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Abstract: This study focused on one of the few but critical sample preparations required in soil
spectroscopy (i.e., grinding), as well as the effect of soil particle size on the FTIR spectral database
and the partial least squares regression models for the prediction of eight soil properties (viz., TC,
TN, OC, sand, silt, clay, Olsen P, and CEC). Fifty soil samples from three Moroccan region were used.
The soil samples underwent three preparations (drying, grinding, sieving) to obtain, at the end of the
sample preparation step, three ranges of particle size, samples with sizes < 500 µm, samples with
sizes < 250 µm, and a third range with particles < 125 µm. The multivariate models (PLSR) were set
up based on the FTIR spectra recorded on the different obtained samples. The correlation coefficient
(R2) and the root mean squared error of cross validation (RMSECV) were chosen as figures of merit
to assess the quality of the prediction models. The results showed a general trend in improving
the R2 as the finer particles were used (from <500 µm to 125 µm), which was clearly observed for
TC, TN, P2O5, and CEC, whereas the cross-validation errors (RMSECV) showed an opposite trend.
This confirmed that fine soil grinding improved the accuracy of predictive models for soil properties
diagnosis in soil spectroscopy.

Keywords: particle size; FTIR; soil properties; partial least squares regression

1. Introduction

Soil, defined as a thin layer that covers the Earth’s surface, is among the most important
resources for human life with regard to food production [1]. Its importance emanates from
its complexity, as it is considered as the most complicated biomaterial on Earth. Soil
characteristics contrast spatially and temporally, making soil quality monitoring very
challenging [2,3].

In 1951, Nelson et al. [4] showed that the rational use of agricultural soil analysis can
contribute to better soil management. Modern diagnosis of agricultural soil began with
Bray in 1948 [5], who developed analytical procedures to quantify soil nutrient reserves.
Eight years later, Fitts and Nelson [6] suggested the use of soil testing results in fertilizer
and liming recommendations.

Soil quality monitoring is a key task allowing the understanding of the nature (i.e.,
particle size distribution, acidity, and nutrient availability) and state of health of soil,
which impact productivity and, thus, crop yield [7]. Nevertheless, the standard soil testing
methods, which require numerous dangerous chemicals, are labor intensive, expensive,
and slow. On the other hand, the recent approaches to simplify soil testing, especially
with emerging international crises such as global climate change due to environmental
pollution, prompts the use of green technologies such as infrared spectroscopy for both
in-field and laboratory-based soil analyses, thus avoiding chemical reagents and chemicals.
Spectroscopic techniques are considered as fast, low-cost, and reliable methods that can
provide a consistent solution for rapid soil analysis.
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In recent years, infrared spectroscopy in its two main ranges (NIR and MIR) has been
increasingly used not only as a qualitative tool (i.e., molecular bounds identification), but
also as a quantitative tool in many fields, namely, food, pharmaceutics, petroleum, and
for soil diagnosis [8,9]. The coupling of spectral techniques with multivariate modeling
algorithms (i.e., chemometrics and machine learning modeling) was found to provide a
fast, cost-effective, environmentally friendly, and non-destructive solution, until becoming
a trendy field of research and development for assessing various soil physical, chemical,
and biological properties [10].

Among the advantages of this technology is the fact that it requires few steps to be
performed before the analysis of samples, i.e., drying the soil sample at 39 ◦C for about 24 h
and fine grinding [11]. However, the problem that can appear during preparation is the
effort required to grind the soil particles very finely (<80–200 µm). Although it is costly and
tedious, in order to synchronize the effective diameter of the soil sample (i.e., powdered
sample) with the diameter of the infrared beam, which is generally between 1 and 2 mm,
the particle should be as fine as possible in order to have as many units that contribute to
the signal leading to the spectrum, and larger particles can cause specular reflections and
yield spectra that do not appropriately represent the sample [11,12].

Numerous studies agree on the importance of finely grinding soil samples for mid-
infrared spectroscopy analysis (MIR) as a solution for sample homogenization, inhibition
of specular reflections, the elimination of spectral artifacts, and for increasing the amount of
materials in contact with the light beams [11–14]. Conversely, some papers advise that too
much grinding may have adverse effects on the resulting spectra, namely, the destruction
of chemical bonds of soil organic or mineral constituents, for two main reasons, i.e., the
mechanical effect and frictional heating [14,15].

Regarding the study of the effect of grinding the soil samples on soil spectroscopy
models, Janik et al. (2016) [16] achieved a significant improvement for clay and sand models
and impairments for silt. Guillou et al. (2015) [11] used 227 samples from Australia to test
the effect of fine grinding on the quality of PLS models. The results showed that by using
fine ground samples (<1 mm), the model accuracy was improved for organic C, sand, and
clay, but no enhancement was noted for silt. Deiss et al. (2019) [17] worked on 400 soils
from the U.S. and tested the influence of grinding on the quality of support vector machine
regression models for five soil properties (i.e., clay, sand, permanganate-oxidizable C, pH,
and TOC). Their finding was that the best models were obtained using fine ground simples
< 0.5 mm with collecting multiple spectra (repetitions).

In all previous studies, it was confirmed that fine soil grinding increased the accuracy
of predictive models. The comparisons were made between spectra collected on ground
soil samples and on raw samples, the gap that exists in the bibliography is that none of this
research compared models resulting from different grinding ranges to decide on the best
particle size choice to obtain the best machine learning model.

To address this issue, in the present paper, the effect of soil particle size was studied
by comparing the resulting PLSR models from three ranges of particle size (<500 µm,
<250 µm, and <125 µm) to conclude on the best practice to improve predictions for eight
soil properties (TC, TN, OC, sand, silt, clay, Olsen P, and CEC).

2. Materials and Methods
2.1. Soil Sample Preparation and FTIR Spectra Acquisitions
2.1.1. Soil Sample Preparation

The study was focused on soils of Morocco, which were collected from three agricul-
tural regions, namely Rhamna, Larache, and Beni Mellal (see Figure 1). These three regions
are among the largest agricultural regions with significant production, characterized by
fertile and calcareous soils (Rhamna). A total of 50 soil samples were collected from the
three regions taking into account soil textural variations. These soils were ground using
a pestle and mortar to pass through a 2 mm sieve after drying in an oven at 39 ◦C for
48 h. Subsequently, the samples were ground further until it turned to powder using an
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automated pestle and mortar grinder RM200 from Retsch by applying three settings of
pressure of the mortar and the pestle (i.e., 3, 5, and 7), as outlined in the workflow depicted
in Figure 2. Then, the soil samples were sieved to pass through 500, 250, and 125 µm,
resulting in 150 subsamples.
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2.1.2. FTIR Spectra Acquisition

The soil powders were then loaded into a 96-micro-well spot plate adaptable for the
Tensor autosampler. Two sub-samples from each sample were loaded into two wells on
the plate. The surface of the sample in each well was flattened using a spatula to facilitate
spectral scanning. The spectra recording was conducted between 4000 and 600 cm−1 with
4 cm−1 as resolution, and the scan number was set at 60 scans per acquisition [18], using
a Bruker Tensor II bench-top spectrometer Massachusetts, USA at the Soil Spectroscopy
Laboratory of the Centre of Excellence for Soil and Fertilizer Research in Africa, at the
Mohammed VI Polytechnic University, Morocco.
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Figure 2. Workflow for building the database used in the study of the effect of particle size on
soil spectroscopy.

2.2. Determination of Particle Size Distribution

After the sieving operation of the 150 subsamples, the particle size distribution of
the soil samples was achieved using a Mastersizer 2000 from Malvern Instruments Ltd.,
Malvern, United Kingdom, in the range 0.02 to 2000 µm, using water as dispersant, to
ensure that the size of soil particles respect the fixed ranges (<500, <250, and <125 µm), and
to confirm the success of the grinding and sieving operation.

2.3. Soil Property Measurements

Soil physical–chemical properties such as soil total carbon (TC) via combustion method
(ISO 10694), total nitrogen via combustion method (ISO 13878), organic carbon (OC)
(ISO 10694), sand, silt, and clay (Bouyoucos method ISO 13317), available phosphorus
using Olsen method (ISO 11263), and the hexamine-cobalt method for cation exchange
capacity (NF ISO 23470) were analyzed in the Soil Testing Laboratory of the Agricultural
Innovation and Technology Transfer Center (AITTC-UM6P).

2.4. Chemometrics Analysis

Chemometrics is defined as the part chemistry that integrates mathematical modeling
and computer tools to highlight the valuable information from analytical data [19]. It is
generally used to reduce data dimensionality and investigate the relationships between
samples and variables [20,21].

Chemometric tools can be classified into two main types, viz., unsupervised methods
(i.e., Principal Components Analysis), applied as exploratory methods, and supervised
methods, used for predictive purposes [22,23].

Partial least squares (PLS) regression belongs to the supervised method category,
and it is very widely used with spectroscopic data as the standard chemometric tool
applied to perform calibrations and predictions [24]. PLS models the relationship between
two matrices, X (spectroscopic data) and Y (variable to be predicted), by finding linear
combinations of X and Y matrices that are called latent variables (LVs) [25].
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In the present study, the effect of the sample’s particle size was assessed by setting-up
predictive models using the entire FTIR spectra measured on the soil samples (X matrix)
after all the preparation steps as described in Figure 2. To remove the external variation
effects, the 1st derivative preprocessing was applied to all the calibrated models [26]. It
is the simplest form of Savitzky–Golay derivatives applied to eliminate useless signals
and reduce the scattering effect before the spectral data proceed to the calibration step.
The validation of the built models was performed via the “leave one out” cross-validation
method [27], which made it possible to calculate the figure of merit (R2 and RMSECV)
required to assess the predictive quality of the PLS models.

2.5. Software for Data Processing and Statistical Criteria for Assessing the Quality of the
PLSR Models

The performance evaluation of the PLS models was performed by testing two main
figures of merit, namely, the cross-validation error or root mean squared error of cross-
validation (RMSECV), calculated as:

RMSECV =

√
∑N

i=0(ŷi − yi)
2

N
(1)

where N is the number of samples in the calibration set, yi and ŷi are, respectively, the
observed and predicted values for sample I and the correlation coefficient R2 [28,29].

The calibration of the different PLSR models was performed on OPUS Quant II 8.1
software from Bruker Optiks GmbH, Billerica, MA, USA.

3. Results and Discussion
3.1. FTIR Spectra

Figure 3 shows the different spectra obtained after grinding and sieving operations,
where spectra A, B, and C denote the spectra of particle sizes 500, 250, and 125 µm, respec-
tively. On these spectra, the fundamental vibrations between 4000 and 2500 cm−1 are caused
by O–H, C–H, and N–H stretching; more precisely, the peaks around (3800–3600 cm−1)
are attributed to O–H stretching in clay minerals [30], and the bonds near to 3550 cm−1

are associated with the Al-OH vibrations from kaolinite [31]. The region from 2500 to
2000 cm−1 is linked to the triple-bond stretching vibrations such as the nitrile group (C≡N),
which can be observed between 2200 and 2300 cm−1. The double-bond vibrations can be
found in the region between 2000 and 1500 cm−1, such as the C=C and C=O stretching
observed in the range 1500–2500 cm−1 [32]. While the fingerprint is highlighted in the
range between 1500 and 400 cm−1 [32], the interpretation of the different bounds in this
region is difficult since it characterizes the fingerprint of the mineral compounds [30]. In
addition, through visual inspection, no difference can be highlighted between the spectra
belonging to the distinct groups of particle size.

On the other hand, after the application of the first derivative preprocessing (Figure 3D),
the spectral data became more homogeneous, and the spectral abundance of the major
bands is easier to highlight. This provides reassurance that the external effects and the
noise have been eliminated, and only the main part relating to the chemistry of the samples
is remaining.

3.2. Particle Size Distribution

The determination of the particle size distribution of the different groups of samples
prepared (ground and sieved) was performed in order to ensure that the particles size of
these samples respect the fixed ranges (<500, <250, and <125 µm) before proceeding to the
FTIR spectra recording. The results showed that the grinding and the sieving operations
led to samples that respected the particle size limits; the abundance of the desired particle
sizes is centered in the middle of the intervals (90% of the particles of the three groups <125,
<250, and <500 µm have, respectively, a particle size in the range of 5–125 µm, 40–250 µm,
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and 50–400 µm, and no cases of contamination have been detected. Figure 4 represents the
average particle size curves of the samples belonging to the different particle size groups.
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3.3. Effect of the Particle Size Distribution on the Predictive Capacity of Soil Spectroscopy Models

To better highlight the effect of the soil sample’s particle size on the FTIR spectra and
the predictive models, partial least squares regression was used to set up calibrations for
each of the eight soil properties against the particle size range (i.e., <500, <250, and <125 µm)
using a set of fifty soil samples. By inspecting the figures of merit of the different models set
up for the eight soil properties, based on the samples resulting from the various preparation
operations, a general increasing trend in the correlation coefficient R2 was observed from
the models with samples <500 µm to samples <125 µm, since it was noticed that the models
built on the finer particles were characterized with the highest R2 (Figure 5A); except for
OC and the texture (sand, silt, and clay), it can be seen that the effect can be considered
insignificant. In contrast, the opposite was observed for the cross-validation error RMSECV,
which decreased when decreasing the size of the particles, as the >250 µm models were
distinguished by producing the lowest errors (Figure 5B).

Sensors 2023, 23, x FOR PEER REVIEW 8 of 13 
 

 

 
Figure 5. (A) Variation in the correlation coefficients according to the size of sample particles pre-
pared before the acquisition of the FTIR spectra of the fifty soil samples. (B) Variation in the root 
mean squared error of cross validation (RMSECV) for eight selected soil properties according to the 
particle size range of the forty prepared soil samples. 

Furthermore, the refinement of the multivariate calibrations, indicated by the im-
proved linearity between the predicted and the real values of the different properties, was 
directly linked to the increasing correlation coefficients, as shown in Figures 5 and 6. 

Figure 5. Cont.



Sensors 2023, 23, 9171 8 of 12

Sensors 2023, 23, x FOR PEER REVIEW 8 of 13 
 

 

 
Figure 5. (A) Variation in the correlation coefficients according to the size of sample particles pre-
pared before the acquisition of the FTIR spectra of the fifty soil samples. (B) Variation in the root 
mean squared error of cross validation (RMSECV) for eight selected soil properties according to the 
particle size range of the forty prepared soil samples. 

Furthermore, the refinement of the multivariate calibrations, indicated by the im-
proved linearity between the predicted and the real values of the different properties, was 
directly linked to the increasing correlation coefficients, as shown in Figures 5 and 6. 
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before the acquisition of the FTIR spectra of the fifty soil samples. (B) Variation in the root mean
squared error of cross validation (RMSECV) for eight selected soil properties according to the particle
size range of the forty prepared soil samples.

Furthermore, the refinement of the multivariate calibrations, indicated by the im-
proved linearity between the predicted and the real values of the different properties, was
directly linked to the increasing correlation coefficients, as shown in Figures 5 and 6.

The total carbon models were upgraded from values of R2 = 0.93 and RMSECV = 0.18%
with <500 µm samples to values of R2 = 0.95 and RMSECV = 0.15% with samples <125 µm;
for TN, the predictive capabilities of the PLS models were improved by a value of 0.05 R2

units from R2 = 0.75 with <500 µm to a value of R2 = 0.80; when working with samples
lower than 125 µm, the RMSECV value was stable between all the calibrated models at a
very low value of 0.03%, and the same trend was noticed for the other properties except
for OC, sand, silt, and clay, where the increase in the predictive quality was not significant.
The obtained results clarified the improvement in the spectral data quality, translated by
the enhancement of the predictive quality of the PLSR models calibrated for the estimation
of the different soil properties by making the samples finer after the grinding and sieving
operations.

Moreover, the high-quality PLSR model set-up based on the Moroccan soil spectral
database (R2 > 0.85 and low cross-validation errors) for the seven properties (TC, TN,
OC, sand, silt, clay, and CEC) was established, even though the database used in this
study contained a limited number of samples (only 50 samples), while, as described in
the literature, the larger the databases are, the better the models found will be [33]. This
confirms that not only does the size of the database influence the quality of the PLSR
models, but also the quality and the representativity of the data components (FTIR spectra)
affect the soil spectroscopy models.

The reason behind this effect can be explained by the contact between the beam
diameter of the MIR ray (1–2 mm) and soil particles (Figure 7), the problem with larger
particles is that they can cause specular reflections and lead to spectra that correspond to
the response of just one particle and do not appropriately represent the sample [12].
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Figure 7. Contact phenomenon between the infrared beam in the FTIR and the soil particles of the
sample to be analyzed.

4. Conclusions

In this paper, it was shown that soil particle size is an essential factor that influences
both the quality of FTIR spectra acquisition and affects the multivariate model precision
built based on these FTIR spectra for the estimation of eight important soil properties,
namely, soil TC, TN, OC, sand, silt, clay, Olsen P, and CEC.

Fifty soil sample have undergone several preparations (drying, grinding, sieving) in
order to obtain, at the end, three particle size ranges, i.e., samples with sizes < 500 µm,
samples with sizes < 250 µm, and a third range with particles < 125 µm. The PLSR models
were set up based on the FTIR spectra recorded on the different obtained samples. A
general trend in the improvement of R2 as the finer particle was observed (from <500 µm
to 125 µm), at least clearly for TC, TN, P2O5, and CEC, whereas an opposite tendency
was observed on the RMSECV. This indicates that the best spectral quality and predictive
models were obtained on the finer particles, thus confirming the contact phenomenon
theory, such that the finer the particles are, the greater will be the number of particles
that will contribute to the acquisition of the FTIR spectrum, and this will lead to a more
representative spectrum of the sample.
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