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Abstract: Depression is a significant mental health issue that profoundly impacts people’s lives.
Diagnosing depression often involves interviews with mental health professionals and surveys, which
can become cumbersome when administered continuously. Digital phenotyping offers an innovative
approach for detecting and monitoring depression without requiring active user involvement. This
study contributes to the detection of depression severity and depressive symptoms using mobile
devices. Our proposed approach aims to distinguish between different patterns of depression and
improve prediction accuracy. We conducted an experiment involving 381 participants over a period
of at least three months, during which we collected comprehensive passive sensor data and Patient
Health Questionnaire (PHQ-9) self-reports. To enhance the accuracy of predicting depression severity
levels (classified as none/mild, moderate, or severe), we introduce a novel approach called symptom
profiling. The symptom profile vector represents nine depressive symptoms and indicates both the
probability of each symptom being present and its significance for an individual. We evaluated the
effectiveness of the symptom-profiling method by comparing the F1 score achieved using sensor data
features as inputs to machine learning models with the F1 score obtained using the symptom profile
vectors as inputs. Our findings demonstrate that symptom profiling improves the F1 score by up to
0.09, with an average improvement of 0.05, resulting in a depression severity prediction with an F1

score as high as 0.86.

Keywords: digital phenotyping; smartphone sensing; depressive symptoms; machine learning; EMA

1. Introduction

Depression, as defined by the World Health Organization (WHO), is a clinically
identifiable syndrome characterized by observed behavioral patterns and experienced
symptoms that influence personal functioning [1]. It is a prevalent mental health disorder
affecting approximately 4.7% of the global population within any taken 12-month period [2].
Tragically, depression is closely associated with suicide, making it the most frequently
reported psychiatric disorder among those who commit such acts [3]. The recent COVID-
19 pandemic has further underscored the urgency of addressing depression prevention,
recognition, and treatment on a global scale due to its adverse impact on the mental well-
being of millions [4]. Nevertheless, diagnosing depression is challenging due to the absence
of diagnostic laboratory tests and the interpersonal variations in experienced symptoms.
Mental health professionals commonly rely on interviews and survey instruments for
diagnosis, which can be burdensome and impractical for continuous use.

The widespread use of smartphones offers new opportunities for screening, diagnos-
ing, assessing, and monitoring individuals with depression by capturing various dimen-
sions of human behavior. This field, known as digital phenotyping, entails quantifying an
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individual’s phenotype in real-life situations using data from personal digital devices [5].
Passive sensing, in particular, allows short-term detection of depressive symptoms without
requiring active input from users, thereby potentially mitigating long-term negative conse-
quences [6]. A growing body of research supports the efficacy of passive smartphone sensor
data in distinguishing individuals with depressive disorder from controls (e.g., [6–11]).

Existing studies on depression detection using smartphone data primarily focus on
binary classification, distinguishing between individuals who are depressed and those
who are not [12]. However, it is important to note that the Diagnostic and Statistical
Manual of Mental Disorders (DSM-5) [13], the psychiatric diagnostic system, lists nine
symptoms used to diagnose major depressive disorder, and the number of symptoms
varies from person to person. In some cases, individuals may be diagnosed with depression
without experiencing any shared symptoms [14]. Therefore, it is crucial to consider the
nature of specific depressive symptoms and signs, as they may manifest in diverse clinical
phenotypes [15].

In this study, our aim is to explore the feasibility of automatic depression detection that
encompasses both the severity of depression (none/mild, moderate, severe) and the specific
depressive symptoms as assessed by the Patient Health Questionnaire-9 (PHQ-9) [16]. We
collected data from 381 participants over a period of three months or more, utilizing
19 sensors for Android and 11 sensors for the iOS operating system. The set of sensor
information collected from smartphones covers multiple dimensions of behavioral data,
including physical activity, social activity, mobility, and device usage. The sensor data
are complemented by in situ Ecological Momentary Assessments (EMAs) [17]. We em-
ploy machine learning to detect the presence or absence of specific depressive symptoms
and predict three levels of depression severity. Furthermore, to enhance the accuracy of
depression severity prediction beyond the direct utilization of sensor data as input for
machine learning models, we introduce a novel approach involving symptom profiling.
A symptom profile vector is a multi-dimensional data representation consisting of nine
elements, with each element corresponding to one of the depressive symptoms outlined
in the PHQ-9 questionnaire. This concept arises from a comprehensive understanding of
which depressive symptoms are present and how indicative they are of depression for an
individual. The main contributions of our study include the following:

• We achieve accurate predictions of both behavioral and cognitive depressive symp-
toms with F1 scores reaching up to 0.83 for Android and 0.76 for iOS datasets by
utilizing a wide range of sensor data.

• We introduce a novel method for predicting depression severity, which utilizes the
symptom profile vector. This approach enhances the F1 score by up to 0.09 (0.05 on
average). The improvement is consistent across both Android and iOS datasets and is
observed across all tested machine learning models.

• We investigate characteristics of the symptom profile vector among three depression
severity groups. It proves to be a viable representation of PHQ-9 self-reports, particu-
larly for the non-depressed and mildly depressed groups, distinguishing among the
three levels of depression severity.

The rest of the paper is organized as follows. We begin by providing a brief description
of the related work in Section 2. Subsequently, Section 3 outlines the data-collection process,
covering the study procedure and the data-collection system. In Section 4, we present a
comprehensive overview of the data-processing procedures applied to both the passively
collected data and the self-reports. The concept and calculation of the symptom profile
vector are detailed in Section 5. Presenting the findings, Section 6 showcases the results
obtained from our study. The limitations of the current study are discussed in Section 7.
Lastly, Section 8 concludes the paper.

2. Related Work

We focus on previous research that investigates the relationship between smartphone
sensor data and depression in non-clinical cohorts. Additionally, we examine approaches
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to predicting depressive symptoms and severity. We summarize the previous studies in
Table 1, including information on the number and type of participants, duration of data
collection, questionnaires used for EMAs, assessments for pre-/post-tests, and devices
utilized for collecting the sensor data.

Table 1. Literature review: mental health with passive sensing.

Author (Year) Sample Size and
Type Study Length EMA Pre/Post Test Device

Wang et al.
(2014) [18]

48 college
students 10 weeks

stress, sleep,
activity, mood,
social, exercise,

behaviour

PHQ-9,
flourishing
scale, PSS,

UCLA

Android

Ben-Zeev et al.
(2015) [19] 47 young adults 10 weeks stress rating PHQ-9, PSS,

UCLA Android

Canzian et al.
(2015) [7] 28 adults 71 days on

average PHQ-8 - Android

Saeb et al.
(2015) [8] 40 adults 2 weeks -

PHQ-9
(pre-test

only)
Android

Saeb et al.
(2016) [20]

48 college
students 10 weeks - PHQ-9 Android

Boukhechba
et al. (2018) [21]

72 college
students 2 weeks

positive,
negative mood

rating

SIAS, DASS,
PANAS Android

Wang et al.
(2018) [22]

winter term:
56 college

students, spring
term: 27 college

students

winter term:
9 weeks, spring
term: 9 weeks

PHQ-4 PHQ-8
Android,

IOS,
wearable

Xu et al.
(2019) [23]

phase I:
188 college

students, phase II:
267 college

students

phase I: 106 days,
phase II: 113 days - BDI-II Android,

wearable

Narziev et al.
(2020) [6]

20 college
students 4 weeks

5-item
depression

survey

PHQ-9,
BDI-II , STAI

Android,
wearable

Razavi et al.
(2020) [24] 412 adults 14 days - BDI-II Android

Ware et al.
(2020) [12]

phaseI: 79 college
students, phase II:

103 college
students

phase I: October
2015–May 2016,

phase II: February
2017–Decemebr

2017

phase I: PHQ-9,
phase II: QIDS

PHQ-9 and
QIDS

(pre-test
only)

Android,
iOS

Opoku Asare
et al. (2021) [25] 629 adults 22 days on

average PHQ-8 - Android

Ross et al.
(2023) [26] 295 adults - PHQ-8 - iOS

Recent studies have used digital phenotyping to predict mental well-being and
study the association between passively collected data and depression [7,8,18–21,23–26].
Wang et al. [18] conducted a study to evaluate mental health, including depression, stress,
sleep, activity level, mood, sociability, and academic performance, in undergraduate and
graduate students. Notably, the depression severity exhibited a statistically significant
correlation with sleep duration measured via an accelerometer, microphone, and light
sensor, conversation frequency and duration measured via a microphone, and the number
of Bluetooth encounters. Similarly, Ben-Zeev et al. [19] examined the association between
smartphone sensor data and depression, stress, and subjective loneliness. Their investi-
gation indicated that changes in depression levels were associated with sensor-measured
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speech duration, geospatial activity, and sleep duration. Canzian et al. [7] analyzed mobil-
ity trace data for predicting depressive mood. In the general model, the authors performed
binary classification and achieved sensitivity and specificity values of 0.74 and 0.78, respec-
tively. In the personalized models, the average sensitivity and specificity values were 0.71
and 0.87, respectively. In a study by Saeb et al. [8], participants with depressive symptoms
exhibited a significant difference from their non-depressed counterparts in terms of normal-
ized entropy, location variance, circadian movement, and duration and frequency of phone
usage. The study yielded an accuracy of 86.5% for binary depression classification, using
the normalized entropy feature. In a subsequent replication study, Saeb et al. [20] extended
their previous work on the relationship between depressive severity and geographic lo-
cation using the StudentLife dataset [18]. Their findings indicated that GPS features are
useful in predicting depression severity 10 weeks before the assessment, thereby offering
an early warning for potential depression. Boukhechba et al. [21] conducted a study to
monitor depressive symptoms and social anxiety in college students using sensor data.
They found that mobility patterns measured via GPS (time spent at service places, time
spent outside the city, time spent at someone else’s home) and activity level measured via
an accelerometer sensor were correlated with the level of depression measured via the
Depression, Anxiety and Stress Scale (DASS) [27]. Xu et al. [23] proposed a novel approach
for capturing contextual behaviour features, referred to as contextually filtered features,
that utilizes associate rule mining. This technique was found to improve the accuracy
of depression prediction by an average of 9.7% when compared to using unimodal fea-
tures alone. Razavi et al. [24] investigated the relationship between depressive symptoms
and smartphone-usage behaviour, including the number of saved contacts, SMS usage,
and duration and frequency of calls. The random forest classifier model for classifying
depression showed out-of-sample balanced accuracy of 76.8%. The accuracy improved
to 81.1% when incorporating demographic information such as age and gender. In their
study, Opoku Asare et al. [25] found that screen data and Internet connectivity had the
most significant impact on predicting binary depressive state (depressed or non-depressed).
The classification model achieved an F1 score of 0.88 to 0.94. Ross et al. [26] introduced an
innovative method for predicting fluctuations in depression severity, focusing on clustering
accelerometer data specifically during participants’ typing activities. The model achieved
an accuracy of around 95%, accompanied by an area under the ROC curve of 97%.

Several studies have investigated the use of sensor data to predict and monitor depres-
sion. However, fewer studies have focused on specific depressive symptoms and severity
using sensor data. Wang et al. [22] conducted a study to investigate the correlation be-
tween depression severity, measured via PHQ-8 and PHQ-4, and sensor data representing
depressive symptoms based on DSM-5 criteria. They developed a model using the sensor
data to predict whether the student was depressed every week and achieved an accuracy
of 69.1%. Narziev et al. [6] aimed to predict depression levels (normal, mild, moderate,
severe) based on five depression indicators derived from passive sensor data, including
physical activity, mood, social activity, sleep, and food intake. The study achieved an
average True Positive Rate of 0.96. Ware et al. [12] explored the feasibility of predicting both
behavioral and cognitive depressive symptoms from GPS data collected from smartphones
and the institution’s WiFi infrastructure and achieved an F1 score of up to 0.86 for the
sleep-related symptom.

3. Data Collection

This section begins with a description of the participant-recruitment process and the
data-collection system, which includes the client application, cloud platform, and web
server. The section further elaborates on the privacy measures that were taken to safeguard
the collected data, as well as the data quality monitoring functionality that we employed.
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3.1. Study Procedure

To recruit participants for this study, we distributed a recruitment statement through
various channels, including social networking sites (Facebook, Instagram), multiple uni-
versities, and online communities, as well as poster advertisements in subways. A total
of 2620 individuals visited the research information homepage, of which 2080 proceeded
to undergo a screening process. The screening process involved checking participants’
smartphone availability, psychiatric history, and PHQ-9 scores. Only those individuals
who met the predetermined inclusion criteria were invited to review research guide videos,
complete research consent forms, and install the designated research application on their
devices. The guide videos provided participants with information about the data-collection
procedures and instructions for responding to EMAs. The duration of data collection
for this study was predetermined as a fixed period of three months, with an option for
participants to extend their participation for additional three months. The duration of
data collection was determined in accordance with [28], who reported that the duration of
depressive episodes may vary; however, the median duration of a depressive episode is
typically three months.

Ultimately, 704 participants installed the research application. We provided the re-
cruited participants with a comprehensive research consent form and a detailed description
of the study, including its purpose, methods of participation, potential risks and bene-
fits. This study strictly adhered to ethical guidelines established by the Yonsei University
Institutional Review Board (IRB) and received approval under IRB number 7001988-202108-
HR-1101-08.

3.2. Data-Collection System

As shown in Figure 1, the sensing system in this study was composed of three primary
components: the client application, the cloud data-collection platform, and a web server.

Mobile application

Sensor data 

EMA

User

Homepage

Screening
Consent
Guidelines

SQLite database

Cloud server

Data statistics 

Web server

Dashboard

Researcher

Figure 1. Data-collection system components.

The client application, MOCA, used in this study, was made available free of charge
through the research website. We developed the application for both Android and iOS
operating systems. MOCA served two main functions: the continuous passive collection of
sensor data and the delivery of in situ EMAs [17]. Figure 2 illustrates sample screenshots
from the Android version of the application. The initial screenshot shows the application’s
home screen, where users monitored the number of days elapsed since the start of data
collection, the most recent data transmission to the server, and the daily and weekly
progress of EMA responses. The subsequent screenshot portrays the calendar interface,
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facilitating the review of the upcoming EMA schedule and response history. The last
screenshot demonstrates the data-uploading feature, which allowed users to manually
send data to the server by pressing a button in cases where automatic transfer encountered
issues. MOCA collected sensor data passively in the background without requiring any
actions from participants. In this study, we collected a total of 19 passive data sources for
Android and 11 for iOS. A detailed description of the data collected from each source, along
with their collection intervals for Android and iOS, is provided in Table 2. The data sources
and collection intervals vary between Android and iOS applications due to differences
in their operating system platforms. Therefore, we analyzed the datasets separately for
each platform. The data sources are categorized as either interval-based or event-based,
depending on their collection intervals. Interval-based data sources are defined by the
application for a specific collection period, whereas event-based data sources are triggered
by specific events such as phone unlocking, changes in physical activity, or application
opening. Additionally, Table 2 shows which of the data sources were optional for collection,
meaning that participants could choose to provide or withhold certain data based on their
preferences. The optional data sources included social networking service, stored media,
microphone, and camera.

Figure 2. User interfaces of MOCA application (dashboard, progress calendar, and manual
data transmission).

In the context of EMA, we collected the PHQ-9, a validated nine-item depression
module derived from the full PHQ, as a self-report measure, owing to its widespread ac-
ceptance as a screening tool for depression [16]. The PHQ-9 evaluates both behavioral and
cognitive depressive symptoms, such as depressed mood, lack of interest, sleep problems,
fatigue, appetite problems, feelings of worthlessness, concentration problems, psychomotor
retardation, and suicidal ideation. Moreover, we included a reliability check question, con-
sisting of a Likert-type paraphrase of a PHQ-9 item that assessed the symptom of depressed
mood. The client application incorporated several features to facilitate self-report collection.
Firstly, we implemented a randomized questioning sequence to minimize the potential for
automatic responses. Secondly, the application recorded the EMA response time duration
for further EMA filtering described in Section 4.1. Thirdly, users were provided with a
one-hour window to submit their response following an EMA push notification. Partic-
ipants who had not yet submitted their answers, received a push notification reminder
15 min before the response deadline. Finally, the application offered two possible EMA
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time schedules (10 a.m., 2 p.m., 6 p.m., or 12 p.m., 4 p.m., 8 p.m.) to enable participants
to customize their EMA reception time based on their daily routine. The decision to ad-
minister EMA questionnaires within a specified time frame was informed by the findings
of Narziev et al. [6], who demonstrated that optimal EMA response rates were between
10 a.m. and 10 p.m. To mitigate the burden on participants from frequent survey responses,
we implemented a schedule of administering EMAs once every three days, with a two-day
interval between each administration.

Table 2. Data sources and their properties.

Data Source Description Android iOS Optional

Applications usage application category and duration of
usage event-based - no

Calendar total number of calendar events 4 h 4 h no

Call log number and duration of incoming,
outgoing, missed calls event-based event-based no

Camera cropped face images event-based event-based yes

GPS latitude and longitude 15 min 15 min no

Gravity magnitude of gravity in x, y and z
directions 15 min 15 min no

Keystroke log
number of key presses, backspaces,

auto-correction, typing duration, and
number of unique applications

event-based - no

Light illuminance in lux 15 min - no

Microphone sound energy and pitch 15 min event-based yes

Music song title and artist name event-based - no

Notifications notification event, click-through rate,
and decision time event-based - no

Pedometer number of steps event-based event-based no

Physical activity duration of still, walking, running,
cycling, being in vehicle activities event-based event-based no

Screen duration of unlocked screen state event-based event-based no

Significant motion number of events when sudden
motion occurs event-based event-based no

Social Networking
Service (SNS)

social media metrics (e.g., number of
followers and posts) 24 h - yes

Stored media number of images stored 4 h 4 h yes

Short Messaging
Service (SMS)

number of characters in incoming text
messages event-based - no

Wi-Fi number of nearby access points 30 min - no

The second component of the sensing system was the EasyTrack cloud platform [29].
It offered a robust and efficient means for data collection by utilizing the Django [30]
framework and the Apache Cassandra NoSQL database [31]. The platform’s main functions
included receiving and transmitting data between the client application and the platform,
as well as monitoring the quality of the collected data. The collected sensor data were
aggregated into small data packets by the client application and transmitted to the cloud
server via WiFi or LTE connection, according to user preferences.

The last component of the sensing system was a dedicated web server for partici-
pant management. This server comprised a homepage and a dashboard. The homepage
incorporated various functions, such as research participation application and consent,
screening results, and personalized progress guidance for each participant. The dashboard
was equipped with features to seamlessly monitor participants’ progress and manage
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the collected research data, integrating information from both the homepage and the
client application.

3.3. Privacy Considerations

We implemented measures to safeguard the collected sensor data and self-assessments,
given the sensitive nature of the information. Regarding the data themselves, we did not
collect any content of conversations or messages; the sensor data comprised numeric infor-
mation such as noise levels and the count of phone calls. The mobile application securely
transmitted the collected data to the cloud server using the SSL protocol through a TCP
connection. To ensure anonymity, each participant was assigned a randomly generated ID
number by the cloud server. Access to the cloud platform and web server was restricted to
authorized personnel. The administrator had the sole authority to invite research personnel
to access the server via their email accounts. These security measures were implemented to
protect participants’ privacy and maintain the confidentiality of their data.

3.4. Data Quality Monitoring

The data-collection system incorporated specialized functionality aimed at enhancing
data completeness. Firstly, the client application monitored the frequency of participant
responses to EMA surveys, specifically focusing on identifying those with a response
rate below 80%. This detection process occured weekly, and mobile notifications were
sent to users to encourage more frequent participation. Secondly, the application closely
monitored data transmission to the server, particularly in situations where automated data
transmission encountered issues. Participants received push notifications if data had not
been transmitted for 72 h or longer. The application integrated a manual data-transmission
function, which allowed participants to directly send data to the server, thereby ensuring
that no valuable data were lost.

4. Data Processing

In this section, we discuss a comprehensive set of procedures that we applied to prepro-
cess data and transform them into a suitable format for further analysis. We first describe
the preprocessing of the survey data, followed by the methods utilized for sensor data.

4.1. EMA Data

We utilized two filters to enhance the reliability of the collected survey data. Firstly, we
excluded EMAs where the reliability check question was answered incorrectly. Secondly, we
removed EMAs that were answered too quickly. Among all the questionnaires administered,
3% displayed a discrepancy of greater than one point between the responses to the PHQ-
9’s second item (“Feeling down, depressed or hopeless”) and the corresponding trap
question (a restated version of the item), rendering them invalid. For each of the remaining
EMAs, we computed the Speeder Index as a criterion for filtering responses based on
their response duration. We followed the methodology proposed by Canzian et al. [7] and
set the threshold for voiding an EMA to 10% of the lowest Speeder Index. The Speeder
Index calculation starts with computing the median EMA response time for all participants.
For questionnaires with a completion time equal to or longer than the calculated median,
the Speeder Index equals 1. For the remaining self-reports, the Speeder Index is the ratio
between the EMA response time and the median response time.

To determine the daily PHQ-9 score, we applied different methods depending on the
availability of the self-report on the given day. For the days when a participant completed
the assessment at least once, the daily PHQ-9 score was calculated as an average of the
reported self-assessments. For days when no EMAs were reported, we employed linear
interpolation by following the current practices in the area when dealing with missing
EMA values [23]. We applied the linear interpolation for each item score individually for
each participant. The PHQ-9 score for the interpolated days was obtained by summing the
individual item scores. The total PHQ-9 score was classified into three distinct categories
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representing different levels of depression severity: none/mild, moderate, and severe. The
PHQ-9 score served as a measure of severity, ranging from 0 to 27, as each of the 9 items
was scored from 0 to 3. According to [16], specific cut-off scores represent the severity
levels: 5, 10, 15, and 20, which denote mild, moderate, moderately severe, and severe
depression, respectively. In our study, the three cohorts were categorized as follows: the
normal and mild groups (PHQ-9 scores below 10), the moderate and moderately severe
groups (PHQ-9 scores between 10 and 19), and the severe group (PHQ-9 scores 20 and
more). For symptom scores, we adopted the approach presented by Ware et al. [12], who
considered scores greater than 0 on the Likert scale as indicative of symptom presence. Due
to the limited number of samples with scores 2 and 3, we grouped scores of 1, 2, and 3. As
a result, our classification of depressive symptoms (Section 6.1) consisted of two classes:
the presence or absence of each symptom.

4.2. Sensor Data

This section provides a description of the methods employed to preprocess sensor
data and generate machine learning-ready features. In the first subsection, we outline the
exclusion criteria for data sources. The subsequent subsection elaborates on the raw data
preprocessing phase, which encompasses the cleaning of noisy data records, imputation of
missing data, and data transformations. Following the raw data preprocessing phase, we
proceed with feature extraction.

4.2.1. Data Sources Exclusion

As described in Section 3.2, our data comprised data sources from two platforms:
Android (19 sources) and iOS (11 sources). However, due to various data quality issues
discovered during the primary Exploratory Data Analysis (EDA), some of the collected
data sources were not used for data analysis. Firstly, we excluded data sources with low or
no variability in measurements on an individual level, namely significant motion (Android)
and calendar (Android, iOS). Another criterion for excluding data sources was the absence
of data from multiple participants. We omitted the analysis of Social Networking Service
(SNS), Music, and Short Message Service (SMS) data. The collection of SNS data was
voluntary, as participants needed to log into their social media accounts via our application
to provide this information. Consequently, only 17% of participants provided us with
social media data. Regarding music data, MOCA captured song information from the
most widely used music players in Korea, including Melon [32], Genie [33], Flo [34], and
others. However, almost 30% of participants lacked music data, which might be attributed
to the utilization of less common applications. Prior research [35] states that SMS data
serve as an indicator of social interaction. However, in Korea, the predominant method of
messaging is an application called KakaoTalk [36]. Therefore, the frequency of KakaoTalk
usage was employed as an indicator of social interaction. Regarding the camera sensor, our
intention was to utilize it for capturing face photos and subsequently apply facial emotion
recognition. However, the COVID-19 pandemic necessitated the use of face masks by a
majority of users, rendering the analysis of emotions from the captured photos challenging.

4.2.2. Data Preprocessing

The initial stage involved the identification and removal of noisy data records, specifi-
cally out-of-range values. These measurements, which deviated from the anticipated range,
arose due to data-acquisition or data-entry errors. The expected range of values was es-
tablished for each data source individually, taking into account its unique characteristics.
For example, for data sources that captured time duration, such as activity recognition,
calls, and others, the expected range of values was constrained to positive values since
duration cannot be negative. To cleanse GPS data of erroneous measurements or outliers,
we leveraged a widely employed clustering algorithm, DBSCAN [37]. This density-based
algorithm is effective in identifying low-density regions as outliers. The algorithm requires
two parameters, namely epsilon (maximum distance between points) and cluster size
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(minimum number of points required to form a cluster). We adopted the recommended
parameter settings from [9], wherein epsilon was set to 0.0005 and the minimum duration
of stay at a cluster was set to 2.5 h, which allowed us to calculate the corresponding number
of points required to form a cluster.

Following the erroneous data record removal, we proceeded with the implementation
of missing data imputation techniques. The absence of data measurements could be caused
by diverse factors, including but not limited to application errors resulting in untriggered
events for event-based data sources. Additionally, missing data might arise due to the ter-
mination of data-acquisition services by the device operating system, or the non-existence
of data records. Furthermore, data omissions might originate from data-entry discrepan-
cies during client-side database input and its subsequent transmission to the server-side
database. To address this, we utilized the linear interpolation method for imputing missing
data for interval-based data sources. However, we refrained from applying the missing
data imputation method to event-based data sources due to the challenge of distinguishing
between missing and non-existent data in such cases.

As a final step of data preprocessing, we applied a Box–Cox transformation [38]
individually to each participant’s data. The Box–Cox transformation is a widely recognized
data-transformation technique that is employed to enhance the reliability and validity of
analyses involving continuous data that do not follow a normal distribution or display
heteroscedasticity. The Box–Cox transformation involves a rescaling and unit alteration
of the measurement values, rendering it an appropriate choice for our numerical data.
However, it should be noted that this transformation was not suitable for latitude and
longitude values as we required the original GPS values for further feature extraction.

4.2.3. Feature Extraction

The data analysis incorporated two types of features: demographic information about
the participants and features extracted from sensor data. In terms of demographics, we
utilized gender and age, as this information improves the accuracy of predicting depression
based on previous research [24]. For the age variable, we transformed the age into three
age groups: below 30 years, between 31 and 45 years, and 46 years or more.

Regarding the sensor data, we categorized data sources into three categories based
on their specific measurement characteristics: duration-based, value-based, and quantity-
based. It should be noted that certain data sources belonged to multiple categories. For
instance, keystroke log data, which recorded typing characteristics, was analysed for
both quantity-based information (such as the number of key presses) and duration-based
information (such as typing duration). Hence, the particular features derived from the raw
data rely on the mentioned categorizations:

• Duration-based data sources measured the amount of time for a particular activity
such as walking or talking over the phone. We calculated the mean and variance of
activity durations over a specified period of time.

• Value-based data sources measured specific characteristics such as acceleration or
sound energy. Analogous to duration-based data sources, the features extracted from
these sources were determined by computing the mean and variance of measurements
captured over a designated time interval. While GPS sensors were classified as value-
based data sources, the approach used for computing their features differed from that
of other value-based data sources. Specifically, the computation of location features
was predicated on a methodology described in [8].

• Quantity-based data sources measured the number of occurrences of a particular
action or the quantity of something. A pedometer sensor recording the number of
steps taken represented an example of a quantity-based data source. The cumulative
count of occurrences within a specified time frame was computed for this class of
data source.

As described in Section 4.1, self-reports were aggregated on a daily basis. Consequently,
we calculated features over 24 h intervals using preprocessed sensor data. Table 3 contains
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an overview of analyzed data sources and the corresponding extracted features from each
data source. Additionally, the table includes device operating system information, because
not all the listed data sources are available for both platforms.

After performing feature extraction, we obtained a total of 68 features for the Android
platform and 34 features for iOS. To reduce the dimensionality of the dataset, we initially
examined the extracted features for low variability, as these features are often uninformative
and can have a detrimental effect on the performance of machine learning models. We
used a threshold of 0.05 to identify quasi-constant features, which is a common practice.
Subsequently, we evaluated the features based on the amount of missing data across all
participants. As a rule of thumb, we employed a threshold of 20% to discard features.
Following the feature removal based on low variability and missing data, Android had
43 remaining features, while iOS had 31.

Table 3. Extracted features.

Data Source Feature Name Device OS

Additional day of the week, gender, age
group Android, iOS

Applications usage

social/finance/media/tools/
work/study/lifestyle/

significant/non-significant apps
mean usage duration and

variance [39]

Android

Call log

number of
missed/incoming/outgoing calls,

incoming/outgoing calls mean
duration and variance

Android, iOS

GPS

time spent at home/work/other
places, total travelled distance,
maximum distance from home,

number of visited places, standard
deviation of displacement [8]

Android, iOS

Gravity mean and variance of gravity
magnitude in x, y, z directions Android, iOS

Keystroke log

number of key presses, number of
backspace presses, number of
unique apps, number of auto

corrections, mean duration and
variance of typing in

significant/non-significant apps

Android

Light mean and variance of light
intensity Android

Microphone
mean and variance of sound

loudness, number of times pitch is
detected

Android, iOS

Notifications

number of arrived/clicked
notifications, number of unique

apps, mean and variance of
decision time

Android

Pedometer number of steps Android, iOS

Physical activity
mean and variance of being active

(walking, running,
cycling)/inactive (still, in vehicle)

Android, iOS

Screen mean and variance of unlocked
screen state Android, iOS

Stored media mean number of image files
stored Android, iOS

Wi-Fi mean number of access points Android
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5. Analysis Methods

In this section, we present our methodology designed to improve the accuracy of
depression severity prediction. Our approach focuses on capturing a representation of the
Diagnostic and Statistical Manual of Mental Disorders (DSM-5) [13] depressive symptoms,
enabling the accurate prediction of depression severity. To achieve this, we introduce
a novel metric called symptom profile vector, which is composed of nine elements. Each
element of this vector corresponds to one of the depressive symptoms enumerated in the
PHQ-9 questionnaire.

5.1. Symptom Profile Concept and Calculation

The key idea behind the concept of the symptom profile vector is the recognition of the
depressive symptoms heterogeneity (which symptoms are present) and their significance
(which symptoms are most indicative of depression). We consider symptom heterogeneity
because it acknowledges the wide range of symptom variations among individuals with
depression [40]. Individuals with similar PHQ-9 assessment sum scores can have different
syndromes. Symptoms significance refers to variations in the interpretation and impor-
tance of similar symptoms among individuals. To exemplify the utility of the symptom
significance, consider two hypothetical individuals, Person A and Person B. Both Person A
and Person B are experiencing the same depressive symptom (e.g., problems with appetite
and/or sleep). For Person A, the symptom is associated with lifestyle routine or some
mental or physical health problems other than depression, while for Person B the depressive
symptom was caused by depression. This example illustrates the diverse interpretations of
symptoms and their significance for different individuals.

Figure 3 presents the high-level pipeline employed in the proposed symptom-profiling
approach. Initially, the dataset is split into two distinct subsets. This partitioning is car-
ried out individually for each participant, where the first month’s accumulated data are
designated for symptom profile vector generation, while the remaining data are reserved
for depression severity prediction. The symptoms significance vector is derived from the
collected self-reports within the first subset. This vector is constructed by calculating the
absolute value of the Pearson correlation between item scores related to a particular symp-
tom and the total PHQ-9 scores recorded during the first month of data collection. As a
result, each participant is represented by a nine-element vector referred to as the symptom
significance vector ( ~SS). Each element of the vector ranges from 0 to 1 and indicates the
significance of the respective symptom.

Sensor data collected during the first month is used to train models tasked with
predicting the likelihood of the presence of a depressive symptom. These probabilities
are determined by utilizing the predict_proba() method of the XGBoost model [41].
Consequently, nine distinct models are trained, each associated with a specific depressive
symptom. In the subsequent phase, the sensor data of the dataset for depression severity
prediction (2nd and 3rd months of data) are fed into the probability-prediction models,
yielding the likelihood of each symptom’s occurrence. The resulting vector is referred to
as the symptoms heterogeneity vector ( ~SH). The vector comprises nine elements ranging
from 0 to 1 and indicates the probability of respective depressive symptoms on a given day.

The symptom profile vector ( ~SP) is calculated through element-wise multiplication,
also known as the Hadamard product, between the symptom significance vector ~SS and
the symptoms heterogeneity vector ~SH (as shown in Equation (1)). This resulting symptom
profile vector is subsequently utilized as input for a machine learning classifier, enabling
the prediction of depression severity for the second and third months of data collection
(Section 6.2).

~SP = ~SH � ~SS (1)

To illustrate the conceptual meaning of the symptom profile vector, we revisit the
example mentioned earlier in this section. As a recap, Person A and Person B are experi-
encing the same depressive symptom. However, for Person A, the symptom is not caused
by depression, in contrast to Person B. For both of them, the element of the symptom
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heterogeneity vector associated with the experienced symptom is expected to be close to
1, indicating a high probability of the symptom being present. However, the symptom
significance vector element corresponding to the symptom is expected to be higher for
Person B than for Person A. Consequently, when we multiply the elements of the symptom
significance vector by the elements of the symptom heterogeneity vector, the value of the
corresponding element in the resulting symptom profile vector will be lower for Person
A than for Person B, reflecting the diminished influence of the symptom in predicting
depression for Person A.

Full dataset

Split per each 
subject

Element-wise 
multiplication

Each item scores vs total 
PHQ-9 score

Sensor data

1st month

2nd and 3rd 

months

Separate model for 
each symptom

EMA data

Machine 
Learning 
Classifier

Symptom 
Profile Vector

Symptoms 
heterogeneity 

vector

Symptoms 
significance 

vector

Symptom 
correlation 
calculation

Trained 
models

Symptom 
probability 

model 
training

Dataset for 
symptom 

profile 
generation

Dataset for 
depression 

severity 
prediction

Depression 
severity

Sensor data

Sensor data

Figure 3. The high-level pipeline depicting the integration of symptom profile and machine learning
for depression severity prediction.

5.2. Weighted Symptom Profile

According to the diagnostic criteria outlined in the DSM-5 for depression, an individual
must exhibit five or more symptoms to receive a depression diagnosis [13]. Notably, at
least one of these symptoms must be either a depressed mood or a loss of interest or
pleasure in activities. With the goal of improving the predictive accuracy of depression
severity, we investigated the impact of artificially amplifying the significance of these two
symptoms. To achieve this, we doubled the weight assigned to the elements within the
symptom profile vector corresponding to depressed mood and anhedonia when using
the machine learning classifier. In contrast, the previously described symptom-profiling
method involved the machine learning classifier autonomously determining the most
optimal feature weights for the algorithmic process. By explicitly increasing the importance
of these two symptoms, our aim was to assess whether this adjustment yields superior
prediction accuracy for depression severity and a more refined differentiation among
depression levels. The results of experiments with the weighted symptom profile vector
are shown at the end of Section 6.2.

6. Results

We considered data collected from July 2021 to June 2022 by participants who finished
at least three months of data collection. A total of 381 participants (252 with Android devices
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and 129 with iOS devices) completed the study. As for the demographic characteristics
of the participants, our dataset consisted of 63% female and 39% male participants aged
between 18 and 61 years (mean age = 28, standard deviation = 9.37).

6.1. Predicting Depressive Symptoms

As an initial step in our data analysis, we conducted machine learning tests to predict
the presence or absence of depressive symptoms. To accomplish this, we trained separate
XGBoost models, each corresponding to a specific depression symptom outlined in the
PHQ-9 depressive questionnaire. The classification process was performed for daily self-
reports, and the preprocessing procedure, including binarization, is detailed in Section 4.1.
Figure 4 displays the histograms depicting the distribution of ground truth data. Symptom
labels marked in red indicate significant imbalances in sample representation, with one class
containing more than 4 times or less than 1/4 of the samples compared to the other class.
These imbalanced symptoms were subsequently excluded from the analysis, following
the approach outlined by Ware et al. [12]. To address the remaining data imbalance in
symptoms, we employed the Synthetic Minority Over-sampling Technique (SMOTE) [42]
on the training set. To prevent overfitting, we utilized the leave-one-subject-out (LOSO)
cross-validation method, whereby no data from a given user were used for both training
and testing. We evaluated the models’ predictive capabilities using F1 score, precision, and
recall, calculated with the scikit-learn library [43]. Precision quantifies the accuracy of
identifying true positive cases, where a depressive symptom is present, among all cases
predicted as positive. Recall assesses the model’s ability to identify all true positive cases
among all actual positive cases. The F1 score, a harmonic mean of precision and recall, is
defined as 2 × (precision × recall)/(precision + recall).

Classification results are presented in Table 4, with Android and iOS results presented
separately due to significant differences in data-collection mechanisms. For each depressive
symptom, the Android dataset consisted of 25,176 samples, while the iOS dataset comprised
10,290 samples. As previously mentioned, certain symptoms were excluded from the
analysis. Specifically, for the Android dataset, the excluded symptoms were inability to
concentrate, psychomotor activity retardation or agitation, and suicidal ideation. For the
iOS dataset, we excluded psychomotor activity change and suicidal thoughts symptoms.

We first discuss the results obtained from the Android dataset. All F1 scores surpassed
0.77, except for the fatigue symptom, which had a score of 0.69. F1 scores ranged from 0.69
to 0.83. Particularly noteworthy were the highest F1 scores attained for the feeling of worth-
lessness symptom (0.83), the diminished interest and depressed mood symptoms (0.80). It is
interesting to note that all three of these symptoms are cognitive, suggesting the possibility
of monitoring cognitive symptoms through the analysis of digital behaviour data.

The lower section of Table 4 displays the results from the iOS dataset, with F1 scores
ranging from 0.63 to 0.76. The highest F1 scores were observed for the inability to concen-
trate symptom (0.76), the feeling of worthlessness symptom (0.75), and the depressed mood
symptom (0.70). In line with the findings from the Android dataset, symptoms with cogni-
tive characteristics exhibited the highest predictive performance. However, the F1 scores
achieved for the iOS dataset are lower compared to those for the Android dataset. One po-
tential explanation is the smaller number of data sources available for iOS in comparison to
Android, coupled with a larger amount of missing data for iOS. The iOS operating system
requires the application to be open in the app switcher to facilitate sensor data collection.
When users swipe up to close the application, it is removed from the background, resulting
in larger data gaps in the iOS dataset compared to the Android dataset.
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Figure 4. Distribution of samples for depressive symptoms. (a) The Android dataset and (b) the iOS
dataset. Symptoms marked in red are excluded from the analysis.

We first discuss the results obtained from the Android dataset. All F1 scores surpassed
0.77, except for the fatigue symptom, which had a score of 0.69. F1 scores ranged from
0.69 to 0.83. Particularly noteworthy were the highest F1 scores attained for the feeling of
worthlessness symptom (0.83), the diminished interest and depressed mood symptoms
(0.80). It is interesting to note that all three of these symptoms are cognitive, suggesting
the possibility of monitoring cognitive symptoms through the analysis of digital behaviour
data.

The lower section of Table 4 displays the results from the iOS dataset, with F1 scores
ranging from 0.63 to 0.76. The highest F1 scores were observed for the inability to concen-
trate symptom (0.76), the feeling of worthlessness symptom (0.75), and the depressed mood
symptom (0.70). In line with the findings from the Android dataset, symptoms with cogni-
tive characteristics exhibited the highest predictive performance. However, the F1 scores

Figure 4. Distribution of samples for depressive symptoms. (a) The Android dataset and (b) the iOS
dataset. Symptoms marked in red are excluded from the analysis.

Table 4. Prediction of individual depressive symptoms.

Device OS Depressive Symptom F1 Score Precision Recall

Android

Diminished interest 0.80 0.85 0.75
Depressed mood 0.80 0.85 0.75
Sleep problems 0.77 0.84 0.70

Fatigue 0.69 0.80 0.61
Appetite problems 0.77 0.84 0.70

Felling of worthlessness 0.83 0.86 0.81

iOS

Diminished interest 0.68 0.79 0.59
Depressed mood 0.70 0.80 0.62
Sleep problems 0.66 0.79 0.57

Fatigue 0.64 0.77 0.55
Appetite problems 0.63 0.75 0.54

Feeling of worthlessness 0.75 0.82 0.70
Concentration problems 0.76 0.83 0.71
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6.2. Predicting Depression Severity

In this section, we present the findings regarding the classification of depression
severity for the second and third months of data collection for each participant as described
in Section 5. The classification involved three distinct classes, namely none/mild depression,
moderate depression, and severe depression. The detailed process of converting total PHQ-
9 scores into the three depression group categories is outlined in Section 4.1. We conducted
a comparative analysis to evaluate the performance of machine learning models in two
scenarios: (1) employing sensor data directly as input and (2) utilizing symptom profile
vectors as input. To ensure the consistency of results, we tested our approach using four
distinct models: XGBoost [41], LightGBM [44], CatBoost [45], and Support Vector Machine
(SVM) [46]. We computed weighted averages of F1 score, precision, and recall using the
Python scikit-learn library as performance metrics. Weighted precision, recall, and F1 score
are commonly used in multiclass classification, especially when dealing with imbalanced
data. This is because unweighted precision, recall, and F1 score can be heavily influenced
by the dominant class. The process for calculating these metrics in multiclass classification
involves first computing them separately for each class, treating each class as the positive
class. Then, we calculate weighted average scores, where each F1 score, precision, and
recall is multiplied by the number of samples in the corresponding class before averaging.
To assess the generalizability of our model in predicting depression severity for unseen
participants’ data and its ability to combat overfitting, we employed the cross-validation
method used by Ware et al. [12]. Leave-one-user-out cross-validation evaluates the model’s
generalization capability by repeatedly testing it on unseen participants’ data. Specifically,
the leave-one-user-out cross-validation technique ensures that no data from one user are
included in both the training and test sets, thereby evaluating the model’s capacity to learn
data patterns rather than memorizing noise and overfitting.

The results are depicted in Figure 5, which is divided into separate subfigures for
Android (Figure 5a) and iOS (Figure 5b) datasets due to differences in the collected sensor
sets. The bars colored in purple represent the results obtained by utilizing extracted sensor
features as input for the machine learning models. Conversely, the bars colored in blue
indicate the results obtained when utilizing the symptom profile vectors as input.

For both datasets, utilizing symptom profiles as input yielded higher F1 scores com-
pared to employing sensor data, and this trend was consistent across all the tested models.
On average, there was an improvement in the F1 score by 0.06 for the Android dataset and
an improvement of 0.04 for the iOS dataset. Recall increased by 0.06 on average for Android
and by 0.04 for iOS, whereas precision experienced an increase of 0.05 for Android and a
modest increase of 0.01 for iOS. It is worth noting that most of the achieved results were
lower for iOS compared to Android. This discrepancy may be attributed to the smaller
dataset size and other potential factors discussed in Section 6.1.

Additionally, we investigated the impact of manually adjusting the weights of symp-
tom profile vector elements corresponding to specific depressive symptoms. The reasoning
behind this experiment is outlined in Section 5.2. To assess the predictive performance,
we used techniques specific to each classifier. For the XGBoost classifier, we employed
the feature_weights parameter in the fit() function, while in the case of LightGBM and
CatBoost classifiers, we utilized the feature_contri and feature_weights parameters
respectively, during initialization. In the case of the SVM classifier, we used a scaling factor
of two for the symptom profile vector elements associated with the symptoms of depressed
mood and diminished interest. The results of this experiment exhibited a marginal increase
by less than 0.01 in both F1 score and precision, while recall demonstrated minimal change
for both Android and iOS datasets. Based on these findings, we concluded that artificially
doubling the weights of specific symptom elements did not significantly influence the
performance of the model. However, exploring alternative weight adjustment factors
and different combinations of symptoms for weight calibration could serve as a future
research direction.
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Figure 5. Prediction of depression severity using sensor data and symptom profile vectors (SP vectors)
as input. (a) Results from the Android dataset and (b) results from the iOS dataset.

6.3. Symptom Profiling and Depression Severity

To assess the effectiveness of the symptom profile metric in categorizing participants
into distinct depression severity groups, we computed the average values of the symptom
profile vector elements for each of the three depression levels. Subsequently, we compared
these averages with the normalized scores obtained from the original self-report responses,
which range from 0 to 1. The comparison of symptom profile values with original self-report
scores offers a perspective on the precision and reliability of our approach in capturing the
complexity of depressive symptomatology. Figure 6 illustrates the average symptom profile
values alongside the corresponding original ground truth answers for each depressive
symptom separately for Android (Figure 6a) and iOS (Figure 6b) datasets. In the figure,
solid lines represent the values derived from the symptom profile metric, while dashed
lines depict the original scores obtained through EMAs. The color scheme employs blue,
purple, and red to indicate not/mildly depressed, moderately depressed, and severely
depressed participants, respectively.
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Figure 6. Averaged symptom profile vectors and rescaled PHQ-9 item scores across depression
severity groups. (a) The Android dataset and (b) the iOS dataset.

Regarding the Android dataset, the symptom profile vector was most effective for bi-
nary classification in terms of the separability of depression severity groups. The not/mildly
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depressed group exhibited a distinct separation from the moderately depressed and
severely depressed groups. When distinguishing between the moderately and severely de-
pressed groups, the symptom profile scores were most effective in differentiating problems
with appetite, feeling of worthlessness, and suicidal thoughts symptoms. In terms of the
dominant depressive symptoms across depression severity levels, the fatigue symptom
demonstrated a higher magnitude compared to other depressive symptoms within the
not/mildly and moderately depressed groups. This was supported by both the symptom-
profiling and original EMA responses. Within the severely depressed group, multiple
symptoms exhibited similarly high magnitudes when assessing both symptom profile
values and original EMA scores. The symptom profiling performed most accurately when
estimating original EMA scores for the not/mildly depressed group, but its estimation for
the moderate and severe groups was less precise.

Turning to the iOS dataset, the symptom profile metric performed less effectively at
separating depression groups compared to the Android dataset. This could be attributed to
several factors, including a smaller number of participants, fewer available data sources,
and a larger amount of missing data due to operating system restrictions. Nevertheless, the
symptom profile vectors still managed to separate the three depression severity groups.
The most significant differences between symptom profile values for not/mildly and
moderately depressed groups were achieved for symptoms related to depressed mood,
diminished interest, and fatigue. When distinguishing between the moderately and severely
depressed groups, the symptom profile vector was most effective in capturing the difference
in the psychomotor activity symptom. Similar to the Android dataset results, the most
commonly experienced symptom across non-depressed individuals and those with mild
to moderate depression was fatigue, as demonstrated by both EMA item scores and the
symptom profile vectors. The strength of depressive symptoms was underestimated by the
symptom profiles for depressed groups, while it provided fairly accurate estimations for
the not/mildly depressed group.

7. Discussion and Future Work

The present study aimed to assess the effectiveness of machine learning in predicting
both depression severity and related symptoms from passive data. Predicting specific
depressive symptoms is crucial because relying solely on the total score of the PHQ-9 to
predict depression misses the diverse phenotypes of depression and may hinder achieving
a high predictive accuracy rate. To address this, we introduced a novel approach called
symptom profiling, which demonstrated its potential as a valuable tool for predicting and
categorizing depression severity using smartphone data while providing an overview of
the specific depressive symptoms that an individual is experiencing. In the initial phase of
our data analysis, we employed machine learning models to predict the presence or absence
of depressive symptoms. The results highlighted the robust predictive capabilities of our
approach, particularly for cognitive symptoms such as diminished interest, depressed
mood, feelings of worthlessness, and concentration difficulties. Regarding the classification
of depression severity, we found that using symptom profile vectors as inputs for machine
learning models consistently outperformed using sensor data in terms of classification
accuracy. Our proposed approach demonstrates that digital phenotyping can be utilized
not only for predicting depression but also for monitoring depression severity and the
dynamics of specific depressive symptoms.

While our study provides valuable insights, we acknowledge certain limitations and
suggest areas for potential improvement in future digital phenotyping research. One no-
table limitation of our dataset is its ground truth imbalance, a common issue encountered
in digital phenotyping research due to the low frequency of depression in the general
population [47]. The discrepancy between the symptom profile metric and the original
PHQ-9 self-reports increases with depression severity. One potential explanation is the
imbalanced dataset, given that we have the fewest number of participants in the severely
depressed group. Future research should prioritize the recruitment of more severely de-
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pressed participants and consider incorporating clinical interviews in participant selection,
if feasible. Additionally, despite our efforts to include participants from different age
groups, the majority of our sample consists of young adults below the age of 30. To enhance
the generalizability of our proposed methods, it is essential to validate our findings on a
sample of individuals encompassing a broader age range, including older adults.

Regarding the collected data, we rely on PHQ-9 questionnaires as self-report measures,
which consist of one question per depressive symptom, amounting to nine questions in
total. However, augmenting the data collection with Beck Depression Inventory (BDI-II) or
Quick Inventory of Depressive Symptomatology (QIDS) [48] alongside PHQ-9 may offer a
more comprehensive understanding of depressive symptoms. Both BDI-II and QIDS offer
more detailed and fine-grained questions for certain symptoms. For instance, while the
PHQ-9’s question related to sleep problems inquires about general trouble sleeping, the
QIDS questionnaire expands this query into four sub-questions: (1) time taken to fall asleep,
(2) quality of sleep during the night, (3) instances of waking up too early, and (4) excessive
sleeping. Given that the questionnaires are widely utilized in clinical settings for detecting
depression, combining them could provide more comprehensive data for analysis.

In terms of sensor data, augmenting the features with additional voice-related parame-
ters (e.g., speaking frequency) could yield valuable insights into the social aspect of depres-
sion and potentially enhance classification accuracy. Furthermore, sleep duration features
are powerful predictors of depression [23]. Calculating sleep duration from sensor data
can be achieved using the method proposed by [49], or alternatively, special APIs [50,51]
for Android and iOS operating systems respectively. Finally, to improve the practicality of
mobile applications for depression monitoring, extending passive data-collection intervals
is beneficial in reducing battery consumption.

8. Conclusions

This research builds upon prior studies, indicating that digital phenotyping employing
passive smartphone sensor data could serve as a tool for capturing short-term fluctuations
in depression. This paper takes one step further in investigating the viability of utilizing
smartphone data for the prediction of depressive symptoms and depression severity. A non-
clinical cohort of 381 participants was involved in this study, confirming the feasibility of the
depression-severity-classification model using the widely recognized PHQ-9 assessment
as a ground truth. Additionally, we explored methods to enhance depression-severity-
prediction accuracy and proposed a novel method involving symptom profiling, which
represents experienced depressive symptoms. We conducted a comparison of machine
learning performance for depression severity prediction, evaluating the utilization of sensor
data directly against the use of symptom profile vectors as input. The proposed approach
with symptom profiles consistently demonstrated improved accuracy across both Android
and iOS datasets.
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