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Abstract: Soil fertility is vital for the growth of tea plants. The physicochemical properties of soil
play a key role in the evaluation of soil fertility. Thus, realizing the rapid and accurate detection of
soil physicochemical properties is of great significance for promoting the development of precision
agriculture in tea plantations. In recent years, spectral data have become an important tool for the
non-destructive testing of soil physicochemical properties. In this study, a support vector regression
(SVR) model was constructed to model the hydrolyzed nitrogen, available potassium, and effective
phosphorus in tea plantation soils of different grain sizes. Then, the successful projections algorithm
(SPA) and least-angle regression (LAR) and bootstrapping soft shrinkage (BOSS) variable importance
screening methods were used to optimize the variables in the soil physicochemical properties. The
findings demonstrated that soil particle sizes of 0.25–0.5 mm produced the best predictions for all
three physicochemical properties. After further using the dimensionality reduction approach, the
LAR algorithm (R2

C = 0.979, R2
P = 0.976, RPD = 6.613) performed optimally in the prediction model

for hydrolytic nitrogen at a soil particle size of 0.25~0.5. The models using data dimensionality
reduction and those that used the BOSS method to estimate available potassium (R2

C = 0.977,
R2

P = 0.981, RPD = 7.222) and effective phosphorus (R2
C = 0.969, R2

P = 0.964, RPD = 5.163) had the
best accuracy. In order to offer a reference for the accurate detection of soil physicochemical properties
in tea plantations, this study investigated the modeling effect of each physicochemical property under
various soil particle sizes and integrated the regression model with various downscaling strategies.

Keywords: NIR spectroscopy; soil; dimensionality reduction; support vector regression; tea garden

1. Introduction

Worldwide, the tea plant is one of the most important nonalcoholic beverage crops [1].
Tea is a perennial shrub that is mainly distributed in tropical and subtropical developing
countries such as China and India. Compared with cereal crops, tea is an evergreen plant,
the new buds and leaves of which are constantly being planted [2]. At 3.37 million hectares,
China accounts for 63.4% of all tea harvests in the world [3]. However, the improvement in
tea yield and quality cannot be separated from the impact of soil fertility.

Soil physicochemical properties refer to various natural factors in the soil, which
play an important role in soil fertility. Realizing the accurate and rapid detection of the
physicochemical properties of soil is beneficial for increasing tea yield and improving tea
quality. At present, some analytical techniques for the detection of soil physicochemical
properties have drawbacks, such as being time-consuming and involving destructive
sampling [4,5].
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Near-infrared spectroscopy is a commonly used non-destructive testing method, which
can realize the rapid non-destructive testing of samples with high detection efficiency and
low cost [6]. It is widely used in the fields of agriculture [7], forestry [8], bioscience [9], and
medicine [10], among others. In recent years, a large number of scholars have constructed
spectral prediction models based on the physical and chemical properties of soil. Tan [11]
presented a new method for the determination of nitrogen in soil by using a near-infrared
spectrum technique and random forest regression (RF), with a resulting R2

C of 0.9478 and
an R2

P of 0.8743. After comparing partial least squares (PLS) with three different feature wave-
length extraction methods, Ning [12] established a classification model of soil organic matter
and total nitrogen content using a successive projections algorithm–extreme learning machine
model. Mobasheri [13] used spectral data to model potassium in three different types of soils
with an R2 of 0.95–0.98. Zhang [14] developed partial least squares regression (PLSR) and
support vector machine (SVM) models for soil total nitrogen detection using near-infrared
spectroscopy, and obtained better results. Hong et al. [15] combined near-infrared and
mid-infrared spectra to predict soil organic carbon content, and the study showed that the
fused data of the two spectra have great predictive potential. However, recent studies have
focused on the inversion of single soil elements and little on tea plantation soil. Moreover,
modeling only for a single element cannot fully predict soil fertility.

In this study, three soil physicochemical properties were modeled using a support
vector regression (SVR) algorithm [16] under different soil grain size conditions to improve
the prediction of soil fertility in tea plantations. Based on the successful projections algo-
rithm (SPA) and the least angle regression (LAR) and bootstrapping soft shrinkage (BOSS)
algorithms [17–19], the dimensionality of spectral data is reduced, and the redundancy of
the sensitive band is eliminated. The specific objectives were as follows: (i) to compare
which soil grain size has the best modeling results and (ii) to compare and determine which
dimensionality reduction algorithm yields the highest accuracy when used for modeling.

2. Materials and Methods
2.1. Soil Sample Collection

As shown in Figure 1, soil samples for this study were collected from tea plantations
in three different regions of Shandong, China, namely, Zubian Town, Junan County, in
Linyi (35◦10′31′′ N, 118◦49′56′′ E); Jufeng Town, Lanshan District, in Rizhao (35◦7′19′′ N,
119◦19′7′′ E); and Wangzhuang Town, Laoshan District, in Qingdao (36◦6′25′′ N, 120◦28′9′′ E).
Soil samples were collected from tea gardens in the three places that were chosen because
tea gardens will be highlighted in these areas in the future. The Laoshan Mountain Range
in Qingdao and the Zhushan Mountain Range in Zhushan, China, are favorable regions
for the production of tea in the Jiangbei Tea Region. “A leaf rich source of a side of the
people” is how Linyi’s Jounan white tea is referred to. And in China, Rizhao green tea is
well-known. It is therefore possible to say that these three tea garden sections reflect certain
regions in northern China.

2.2. Measurement of Soil Physical and Chemical Composition

These three sites yielded a total of 120 distinct soil samples from tea gardens. To
maintain a constant weight for each soil sample, stones, plants, and animal remnants
were removed from the collected soil, and the dirt was then dried. According to Chinese
agricultural industry standard NY/T 1848–2010, “Determination of ammonium nitrogen,
effective phosphorus, and available potassium in neutral and calcareous soils by combined
leaching-colorimetric method”, the components of hydrolyzed nitrogen, available potas-
sium, and effective phosphorus in the soil were determined. When ammonium ions in the
leaching solution interacted with the NaCl reagent, a yellow material was created that was
measured at 420 nm and whose color depth was proportional to the ammonium nitrogen
content in the solution within a certain concentration range. Phosphate in the leach solution
and acidified ammonium molybdate solution combined to form phosphomolybdenum
heteropolyacid. It is reduced to a dark blue complex called phosphomolybdenum blue in
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the presence of stannous chloride, the color of which is proportional to the phosphorus
content, and is measured at the 685 wavelength. A persistent potassium tetraphenylboron
precipitate is created when potassium ions in the leaching solution interact with sodium
tetraphenylboron. Within a particular concentration range, the turbidity is proportional to
the potassium content of the solution and is measured at the 685 wavelength. The samples
were measured using the mechanical shock technique. A 100 mL conical flask was filled
with a fresh soil sample that weighed 2.5 × (1 + moisture content) g (accurate to 0.01 g).
After adding 50 mL of soil-combined leaching agent and roughly 0.5 g of phosphorus-free
activated carbon, the mixture was shaken at 220 r/min for 10 min at a temperature of
25 ◦C ± 2 ◦C. It was then dried and filtered so that the three physicochemical properties
could be quickly determined.
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Figure 1. Soil sample distribution in Shandong Province, China.

2.3. Correlation Analysis of Physicochemical Properties

Following the determination of composition, Pearson correlation analysis was per-
formed on the three physicochemical parameters. For the purpose of the Pearson correlation
test, every piece of data needs to have a normal distribution. Rather, the normalization
analysis revealed that the available measured potassium data did not follow a normal
distribution. All of the data were logarithmized as a result. Following this procedure, the
data were all analyzed and found to follow a normal distribution. Based on this, the three
physicochemical properties of the soil were tested using Pearson two-tailed test. The loga-
rithmic correlation coefficients for available potassium and the other two physicochemical
properties were 0.726 and 0.640, respectively. The correlation coefficient for hydrolyzed
nitrogen and effective phosphorus was 0.729. This suggests that the three physicochemical
properties of the soil have a significant association with one another. As a result, there will
be some overlap in the test findings of three physicochemical properties (Figure 2).
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2.4. Soil Particle Size Classification

To obtain five particle size classes—greater than 1 mm, 0.5~1 mm, 0.25~0.5 mm,
0.1~0.25 mm, and less than 0.1 mm—the soil samples were then sieved with five different
types of sieves. They are referred to as homogenous soil samples because soil samples
bigger than 1 mm typically have particle sizes between 1 mm and 2 mm. Since soil samples
smaller than 1 mm are challenging to reclassify, they are likewise regarded as homogeneous
soil samples. All soil samples were divided into six classes of particle sizes, including the
initial mixed particle size, as illustrated in Figure 3. Prediction models were then created
for each of the six particle size types.

Sensors 2023, 23, 9107 5 of 15 
 

 

 

Figure 3. Classification of different soil particle sizes. (a): Original sample; (b): >1 mm; (c): 0.5~1 mm; 

(d): 0.25~0.5 mm; (e): 0.1~0.25 mm; (f): <0.1 mm. 

2.5. Soil Sample Spectral Acquisition 

The soil spectra were gathered using the Intelligent Analysis Service Co., Ltd., Wuxi, 

China, IAS3100 NIR spectrometer. In order to ensure that the samples were evenly dis-

tributed across the bottom of the Petri dishes, soil samples of various particle sizes were 

placed in the dishes during collection. Each soil sample’s spectral data were calculated 

based on an average of 10 spectra. Each particle size class yielded a total of 120 spectra, 

with the detected spectral bands falling between 900 and 1700 nm. It was required to main-

tain the experimental temperature at 25 °C to prevent the impact of ambient factors on the 

spectrophotometer [20]. The spectral instrument used for the experiment is shown in Fig-

ure 4, along with the soil’s average spectrum as measured at different particle sizes. 

 

Figure 4. Average spectra of different particle sizes. 

2.6. Spectral Pretreatment 

Using the original mixed grain size soil as a schematic, Figure 5 shows the before and 

after pretreatment comparison of soil spectra. Significant noise is present at wavelengths 

between 1600 and 1700 nm, as Figure 5a illustrates. To guarantee that the next test is un-

affected, the wavelength between 1600 and 1700 nm is deleted. Only the spectral data in 

the 900~1600 nm range were retained for the next step of the modeling analysis. 

Figure 3. Classification of different soil particle sizes. (a): Original sample; (b): >1 mm; (c): 0.5~1 mm;
(d): 0.25~0.5 mm; (e): 0.1~0.25 mm; (f): <0.1 mm.



Sensors 2023, 23, 9107 5 of 15

2.5. Soil Sample Spectral Acquisition

The soil spectra were gathered using the Intelligent Analysis Service Co., Ltd., Wuxi,
China, IAS3100 NIR spectrometer. In order to ensure that the samples were evenly dis-
tributed across the bottom of the Petri dishes, soil samples of various particle sizes were
placed in the dishes during collection. Each soil sample’s spectral data were calculated
based on an average of 10 spectra. Each particle size class yielded a total of 120 spectra,
with the detected spectral bands falling between 900 and 1700 nm. It was required to
maintain the experimental temperature at 25 ◦C to prevent the impact of ambient factors
on the spectrophotometer [20]. The spectral instrument used for the experiment is shown
in Figure 4, along with the soil’s average spectrum as measured at different particle sizes.
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Figure 4. Average spectra of different particle sizes.

2.6. Spectral Pretreatment

Using the original mixed grain size soil as a schematic, Figure 5 shows the before and
after pretreatment comparison of soil spectra. Significant noise is present at wavelengths
between 1600 and 1700 nm, as Figure 5a illustrates. To guarantee that the next test is
unaffected, the wavelength between 1600 and 1700 nm is deleted. Only the spectral data in
the 900~1600 nm range were retained for the next step of the modeling analysis.

Sensors 2023, 23, 9107 6 of 15 
 

 

Since the raw spectra contained noise information other than the sample’s own NIR 

spectral information, it was necessary to preprocess them. Based on this, the spectral data 

were pre-processed using multi-source scattering correction (MSC). One of the frequently 

employed algorithms for preprocessing hyperspectral data is multiple scattering correc-

tion (MSC). MSC can successfully remove spectral differences caused by various scatter-

ing levels, improving the correlation between spectra and data. The procedure replaces 

imperfect spectra with baseline translation and offset corrections. 

  
(a) (b) 

Figure 5. Comparison of spectral images before and after MSC processing (Shown are 150 spectra 

at the original particle size). (a): Before MSC processing; (b): After MSC processing. 

2.7. Feature Wavelength Extraction Algorithm 

In this paper, the spectrometer detected 800 wavelengths in the 900~1700 nm band. 

Even if the noisy 1600~1700 nm band was removed, there were still 700 wavelength points 

and the data volume was large. In order to further improve the detection accuracy and 

efficiency, three dimensionality reduction algorithms—SPA, LAR, and BOSS—were used 

to extract the feature bands from the original spectral data. 

2.7.1. Successful Projections Algorithm 

SPA is a forward iterative search method that starts with one wavelength and then 

adds a new variable in each iteration until the number of selected variables reaches a set 

value N. Chen [21] used the SPA for feature selection based on the hyperspectral detection 

of sugar content in apples and obtained a high model accuracy. The purpose of SPA is to 

select the wavelength with the least redundant spectral information to solve the covari-

ance problem. 

2.7.2. Least-Angle Regression Algorithm 

LAR (least-angle regression) is a method of variable selection proposed by Efron in 

2004. For a linear-in-the-parameters model, the regression target vector is a linear combi-

nation of several sets of regression variables multiplied by their coefficients. By selecting 

the eigenvectors step by step, one eigenvector is selected at a time to be used as the regres-

sion variable of the model, finally making a residual vector that has the same correlation 

and the maximum correlation with all regression variables. 

The specific steps are as follows: 

Step 1: Select the feature vector with the highest correlation with the initial residual 

(system response) as the regression vector and choose the appropriate regression coeffi-

cient for it. Calculate the residuals of the current identification model so that the residuals 

are equally correlated with this regression vector and another eigenvector with the highest 

correlation with the residuals. 

Figure 5. Comparison of spectral images before and after MSC processing (Shown are 150 spectra at
the original particle size). (a): Before MSC processing; (b): After MSC processing.



Sensors 2023, 23, 9107 6 of 15

Since the raw spectra contained noise information other than the sample’s own NIR
spectral information, it was necessary to preprocess them. Based on this, the spectral data
were pre-processed using multi-source scattering correction (MSC). One of the frequently
employed algorithms for preprocessing hyperspectral data is multiple scattering correction
(MSC). MSC can successfully remove spectral differences caused by various scattering lev-
els, improving the correlation between spectra and data. The procedure replaces imperfect
spectra with baseline translation and offset corrections.

2.7. Feature Wavelength Extraction Algorithm

In this paper, the spectrometer detected 800 wavelengths in the 900~1700 nm band.
Even if the noisy 1600~1700 nm band was removed, there were still 700 wavelength points
and the data volume was large. In order to further improve the detection accuracy and
efficiency, three dimensionality reduction algorithms—SPA, LAR, and BOSS—were used to
extract the feature bands from the original spectral data.

2.7.1. Successful Projections Algorithm

SPA is a forward iterative search method that starts with one wavelength and then
adds a new variable in each iteration until the number of selected variables reaches a set
value N. Chen [21] used the SPA for feature selection based on the hyperspectral detection
of sugar content in apples and obtained a high model accuracy. The purpose of SPA
is to select the wavelength with the least redundant spectral information to solve the
covariance problem.

2.7.2. Least-Angle Regression Algorithm

LAR (least-angle regression) is a method of variable selection proposed by Efron
in 2004. For a linear-in-the-parameters model, the regression target vector is a linear
combination of several sets of regression variables multiplied by their coefficients. By
selecting the eigenvectors step by step, one eigenvector is selected at a time to be used as
the regression variable of the model, finally making a residual vector that has the same
correlation and the maximum correlation with all regression variables.

The specific steps are as follows:
Step 1: Select the feature vector with the highest correlation with the initial residual

(system response) as the regression vector and choose the appropriate regression coefficient
for it. Calculate the residuals of the current identification model so that the residuals are
equally correlated with this regression vector and another eigenvector with the highest
correlation with the residuals.

Step 2: Select the eigenvector with the highest correlation with the residuals in the
previous step as the second regression coefficient and choose the appropriate regression
coefficient for it. Calculate the residuals of the current identification model so that this
residual is equally correlated with all regression variables and another eigenvector that is
most correlated with the residuals.

Step 3: Repeat step 2 to continue selecting the next regression variable and its param-
eters until there are no redundant eigenvectors or the selected model meets the desired
residual requirements.

2.7.3. Bootstrapping Soft Shrinkage Algorithm

The BOSS algorithm, proposed by Deng et al. in 2016 [17], is a novel variable selection
method based on weighted bootstrap sampling (WBS) [22], bootstrap sampling (BSS) [23],
and model population analysis (MPA) [2]. The linear model can be expressed as:

y = Xb + e = x1b1 + x2b2 + · · ·+ xAbA + e (1)

where X is the observation matrix, y is the response vector, and b is the regression
coefficient vector.
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In this method, BBS and WBS are used for the generation of random variable combina-
tions, and MPA is mainly used for the analysis of each sub-model. Suppose the data matrix
X is N × P, with one row including n samples and one column including P variables. Let
the vector y of size n × 1 denote the measured properties of interest. The execution steps of
the method are as follows:

Step 1: Generate k subsets on the variable space with BSS. In each dataset, the extrac-
tion is performed separately according to the parameters selected by the BSS. In this step,
the same weights (W) are assigned to all the variables.

Step 2: Based on the first step, the K PLS sub-models are constructed. The prediction
error (RMSECV) of each sub-model is calculated, and the optimal model is selected with its
minimum value.

Step 3: The regression coefficients are calculated for each extracted model. All elements
in the regression vector are changed to their absolute values, and each regression vector is
expressed in unit length. By summing the normalized regression vectors, the new variable
weights are obtained.

wi =
k

∑
k=1

bi,k (2)

where k is the number of sub-models and bi,k is the absolute value of the normalized
regression coefficient of the kth sub-model variable i.

Step 4: WBS is used for the generation of new subsets based on the weights of the new
variables. This step ensures a higher probability of selecting variables with higher absolute
values in the optimal sub-model.

Within the new subset, iterate steps 2 to 4 until the number of variables in the new
subset equals 1. Based on this, a subset with the smallest RMSECV value after the iteration
is selected and used as the optimal set of variables.

2.8. Modeling and Testing

Before building the prediction model, the NIR spectral data were divided into a
calibration set (84 samples) and a prediction set (36 samples), according to the Kennard–
Stone method, in a 7:3 ratio [24]. Next, the models for the prediction of soil physicochemical
properties at different particle sizes were developed separately. The prediction model
used the nonlinear SVR model. And for the kernel function, the more regionally focused
and often employed RBF kernel function was selected. Then, the best particle size grade
was selected, and the dimension reduction algorithms were used to compare the model
precision under different dimension reduction algorithms. The overall modeling method is
shown in Figure 6.
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The evaluation metrics of the model include the coefficient of determination (R2) and
the relative analysis error (RPD) [25]. The closer R2 is to 1, the better the model effect is
considered to be. The model is considered to have high accuracy when RPD > 2, average
accuracy when 1.4 < RPD < 2, and poor accuracy when RPD < 1.4.

R2 = 1−
n

∑
i=1

(yi − ŷi)
2
/ n

∑
i=1

(yi + ŷi)
2 (3)

RPD = SD/SEC (4)

where yi is the standard value of a component of the ith sample, ŷi is the predicted value of
the corresponding component of the ith sample, yi is the mean value of the corresponding
component of the sample set, SD is the standard deviation of the analyzed samples, and
SEC is the root mean square error of the analyzed samples.

3. Results
3.1. Analysis of Modeling Results for Different Soil Particle Sizes

The SVR regression prediction models for three soil physicochemical properties were
created after dividing the spectral data of various soil grain sizes into training and validation
sets. The modeling impact of soil physicochemical properties at various particle sizes is
shown in Table 1.

Table 1. Model results for different particle sizes of soil physicochemical properties.

Particle Size
Hydrolysis Nitrogen Available Potassium Effective Phosphorus

R2
C R2

P RPD R2
C R2

P RPD R2
C R2

P RPD

Original sample 0.967 0.962 4.794 0.955 0.962 4.707 0.956 0.953 4.273
1~2 mm 0.932 0.810 2.166 0.953 0.960 4.403 0.923 0.880 2.778

0.5~1 mm 0.955 0.882 2.871 0.961 0.955 4.318 0.913 0.838 2.510
0.25~0.5 mm 0.969 0.963 5.089 0.962 0.964 5.201 0.941 0.955 4.367
0.1~0.25 mm 0.976 0.945 4.199 0.968 0.962 4.963 0.966 0.952 4.028

<0.1 mm 0.962 0.881 2.851 0.962 0.959 4.938 0.932 0.869 2.693

The data in the table show that soils of various particle size categories had good
prediction accuracy, but that soils with a particle size of 0.25 to 0.5 mm were the best at
modeling. The prediction models’ R2

P for effective phosphorus, accessible potassium, and
hydrolyzed nitrogen at the 0.25~0.5 mm particle size, respectively, were 0.955, 0.963, and
0.963. Figure 7 illustrates how three physicochemical properties of soils with a grain size
under 0.25~0.5 mm affect modeling.

Larger-grained soil samples performed worse in all models than smaller-grained soil
samples, and the modeling accuracy of 0.5~1 mm and 0.1~0.5 mm soils differed significantly.
A too-small soil particle size, however, does not improve the accuracy of the prediction
models for the relevant components, as evidenced by the fact that the effectiveness of the
prediction models for the three components started to decline once the soil particle size was
less than 0.25 mm. It is clear that the original mixed soil samples continue to produce better
modeling outcomes, with the only soils with a particle size of 0.25~0.5 having a higher
modeling accuracy. This is due to the fact that the spectrometer employed in this study
scans the samples from bottom to top, and as small particles account for the bulk of the
initial mixed soil samples and tend to settle to the bottom of the measurement vessel, they
provide scans that are comparable to those of small homogenous soil samples.
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Figure 7. Modeling results of 0.1~0.25 mm soil particle size. (a) Parameter optimization of the
SVR model for nitrogen hydrolysis (The darker the color of the trendline, the smaller the MSE
value); (b) Relationship between the predicted value and the observed value set of the SVR model
for hydrolyzed nitrogen; (c) Parameter optimization of the SVR model for available potassium
(The darker the color of the trendline, the smaller the MSE value); (d) Relationship between the
predicted value and the observed value set of the SVR model for available potassium; (e) Parameter
optimization of the SVR model for effective phosphorus (The darker the color of the trendline, the
smaller the MSE value); (f) Relationship between the predicted value and the observed value set of
the SVR model for effective phosphorus.
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3.2. Feature Band Screening Results

The soil with particles between 0.25 and 0.5 mm was the best-modeled particle size
class, and utilizing the SPA, LAR, and BOSS algorithms, the distinctive wavelengths of the
three physicochemical properties were recovered based on the soil spectra at this size.

Following SPA algorithm screening, there were 110, 118, and 113 distinctive wave-
lengths for hydrolyzed nitrogen, fast potash, and effective phosphorus, respectively. The
three physicochemical properties were screened for using the BOSS algorithm at 54, 96, and
25 wavelengths, respectively. The LAR method, in contrast, used 119 feature wavelengths
to check every component.

It was discovered that the concentration ranges of the distinctive wavelengths for
the three physicochemical properties were roughly the same by counting the number
of wavelengths repeatedly chosen by the three algorithms. According to Figure 8, the
three physicochemical properties that were screened predominantly concentrated in the
900~1300 nm and 1500~1600 nm wavelength ranges. The absorbance of different soil spectra
in this wavelength range varies widely. This indicates that spectra in this wavelength
range can characterize the differences in the intrinsic composition of various types of
soils. The characteristic wavelength ranges of the three physicochemical properties are
similar. Because they are highly correlated in the previous correlation test. Thereby, the
characteristic wavelengths of the three physicochemical properties are concentrated in the
ranges of 900~1300 nm and 1500~1600 nm. One can observe that there is an absorption peak
at 1400 nm in Figure 8a. Typically, this is thought to be produced by the O-H groups in the
moisture. As a result, there is no connection between the distinctive wavelength in Figure 8b
at about 1400 nm and the three physicochemical traits this work examines. This portion of
the characteristic wavelength was eliminated in order to enhance the performance of the
prediction model.
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Figure 8. Outcomes of a distinctive band screening. (a) The region of concentration of the char-
acteristic bands is at the corresponding position in the spectral curve; (b) Distribution of each
physicochemical property’s distinctive bands.

3.3. Analysis of Model Results of Different Dimensionality Reduction Algorithms

Following the dimensionality reduction algorithm’s wavelength screening of the
spectrum data, separate inversion models of the physicochemical properties of various
dimensionality reduction techniques combined with the SVR algorithm were produced.
The best dimensionality reduction strategies for various physical and chemical parameters
were examined by comparing the effects of each model. Table 2 displays the coefficient
indicators for each model.
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Table 2. Modeling results under different dimensionality reduction algorithms.

Parameters Modeling
Methods R2

C R2
P RPD

Hydrolyzed Nitrogen
SPA 0.979 0.975 6.249
LAR 0.979 0.976 6.613
BOSS 0.980 0.976 6.599

Available Potassium
SPA 0.980 0.979 6.633
LAR 0.988 0.979 6.778
BOSS 0.977 0.981 7.222

Effective Phosphorus
SPA 0.974 0.961 5.048
LAR 0.964 0.955 4.660
BOSS 0.969 0.964 5.163

The SVR prediction models for the three physicochemical properties were greatly
optimized after screening using the dimensionality reduction approach, and all the indices
were enhanced. With an R2 of 0.976 and RPD of 6.613 for its prediction set, the LAR
algorithm outperformed other algorithms in predicting the composition of hydrolyzed
nitrogen (Figure 9a–c). The model utilizing the BOSS method produced the best results for
accessible potassium (Figure 9d–f) and effective phosphorus (Figure 9g–i), with an R2 of
0.981 and 0.964 for the prediction set, respectively.
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Figure 9. Modeling results of physicochemical properties of soil from 0.25~0.5 mm under different
dimensionality reduction algorithms. (a) Hydrolyzed nitrogen model under SPA method; (b) Hy-
drolyzed nitrogen model under LAR method; (c) Hydrolyzed nitrogen model under BOSS method;
(d) Available potassium model under SPA method; (e) Available potassium model under LAR
method; (f) Available potassium model under BOSS method; (g) Effective phosphorus model under
SPA method; (h) Effective phosphorus model under LAR method; (i) Effective phosphorus model
under BOSS method.

The quantitative analysis results of the three physicochemical properties via NIR
were accurate and extremely reliable at the 0.25~0.5 particle size, as shown by the RPD
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values of all predictive models being over 4. In order to achieve quantitative prediction
of soil physicochemical properties, the nonlinear model SVR in combination with the
dimensionality reduction technique is superior to the model utilizing the SVR algorithm
alone. Although soil samples of mixed particle size can be utilized directly for predicting
the physicochemical properties of soil using NIR spectroscopy, predictions made using soil
samples of 0.25~0.5 mm will be more precise.

4. Discussion
4.1. Possibility of Near-Infrared Spectroscopy for the Predictive Evaluation of Soil Fertility

This work used near infrared spectroscopy to perform non-destructive detection of
nitrogen, phosphorus, and potassium in soil. NIR inversions were performed for all the key
components that characterize soil fertility, in contrast to the many research works described
in the introduction of this work. When the nitrogen level is greater than 100 mg/kg, the
phosphorus content is greater than 10 mg/kg, and the potassium content is greater than
120 mg/kg, it is widely accepted that the soil has excellent fertility. The RPDs of all the
models in this investigation are all greater than 2, and they all exhibit strong predictive
performance. This shows that the technology used in this work may effectively identify
soil nitrogen, phosphorus, and potassium without causing any damage, and that this
methodology can then use these prediction values to assess the soil’s fertility.

4.2. Effects of Research Techniques on Findings
4.2.1. Effect of Different Soil Particle Sizes on the Results of the Study

Six soil samples with various ranges of particle sizes were created in this work in order
to completely examine the reaction mechanisms of intrinsic soil components on NIR spectra
(see Section 2.1 for particular ranges). The results of the study show that models with
particle sizes in the range of 0.25~0.5 mm have the best performance. Table 1 in Section 3.1
shows that the performance of the model improves with decreasing particle size. Once the
particle size is smaller than 0.25 mm, the model’s performance begins to decline once more.
Figure 10 displays 1 to 2 mm and 0.25~0.5 mm soils. The gaps and shadows between the
soil particles will become wider and more numerous as the particle size increases. This
could have some impact on the spectrum scanning procedure and alter the models. It is
challenging to discern between the particles when the particle size is smaller than 0.25 mm
as the particle size is too small. As a result, the performance of the model declines.
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4.2.2. Impact of Different Algorithmic Combinations on the Findings of the Study

The nonlinear SVR model was selected as the modeling approach in this study in
order to thoroughly analyze the relationship between the response of soil physicochemical
components and near-infrared spectra. And for integrated modeling with SVR, three down-
scaling methods with various features were chosen. Since the SPA counting rule method
is simpler in theory and more useful, it was used to assess how well the other algorithms
work. The LAR algorithm, which is better at handling high-dimensional information due
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to the large number of spectral wavelengths in this study, was selected as the second ap-
proach of dimensionality reduction. The more cutting-edge feature wavelength screening
algorithm employed is BOSS. According to the experimental findings, the LAR and BOSS
algorithms outperform the SPA. This demonstrates the usefulness of these two methods in
this field of study.

4.2.3. Conclusions on the Correlation of the Three Physicochemical Properties

This study connects the amounts of nitrogen, phosphorus, and potassium in the
samples in Section 2.3. The findings revealed a strong correlation between the three
elements. This suggests that these three physicochemical properties will be somewhat
similar in some test results. In terms of distinctive wavelength distributions and modeling
impacts, the three physicochemical properties examined in this research share certain
commonalities. Their characteristic wavelengths are concentrated at 900–1300 nm and
1500–1600 nm. Additionally, their models perform better in the 0.25 to 0.5 mm range of soil
particle sizes. This indicates that the results of this study can be verified with the correlation
results of the physicochemical properties. This study used correlation analysis between
physical and chemical attributes to verify the correctness of test findings to some degree.
Still, there are drawbacks to the approach. Further research is required to examine the more
intricate relationships between the three physical and chemical characteristics.

4.3. Research Applicability and Remaining Limitations

For this study, typical tea estates in Shandong Province, China, were chosen. The six
classic Chinese tea varieties—green, yellow, black, white, green, and dark—are present in
these tea gardens. Consequently, there is some generalizability of this work to northern
China. In order to learn more about the fertility of the soil, near infrared spectroscopy
(NIRS) was used to analyze the soil’s nitrogen, phosphorus, and potassium levels in the
target tea plantation. Targeted water and fertilizer control may be implemented in the tea
plantation based on the information from the detection process. Thus, the soil fertility can
be regulated to the appropriate level.

However, the sample size of this study is still deficient. This is a result of the test not
using a national soil. The climates in the north and south of China are very varied, and this
may also affect the inherent makeup of the soil. It is possible that southern tea plantations
will not be allowed to use the findings of the study. Future studies will use tea gardens
around the country to conduct further research.

5. Conclusions

(1) Six different types of soils were gathered in the field and divided into six different
particle sizes: 1~2 mm, 0.5~1 mm, 0.25~0.5 mm, 0.1~0.25 mm, <0.1 mm, and original
soil samples. These samples were used to examine the effects of models for the
prediction of soil physicochemical properties at different particle sizes. For soil
samples with varying grain sizes, SVR models for the prediction of physicochemical
properties were created, and the model with the best outcome was chosen. The
experimental results demonstrated that soil with smaller particle sizes had a higher
modeling effect, and the soil particle size of 0.25~0.5 mm resulted in the maximum
prediction model accuracy for each physicochemical composition. Future research
may directly prepare soils with this range of particle sizes. This will make it possible
to acquire more accurate data on soil fertility, which can then be used to target the soil
for fertilizer.

(2) The SPA, LAR, and BOSS algorithms were utilized to further decrease the dimen-
sionality of the spectral data of this grain size based on soils with particle sizes of
0.25~0.5 mm, and a fusion model of the reduced dimensionality method and the
SVR algorithm was developed. The accuracy of the model is optimized well by each
three-dimensionality reduction procedure. The SPA is outperformed by the LAR
and BOSS algorithms. In order to detect the physicochemical components of soil,
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these two methods might be taken into consideration. These findings offer solid
technical backing for soil sampling and testing in tea gardens, which can quickly and
non-destructively identify the physicochemical makeup of the soil using near-infrared
spectroscopy. Soil fertility was also evaluated by the detected soil nitrogen, phospho-
rus, and potassium content. This results in targeted fertilization for all types of tea
tree irrigation requirements. As a result, tea gardens may be managed precisely.
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4. Tokarski, D.; Kučerík, J.; Kalbitz, K.; Demyan, M.S.; Merbach, I.; Barkusky, D.; Ruehlmann, J.; Siewert, C. Contribution of organic
amendments to soil organic matter detected by thermogravimetry. J. Plant Nutr. Soil Sci. 2018, 181, 664–674. [CrossRef]

5. Yang, C.; Feng, M.; Song, L.; Jing, B.; Xie, Y.; Wang, C.; Yang, W.; Xiao, L.; Zhang, M.; Song, X. Study on hyperspectral monitoring
model of soil total nitrogen content based on fractional-order derivative. Comput. Electron. Agric. 2022, 201, 107307. [CrossRef]

6. Liu, Z.; Zhang, R.; Yang, C.; Hu, B.; Luo, X.; Li, Y.; Dong, C. Research on moisture content detection method during green tea
processing based on machine vision and near-infrared spectroscopy technology. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022,
271, 120921. [CrossRef]

7. Wang, Y.; Xiang, J.; Tang, Y.; Chen, W.; Xu, Y. A review of the application of near-infrared spectroscopy (NIRS) in forestry. Appl.
Spectrosc. Rev. 2021, 57, 300–317. [CrossRef]

8. Tsuchikawa, S.; Ma, T.; Inagaki, T. Application of near-infrared spectroscopy to agriculture and forestry. Anal. Sci. 2022, 38,
635–642. [CrossRef]

9. Bec, K.B.; Grabska, J.; Huck, C.W. Near-Infrared Spectroscopy in Bio-Applications. Molecules 2020, 25, 2948. [CrossRef]
10. Sakudo, A. Near-infrared spectroscopy for medical applications: Current status and future perspectives. Clin. Chim. Acta 2016,

455, 181–188. [CrossRef]
11. Tan, B.; You, W.; Tian, S.; Xiao, T.; Wang, M.; Zheng, B.; Luo, L. Soil Nitrogen Content Detection Based on Near-Infrared

Spectroscopy. Sensors 2022, 22, 8013. [CrossRef]
12. Ning, J.; Sheng, M.; Yi, X.; Wang, Y.; Hou, Z.; Zhang, Z.; Gu, X. Rapid evaluation of soil fertility in tea plantation based on

near-infrared spectroscopy. Spectrosc. Lett. 2019, 51, 463–471. [CrossRef]
13. Mobasheri, M.R.; Amani, M.; Fathi-Almas, R.; Mahdavi, S.; Zabihi, H.R. Developing a model for soil potassium estimation using

spectrometry data. Commun. Soil Sci. Plant Anal. 2020, 51, 794–803. [CrossRef]
14. Zhang, Y.; Li, M.; Zheng, L.; Zhao, Y.; Pei, X. Soil nitrogen content forecasting based on real-time NIR spectroscopy. Comput.

Electron. Agric. 2016, 124, 29–36. [CrossRef]

https://doi.org/10.1371/journal.pone.0128798
https://doi.org/10.3390/agronomy12061330
https://doi.org/10.3390/microorganisms10112149
https://www.ncbi.nlm.nih.gov/pubmed/36363740
https://doi.org/10.1002/jpln.201700537
https://doi.org/10.1016/j.compag.2022.107307
https://doi.org/10.1016/j.saa.2022.120921
https://doi.org/10.1080/05704928.2021.1875481
https://doi.org/10.1007/s44211-022-00106-6
https://doi.org/10.3390/molecules25122948
https://doi.org/10.1016/j.cca.2016.02.009
https://doi.org/10.3390/s22208013
https://doi.org/10.1080/00387010.2018.1475398
https://doi.org/10.1080/00103624.2020.1733002
https://doi.org/10.1016/j.compag.2016.03.016


Sensors 2023, 23, 9107 15 of 15

15. Hong, Y.; Munnaf, M.A.; Guerrero, A.; Chen, S.; Liu, Y.; Shi, Z.; Mouazen, A.M. Fusion of visible-to-near-infrared and mid-infrared
spectroscopy to estimate soil organic carbon. Soil Tillage Res. 2022, 217, 105284. [CrossRef]

16. Brereton, R.G.; Lloyd, G.R. Support vector machines for classification and regression. Analyst 2010, 135, 230–267. [CrossRef]
17. Deng, B.C.; Yun, Y.H.; Cao, D.S.; Yin, Y.L.; Wang, W.T.; Lu, H.M.; Luo, Q.Y.; Liang, Y.Z. A bootstrapping soft shrinkage approach

for variable selection in chemical modeling. Anal. Chim. Acta 2016, 908, 63–74. [CrossRef]
18. Gluhovsky, I. Multinomial least angle regression. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 169–174. [CrossRef] [PubMed]
19. Jiang, H.; Luo, S.; Dong, Y. Simultaneous feature selection and clustering based on square root optimization. Eur. J. Oper. Res.

2021, 289, 214–231. [CrossRef]
20. Dong, C.; Zhu, H.; Wang, J.; Yuan, H.; Zhao, J.; Chen, Q. Prediction of black tea fermentation quality indices using NIRS and

nonlinear tools. Food Sci. Biotechnol. 2017, 26, 853–860. [CrossRef]
21. Chen, J.; Bai, T.; Zhang, N.; Zhu, L.; Zhang, X. Hyperspectral detection of sugar content for sugar-sweetened apples based on

sample grouping and SPA feature selecting methods. Infrared Phys. Technol. 2022, 125, 104240. [CrossRef]
22. Hall, P.; Maesono, Y. A Weighted Bootstrap Approach to Bootstrap Iteration. J. R. Stat. Soc. Ser. B Stat. Methodol. 2000, 62, 137–144.

[CrossRef]
23. Chong, S.F.; Choo, R. Introduction to Bootstrap. Proc. Singap. Healthc. 2011, 20, 236–240. [CrossRef]
24. Chen, J.; Yang, C.; Yuan, C.; Li, Y.; An, T.; Dong, C. Moisture content monitoring in withering leaves during black tea processing

based on electronic eye and near infrared spectroscopy. Sci. Rep. 2022, 12, 20721. [CrossRef] [PubMed]
25. Jia, J.; Zhou, X.; Li, Y.; Wang, M.; Liu, Z.; Dong, C. Establishment of a rapid detection model for the sensory quality and

components of Yuezhou Longjing tea using near-infrared spectroscopy. Lwt 2022, 164, 113625. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.still.2021.105284
https://doi.org/10.1039/B918972F
https://doi.org/10.1016/j.aca.2016.01.001
https://doi.org/10.1109/TNNLS.2011.2178480
https://www.ncbi.nlm.nih.gov/pubmed/24808466
https://doi.org/10.1016/j.ejor.2020.06.045
https://doi.org/10.1007/s10068-017-0119-x
https://doi.org/10.1016/j.infrared.2022.104240
https://doi.org/10.1111/1467-9868.00224
https://doi.org/10.1177/201010581102000314
https://doi.org/10.1038/s41598-022-25112-6
https://www.ncbi.nlm.nih.gov/pubmed/36456868
https://doi.org/10.1016/j.lwt.2022.113625

	Introduction 
	Materials and Methods 
	Soil Sample Collection 
	Measurement of Soil Physical and Chemical Composition 
	Correlation Analysis of Physicochemical Properties 
	Soil Particle Size Classification 
	Soil Sample Spectral Acquisition 
	Spectral Pretreatment 
	Feature Wavelength Extraction Algorithm 
	Successful Projections Algorithm 
	Least-Angle Regression Algorithm 
	Bootstrapping Soft Shrinkage Algorithm 

	Modeling and Testing 

	Results 
	Analysis of Modeling Results for Different Soil Particle Sizes 
	Feature Band Screening Results 
	Analysis of Model Results of Different Dimensionality Reduction Algorithms 

	Discussion 
	Possibility of Near-Infrared Spectroscopy for the Predictive Evaluation of Soil Fertility 
	Effects of Research Techniques on Findings 
	Effect of Different Soil Particle Sizes on the Results of the Study 
	Impact of Different Algorithmic Combinations on the Findings of the Study 
	Conclusions on the Correlation of the Three Physicochemical Properties 

	Research Applicability and Remaining Limitations 

	Conclusions 
	References

