values are considered more optimal due to their greater movement
distinctiveness. These prioritized placements are then clearly presented within a dialog
box interface for user selection or further analysis.

For scenarios that require the deployment of multiple sensors, we facilitate the evalua-
tion of sensor pairings through vector concatenation. This process involves the sequential
joining of activity-specific vectors from each potential sensor location. For instance, to
assess the combination of a right wrist and pelvis sensor, we concatenate the activity
vectors from the right wrist with those from the pelvis, creating a new, extended vector
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representing the activity data for this dual sensor setup. Such composite vectors enable
direct comparison across various two-sensor combinations, helping to determine the most
effective pairings for capturing distinct activity patterns.

By utilizing a vision-based virtual sensor approach, we can determine the optimal
sensor placement more efficiently than physical IMUs and subsequent model training and
evaluation. Thus, having physical sensors or collecting IMU data is not required. Instead,
existing or self-recorded videos of targeted activities suffice to receive sensor placement
recommendations.

3.4. Dashboard

Ensuring data quantity and quality is crucial for the training process of an ML model.
Therefore, HARE provides a dashboard for data exploration and analysis. As shown in
Figure 2c, it provides statistics and filtering per person and activity, which can also be used
for process mining [63], e.g., nurses could analyze their data on how much time they have
spent on specific activities compared to other nurses. Furthermore, it can help to optimize
the execution time or rearrange the order of activities.

3.5. Real-Time Activity Recognition

We integrated a real-time activity recognition TFLite model, a lightweight, fast, cross-
platform, open-source ML framework specifically designed for mobile and IoT [54]. There
is no requirement for the model’s input size. Therefore, it is possible to train and infer
models based on either a single modality or through the combination of IMU, video, and
pose estimation. TFLite also facilitates on-device ML. We offer two options to train a model,
(1) offline and (2) on-device.

3.5.1. Offline Training

Offline training refers to the option to train a model outside the app [64]. Using the
WebDAV [65] protocol, recorded data can be uploaded to an external server by providing
the settings.

3.5.2. On-Device Training

The second option includes the possibility of training a model on-device [66]. This
enables the model to be improved on individual data, thus increasing the accuracy in
new settings. On-device training also enables updating a model without transferring data
to external devices, ensuring user privacy. Additionally, we do not require users to use
the latest offline model. The efficacy of on-device training depends on the use case and
can exhibit considerable variation, with training durations ranging from mere seconds to
several minutes. We advise pre-training the model offline and fine-tuning it on the device
to avoid prolonged on-device training times. Similar to model inference, on-device training
also causes rapid battery depletion. Although training a model from scratch on-device
utilizing the aforementioned features is feasible, this methodology requires a considerable
amount of training data and time, even when executed on high-powered servers. Hence,
retraining a pre-existing model specifically for on-device applications is advised.

We provide pre-trained classification models for different use cases and allow users to
fine-tune the model using transfer learning after collecting and labeling small amounts of
new data. In that case, the deep learning model’s layers will be frozen, excluding the last,
and trained for a defined number of epochs. After completing a training run on a device,
the model updates the set of weights in storage that can be saved in a checkpoint file for
later use. As an interactive outcome, we display a performance list for each activity in a
confusion matrix before and after on-device training. In doing so, we facilitate a human-in-
the-loop [67] process, which informs the study conductor of poorly recognized activities.
They can then decide to collect more data for these activities to improve model accuracy.



Sensors 2023, 23, 9571 12 of 23

4. Experimental Evaluation: Nursing Activity Recognition

To evaluate the functionality and advantages offered by HARE, we collected data on
nursing activities under the guidance of a professional nurse. To showcase its versatility
and effectiveness, we conducted an experiment specifically focusing on nursing activities.
Nursing activities were chosen due to their diverse and complex nature, demanding precise
and efficient data collection and classification. By deploying HARE in this real-world
scenario, we effectively demonstrate its capability to address the challenges associated
with data collection, classification, and privacy preservation. Moreover, this experiment is
an illustrative example of how our framework can be adapted to different domains and
applications, highlighting its potential to contribute to the HAR field.

4.1. Data Description

For the purpose of this study, we engaged in data collection employing a set of five
Xsens DOT sensors positioned at key anatomical locations: specifically, the left wrist, right
wrist, pelvis, left ankle, and right ankle. These sensors were configured to deliver data at
an output rate of 60 Hz, yielding an expansive dataset. Within each sensor, we obtained a
rich stream of information, consisting of 14 sensor streams per sensor (70 streams overall).
These streams encompassed a spectrum of data, including four-dimensional quaternion
values, four-dimensional angular velocity data derived from the quaternion values, three-
dimensional acceleration values, and three-dimensional magnetic field values. In our
experiments, the video recording for pose estimation was conducted in a lab environment
measuring approximately 4 m × 7 m. The mobile device used for recording was positioned
at a distance of approximately 2 to 3 m from the subject. This distance was found to be
optimal for capturing the subject’s full range of motion while maintaining the quality of
the recorded video. It is important to note that the pose estimation model employed in
our app normalizes the subject to the screen center. Therefore, variations in the distance
between the mobile device and the subject do not significantly impact the pose estimation
results. This normalization ensures consistent pose estimation accuracy regardless of minor
changes in the recording setup. Our dataset comprises 13 different activities by ten subjects.
The result was a compilation of 51 recordings, resulting in nearly 8 h of documented data.
The distribution of subjects across various activities is illustrated in Figure 4. Further, the
data collection, classification, and privacy preservation techniques presented in this work
are adaptable. Regardless of the specific sensor types, they can be applied across various
HAR scenarios.
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Figure 4. Sankey diagram showing the distribution of activities performed by Subjects 1 to 10
(denoted as Sub 1–Sub 10).
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4.2. Results

Offline training involved the utilization of three deep learning models. To enhance
the performance, we employed hyperparameter optimization through grid search [68],
resulting in a learning rate of 1× 10−4 and an input size set at 600× 70. This input size
corresponds to a 10-s window captured at a sampling rate of 60 Hz. Each model integrated
a preprocessing step designed to handle missing data, complemented by incorporating
a batch-normalization layer, which standardized inputs within each feature row. The
output layer of these models featured a dense softmax layer configured to align with
the number of activity classes. During the training process, we harnessed the Adam
optimization method [69]. For our multi-class classification problem, we adopted the
following categorical cross-entropy loss function:

L = − log

(
esp

∑C
j esj

)

Here , C represents the set of classes, s denotes the vector of predictions, and sp
indicates the prediction for the target class.

The architecture of the three models is defined below.

1. The CNN-LSTM model is composed of six layers. The input layer is followed by two
convolutional layers, two LSTM [70] layers, and the output layer.

2. The ResNet model is composed of 11 layers. Next to the input and output layers, it
has a repeated sequence of three convolution layers followed by a batch normalization
layer and an activation layer [71].

3. The DeepConvLSTM model is composed of eight layers. After the input layer, it is
followed by four consecutive convolution layers and two LSTM layers before the
softmax classifier [72].

For evaluation, we also used three different cross-validation techniques, namely,
(1) k-fold cross-validation on time windows of length 600 with k = 5; (2) leave-recordings-
out cross-validation: One recording corresponds to starting and ending a recording in one
go. In our study, the recordings are between ∼46 s and ∼1249 s, and we used an 80:20
train-test ratio. One recording can contain only one specific activity or multiple activities
performed multiple times. This validation technique reflects the model’s performance
when used within HARE; (3) lastly, we evaluate leave-one-subject-out cross-validation.

As shown in Table 2, the ResNet model performance is best for k-fold cross-validation,
whereas the CNN-LSTM model performs best on the leave-one-{recording/subject}-out
cross-validation metric.

Table 2. We compare the baseline results of three deep learning models (CNN-LSTM, ResNet, and
DeepConvLSTM) with Accuracy (higher is better) and F1 score (higher is better) using three cross-
validation methods (k-fold, leave-recordings-out, and leave-one-subject-out) with five sensors. The
standard deviation is reported with the ± symbol. We embolden the model per column.

Model k-Fold Leave-Recordings-Out Leave-One-Subject-Out
Accuracy F1 Accuracy F1 Accuracy F1

CNN-LSTM 0.832 (±0.01) 0.830 (±0.02) 0.632 (±0.03) 0.630 (±0.02) 0.565 (±0.05) 0.556 (±0.04)
ResNet 0.864 (±0.01) 0.864 (±0.01) 0.600 (±0.02) 0.603 (±0.03) 0.531 (±0.05) 0.527 (±0.03)
DeepConvLSTM 0.735 (±0.02) 0.730 (±0.04) 0.563 (±0.05) 0.565 (±0.05) 0.525 (±0.06) 0.515 (±0.04)

From the data in Figure 5a, we see that the model on k-fold cross-validation is able to
distinguish well between activities. The results of the confusion matrix for leave-recordings-
out cross-validation are set out in Figure 5b. It is apparent from this matrix that some
activities are mixed up when trained on recordings. Making the bed, e.g., has a low accuracy
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and is confused with assist in getting dressed. Similarly, skin care is confused with assist in
getting dressed or push the wheelchair.

1 2 3 4 5 6 7 8 9 10 11 12 13

0.88 0.1
0.91

0.95
0.9 0.1

0.89 0.06
0.11 0.89

0.05 0.82 0.05 0.05
0.91 0.06

0.07 0.85
0.07 0.93

0.91
0.94
0.07 0.88

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13

0.68 0.06 0.21
1.0

0.84 0.07
0.24 0.44 0.06 0.16 0.08

0.05 0.7 0.18 0.05
0.31 0.41 0.2
0.17 0.76

0.07 0.17 0.69 0.06
0.05 0.95

0.08 0.17 0.11 0.58 0.06
0.1 0.25 0.65

0.1 0.88
0.08 0.21 0.58

(b)

Figure 5. Confusion matrices on different evaluation metrics for DeepConvLSTM. Numbers below
0.05 are left out. The color intensity represents the degree of similarity between predicted and actual
values: darker colors along the diagonal represent accurate predictions (values closer to 1), while
lighter colors off the diagonal indicate misclassifications (values closer to 0). The color intensity serves
as a visual cue, emphasizing the model’s performance in correctly predicting different classes. (a) k-
fold cross-validation. (b) Leave-recordings-out cross-validation. Legend: 1 = assist in getting dressed;
2 = full body washing in bed; 3 = feeding; 4 = make the bed; 5 = clean up; 6 = skin care; 7 = push the
wheelchair; 8 = wheelchair transfer; 9 = comb hair; 10 = wipe up; 11 = prepare medication; 12 = serve
food; 13 = documentation.

4.2.1. Multimodal Activity Recognition

We employed the CNN-LSTM model architecture described in Section 4.2 for the mul-
timodal classification approach. This decision was informed by the model’s performance
in our baseline studies, particularly in leave-recordings-out and leave-one-subject-out
evaluations. These metrics are crucial for assessing the model’s adaptability to new data
and subjects, mirroring the anticipated real-world application of our system. Additionally,
the CNN-LSTM architecture represents a tailored adaptation in our research, differing
from standard models cited in the literature. Focusing on this architecture allowed us to
optimize our computational resources and delve deeper into the potential of multimodal
data integration. This architectural approach was used to combine the inertial data and
pose estimations. The results for each modality combination in the nursing dataset are
presented in Table 3. It is apparent from this table that combining both IMU and pose
estimation data consistently yielded the best performance, while relying solely on pose
estimation data resulted in the poorest performance across all modalities.

Table 3. Classification results obtained for three different input data modalities: IMU, pose estimation,
and the combination of IMU and pose estimation (IMU+pose estimation), using three evaluation
methods: k-fold, leave-recordings-out, and leave-one-subject-out. The experiments were conducted
to classify high-level activities constituting complex activities in nursing. We report the same metrics
for each combination of input data and evaluation methods. We embolden the model per column.

Input Data k-Fold Leave-Recordings-Out Leave-One-Subject-Out
Accuracy F1 Accuracy F1 Accuracy F1

IMU 0.823 (±0.03) 0.822 (±0.04) 0.615 (±0.04) 0.611 (±0.06) 0.489 (±0.05) 0.474 (±0.06)
Pose Estimation 0.421 (±0.07) 0.361 (±0.03) 0.424 (±0.06) 0.410 (±0.07) 0.359 (±0.05) 0.281 (±0.08)
IMU + Pose Estimation 0.838 (±0.01) 0.836 (±0.02) 0.641 (±0.01) 0.638 (±0.03) 0.501 (±0.02) 0.478 (±0.03)
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The findings presented in Table 4 validate our observations, as they are consistent
with results obtained from a second dataset focusing on simple activities in daily living,
including walking, walking upstairs, walking downstairs, standing, sitting, and lying. It is
worth noting that, in each investigated case, the pose estimation modality’s performance is
noticeably lower than other modalities.

Table 4. Classification results obtained for three different input data modalities: IMU, Pose Estimation,
and the combination of IMU and Pose Estimation (IMU+pose estimation), using three evaluation
methods: k-fold, leave-recordings-out, and leave-one-subject-out. The experiments were conducted
to classify low-level activities constituting simple activities of daily living. We embolden the best
model per column.

Input Data k-Fold Leave-Recordings-Out Leave-One-Subject-Out
Accuracy F1 Accuracy F1 Accuracy F1

IMU 0.912 (±0.03) 0.912 (±0.02) 0.895 (±0.02) 0.893 (±0.02) 0.860 (±0.04) 0.854 (±0.03)
Pose Estimation 0.533 (±0.07) 0.465 (±0.09) 0.550 (±0.06) 0.532 (±0.07) 0.569 (±0.08) 0.511 (±0.06)
IMU + Pose Estimation 0.920 (±0.01) 0.917 (±0.01) 0.902 (±0.02) 0.898 (±0.01) 0.887 (±0.01) 0.871 (±0.02)

4.2.2. On-Device Learning

To evaluate the performance of our on-device training, we employed the leave-one-
subject-out cross-validation method, in which we trained the model on data from all
subjects except one, using this withheld subject’s data for validation. The model trained
using the leave-one-subject-out cross-validation served as a reference model, which we
compared with the model trained on the left-out subject’s data to evaluate the effective-
ness of our on-device training approach. We employed a two-step evaluation process
to assess the effectiveness of our on-device training approach. First, we used the leave-
one-subject-out cross-validation method, where we trained the model on data from all
subjects except one and reserved this left-out subject’s data for evaluation. The prediction
accuracy obtained for the left-out subject served as a reference value. Next, we further eval-
uated the model’s performance on the left-out subject’s data using the leave-recordings-out
cross-validation method. We split the left-out subject’s recordings into an 80:20 ratio, with
80% for training and 20% for testing. This allowed us to provide an unbiased estimate
of the model’s performance and compare it with the reference value obtained from the
leave-one-subject-out cross-validation. Since only four subjects performed all activities
and had at least five recordings for validation, we only included them for comparison. We
used 10 epochs to retrain the given model on all four subjects. On-device training, utilizing
TFLite for classification, varies in duration. Given our setup with transfer learning and a
batch size of 7, the training time was between 7 and 9 min for a small dataset. Table 5 shows
increased classification performance for all considered models using this approach. Two ad-
ditional datasets confirmed the results. For all investigated models on the OPPORTUNITY
dataset [73], we achieved an average accuracy improvement over all subjects of 47% for the
ResNet model, as shown in Table 6. Another dataset on gait analysis [74] led to improved
average performance over all subjects of 49%, as highlighted in Table 7. The improved
accuracy through on-device training can be further explored per activity by displaying the
confusion matrix depicted in Figure 6.
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Table 5. The classification results for different models with offline and on-device training are com-
pared. We show three different models (CNN-LSTM, ResNet, and DeepConvLSTM) with both offline
and on-device training for the nursing activity dataset. The best scores are emboldened row-wise per
metric. We report the same metrics for each combination of input data and evaluation methods. We
embolden the best model per column.

Model Offline Training On-Device Training
Accuracy F1 Accuracy F1

CNN-LSTM 0.352 (±0.07) 0.310 (±0.06) 0.527 (±0.02) 0.492 (±0.03)
ResNet 0.487 (±0.04) 0.473 (±0.06) 0.489 (±0.03) 0.495 (±0.04)
DeepConvLSTM 0.320 (±0.08) 0.193 (±0.09) 0.416 (±0.04) 0.237 (±0.05)

Figure 6. Comparison of the classification results before (first and third picture) and after (second
and last picture) on-device transfer learning for two different datasets depicted in a confusion matrix
within HARE. The first two images show the gait analysis dataset, whereas the last two illustrate the
results for the nursing dataset.

Table 6. The classification results for different models with offline and on-device training are compared.
We show three different models (CNN-LSTM, ResNet, and DeepConvLSTM) with both offline and
on-device training for the OPPORTUNITY dataset. The best scores are emboldened row-wise per metric.

Model Offline Training On-Device Training
Accuracy F1 Accuracy F1

CNN-LSTM 0.644 (±0.08) 0.612 (±0.09) 0.745 (±0.09) 0.703 (±0.07)
ResNet 0.493 (±0.12) 0.487 (±0.11) 0.727 (±0.10) 0.671 (±0.12)
DeepConvLSTM 0.598 (±0.09) 0.599 (±0.09) 0.654 (±0.07) 0.615 (±0.06)

Table 7. The classification results for different models with offline and on-device training are compared.
We show three different models (CNN-LSTM, ResNet, and DeepConvLSTM) with both offline and
on-device training for the gait analysis dataset. The best scores are emboldened row-wise per metric.

Model Offline Training On-Device Training
Accuracy F1 Accuracy F1

CNN-LSTM 0.607 (±0.12) 0.598 (±0.11) 0.832 (±0.16) 0.821 (±0.13)
ResNet 0.580 (±0.13) 0.576 (±0.12) 0.863 (±0.19) 0.847 (±0.15)
DeepConvLSTM 0.578 (±0.12) 0.530 (±0.14) 0.817 (±0.13) 0.813 (±0.12)
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4.2.3. Optimal Sensor Placement

Given five sensors, we trained a total of 31 models for all possible sensor combinations
with the CNN-LSTM model. The F1 score was different depending on the sensor’s location.
Similarly, we obtained different results for Dk, calculated from 3000 data rows. This
corresponds to 5 min at a frequency rate of 10 Hz per activity and sensor. Since we
collected data from five sensors, we only considered results for all five body locations. The
results for both approaches are shown in Figure 7. This figure shows that three out of four
recommended sensor placements match the classification results. There is only a slight
difference in the placement of two sensors. Determining the optimal sensor placement with
our approach took only 185 s compared to the 27 h of model training with the classical
approach.
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Figure 7. Comparing sensor placements for nursing activity monitoring: F1 (left) vs. Dk analysis
(right). Optimal positions are highlighted in red. Each image reveals the best placement correspond-
ing to the number of sensors available.

We also used the deep inertial poser (DIP) dataset, which provides valuable insights
for evaluating our optimal sensor placement approach [62]. The DIP dataset is a collection
of real IMU data augmented with corresponding 3D pose estimations based on the skinned
multi-person linear (SMPL) model [75].

The SMPL model is a foundation for representing human body pose and shape
variations. It is defined by a set of pose parameters θ and shape parameters β, which
capture joint rotations and body shape, respectively. The model defines a mapping from the
pose and shape parameters to the 3D coordinates of the body vertices, denoted as V. This
mapping is represented by the function V =M(θ, β) and includes a total of 6890 vertices.

Our proposed approach leverages both IMU readings and the corresponding 3D
pose estimations of arbitrary body points. Due to the limited availability of datasets that
include synchronized IMU data and 3D pose estimations, the applicability of our approach
is currently constrained to a few datasets, like the DIP dataset. The dataset consists
of approximately 90 min of real IMU data collected from 10 subjects wearing 17 Xsens
sensors. The dataset encompasses 64 sequences with 330,000 time instants. Participants
were instructed to perform various motions falling into five different categories. These
categories include controlled motion of the extremities (e.g., arm and leg movements) in
(1) locomotion, (2) upper body, (3) lower body, (4) freestyle, and (5) interaction. The dataset
comprises 13 activities, providing a diverse range of motions for validation and analysis.
The dataset’s modalities and division into categories make it particularly interesting and
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suitable for our approach. We chose the same five positions (wrists, ankles, and pelvis) to
track the movements in 3D. As illustrated in Figure 8, we achieved a total match with the
trained model on this dataset.
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Figure 8. Comparing sensor placements for DIP-IMU: F1 (left) vs. Dk analysis (right). Optimal
positions are highlighted in red. Each image reveals the best placement corresponding to the number
of sensors available.

Further, we conducted a small-scale experiment to demonstrate HARE’s sensor place-
ment capabilities. The experiment involved five participants engaging in six different
activities of daily living (ADL): sitting, walking, ascending stairs, descending stairs, stand-
ing, and lying down. Each activity was performed for ten minutes. Three sensors were
placed at the right wrist, pelvis, and right ankle. This setup aimed to capture a compre-
hensive range of motion data for each activity. The results from our sensor placement
analysis indicated that the right wrist is the optimal location for sensor placement in both
approaches.

5. Discussion

This paper addresses the development of an application combining various HAR
functionalities in a single application. Special attention is given to real-time classification, a
multimodal approach, on-device training, and optimal sensor placement.

The results from the single modality analysis show that k-fold cross-validation pro-
vides the best results. This is related to the training process of the network being able to see
a portion of the data from all subjects. Theoretically, leave-recordings-out can comprise the
same data as leave-one-subject-out or k-fold. This depends on how the data were recorded.
Therefore, it is not possible to conclude about the model’s performance, depending on the
recording’s composition. The given result for leave-recordings-out may be explained by
the fact that the model has not seen recorded data on all subjects or activities per subject,
which can be assumed from the lower accuracy compared to k-fold cross-validation. This is
also supported by the performance on each activity, presented in Figure 5b. Certain activity
misclassifications, such as classifying making the bed as assist in getting dressed and vice
versa, are likely to be related to similar movement patterns. Differences between activities
skin care and assist in getting dressed are also related to similar movements. On the other
hand, the activity full body washing in bed is always predicted correctly. This result may be
explained by the fact that this activity was the most recorded.
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Overall, the ResNet model performed best on k-fold cross-validation. The shallower
model, CNN-LSTM, has more trainable parameters and performs best on the other two
evaluation metrics. The discrepant results for leave-one-subject-out cross-validation in
Table 2 and offline training in Table 5 are due to the subjects considered. We only in-
cluded the four subjects that performed all activities and had at least five recordings to
make the evaluation possible. However, we could show that this can be compensated by
on-device training.

While multimodal classification approaches exist, the unique advantage of HARE is
its integrated data collection. Unlike existing approaches that require multiple devices
and subsequent synchronization, HARE simultaneously collects pose estimation and IMU
data. This approach simplifies the process while ensuring seamless data integration for
improved classification accuracy. However, the observed performance boost is relatively
modest. Two potential factors may contribute to this outcome. Firstly, the variations
in camera angles during data acquisition could impact the results. When recordings
are captured from a side view, the keypoints tend to be closer together in the 2D space,
posing a challenge for accurate classification. The viewing angle of the camera, therefore,
plays a crucial role in the overall performance. Secondly, the absence of pose estimations
under certain conditions could affect the results. When the camera fails to capture the
entire body or significant portions of it, obtaining accurate pose estimations becomes
infeasible. Out of the 51 recordings examined, ten recordings lack pose estimation data
due to these limitations. These factors highlight the complexities and limitations inherent
in combining IMUs and pose estimation data for improved classification. Understanding
the influence of camera angles and addressing challenges related to pose estimation under
various conditions are essential considerations for further enhancing the performance of
our multimodal approach.

The cross-validated feature metric Dk represents an innovative aspect of our research,
differing significantly from traditional sensor placement strategies. By leveraging the
collected pose estimation data, we optimize sensor placement more efficiently, eliminating
the need for additional devices or time-consuming model training processes. It effectively
captures the significance of hand movements and shows the successful performance of
multiple sensor combinations. Interestingly, the approach yields accurate results even when
a sensor detects minimal motion, such as the pelvis sensor. These findings align with those
obtained from trained models, suggesting that the sensors act as counterparts, with one
serving as a root or reference point. However, it is important to note that using different
ML models can lead to varying outcomes. Therefore, it becomes challenging to attribute
the minimal difference between the two sensors to the specific model used. Different ML
models may produce slightly different results, and further investigation is necessary to
ascertain the relationship between sensor differences and model performance. Overall, the
consistency between the cross-validated feature metric and trained models highlights the
effectiveness of our approach in determining optimal sensor localization. The collaborative
nature of the sensors and the influence of different ML models contribute to the subtle
results observed, underlining the complexity of sensor placement optimization in human
activity recognition.

Limitations

Our approach comes with some limitations. Currently, we only offer the connection
with the Xsens DOT sensors, and HARE is only available for the Android operating system.
When forming pose estimations, distortions in the image can occur quickly if there are
objects in front of the person or if the focus is shifted. This leads to low confidence values
and, thus, gaps in data collection. Consequently, this would corrupt both a multimodal
approach and the optimal determination of sensor positions. Furthermore, our method
employs a 2D pose estimation technique that does not consider depth mapping. Conse-
quently, when the person being observed turns or the recording angle changes, there may
be inaccuracies in estimating the person’s distance. While our optimization method for
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sensor placement has demonstrated its effectiveness, ease of implementation, and speed, it
is essential to acknowledge that our study did not include a direct comparison with other
methods for optimization. The main reason for this omission is the limited availability of
readily implementable alternatives for direct evaluation.

6. Conclusions and Outlook

We designed an on-body sensor-based HAR application system in this research study
and evaluated its features. In conclusion, our work introduces several innovations and
contributions to HAR. First, we streamline the data collection process and integrate a novel
approach for multimodal classification using a single device. This approach represents
a significant advancement over traditional methods that rely on multiple devices and
complex synchronization. Second, the pose estimation technique can effectively anonymize
test subjects. Third, we demonstrate the possibility of determining the optimal sensor
placement without the necessity of actual IMUs. To determine the optimal placement,
videos from targeting activities are sufficient. Lastly, the possibility to infer a personalized,
privacy-preserving on-device trained model and a multimodal real-time classification
approach on different use cases.

Our vision-based approach has demonstrated how integrating several HAR tasks into
a single workflow can significantly enhance the efficiency and accuracy of HAR. We aim to
further these innovations by exploring advanced pose estimation techniques, such as 3D
pose estimation models, video recordings, and diverse sensor types. Future work will also
address implementing and comparing other sensor optimization methods.
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