ﬁ Sensors

Article

OutcropHyBNet: Hybrid Backbone Networks with Data
Augmentation for Accurate Stratum Semantic Segmentation of
Monocular Outcrop Images in Carbon Capture and

Storage Applications

Hirokazu Madokoro »*{), Kodai Sato 2, Stephanie Nix (7, Shun Chiyonobu 3, Takeshi Nagayoshi *

and Kazuhito Sato 2

check for
updates

Citation: Madokoro, H.; Sato, K.; Nix,
S.; Chiyonobu, S.; Nagayoshi, T.; Sato,
K. OutcropHyBNet: Hybrid
Backbone Networks with Data
Augmentation for Accurate Stratum
Semantic Segmentation of Monocular
Outcrop Images in Carbon Capture
and Storage Applications. Sensors
2023, 23, 8809. https://doi.org/
10.3390/523218809

Academic Editor: Fabio Leccese

Received: 21 August 2023
Revised: 11 October 2023
Accepted: 26 October 2023
Published: 29 October 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Faculty of Software and Information Science, Iwate Prefectural University, Takizawa 020-0693, Japan
Faculty of Systems Science and Technology, Akita Prefectural University, Yurihonjo 015-0055, Japan
Graduate School of International Resource Sciences, Akita University, Akita 010-8502, Japan

Faculty of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan
Correspondence: hirokazu_m@iwate-pu.ac.jp; Tel.: +81-019-694-2500

W N e

Abstract: The rapid advancement of climate change and global warming have widespread impacts
on society, including ecosystems, water security, food production, health, and infrastructure. To
achieve significant global emission reductions, approximately 74% is expected to come from cutting
carbon dioxide (CO;) emissions in energy supply and demand. Carbon Capture and Storage (CCS)
has attained global recognition as a preeminent approach for the mitigation of atmospheric carbon
dioxide levels, primarily by means of capturing and storing CO, emissions originating from fossil
fuel systems. Currently, geological models for storage location determination in CCS rely on limited
sampling data from borehole surveys, which poses accuracy challenges. To tackle this challenge,
our research project focuses on analyzing exposed rock formations, known as outcrops, with the
goal of identifying the most effective backbone networks for classifying various strata types in
outcrop images. We leverage deep learning-based outcrop semantic segmentation techniques using
hybrid backbone networks, named OutcropHyBNet, to achieve accurate and efficient lithological
classification, while considering texture features and without compromising computational efficiency.
We conducted accuracy comparisons using publicly available benchmark datasets, as well as an
original dataset expanded through random sampling of 13 outcrop images obtained using a stationary
camera, installed on the ground. Additionally, we evaluated the efficacy of data augmentation
through image synthesis using Only Adversarial Supervision for Semantic Image Synthesis (OASIS).
Evaluation experiments on two public benchmark datasets revealed insights into the classification
characteristics of different classes. The results demonstrate the superiority of Convolutional Neural
Networks (CNNs), specifically DeepLabv3, and Vision Transformers (ViTs), particularly SegFormer,
under specific conditions. These findings contribute to advancing accurate lithological classification
in geological studies using deep learning methodologies. In the evaluation experiments conducted
on ground-level images obtained using a stationary camera and aerial images captured using a drone,
we successfully demonstrated the superior performance of SegFormer across all categories.

Keywords: semantic segmentation; Convolutional Neural Network; Vision Transformer; Generative
Adversarial Networks; outcrop images; drone

1. Introduction

The escalating global phenomenon of climate change, resulting from the warming of
the earth, has reached a level of utmost urgency. In its Second Working Group Report of
the Sixth Assessment Report [1], the Intergovernmental Panel on Climate Change (IPCC)
highlighted the profound impact of climate change on various human systems, including
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ecosystems, water security, food production, health and well-being, cities, residences, and
infrastructure. According to the First Working Group Report, the global average tempera-
ture from 2011 to 2020 has risen by 1.09 °C compared to the pre-industrial era. Furthermore,
the IPCC announced that even under scenarios with extremely low greenhouse gas emis-
sions, such as achieving zero carbon dioxide (CO,) emissions by around 2050 or later
and subsequent negative emissions, there is a possibility of global temperature increase
reaching 1.5 °C between 2021 and 2040. The report also indicated that the frequency of
extreme temperature events in terrestrial areas that occur once every 10 years or once
every 50 years is likely to increase by 4.1 times and 8.6 times, respectively, due to 1.5 °C
of warming. In addition to the projected increase of 1.5-fold in decadal events for heavy
rainfall in terrestrial areas and a 2.0-fold increase in agricultural and ecological droughts
in arid regions, it is anticipated that severe snowstorms and super typhoons will undergo
further intensification [2].

The First Working Group Report revealed a nearly linear relationship between cumu-
lative CO, emissions and the phenomenon of global warming. To limit the temperature
increase beyond the pre-industrial levels to 1.5 °C with a probability of 67% or higher, it was
estimated that the remaining CO, emissions should not exceed 400 billion tons. The Third
Working Group Report stated that in scenarios where global CO, emissions reach zero,
approximately 74% of the required global emissions reduction would be achieved through
reductions in CO, emissions from energy supply and demand. While renewable energy
has emerged as a prominent solution, it is recognized that a combination of renewable
energy sources and fossil fuel systems is still necessary to meet the current energy demand.
In light of this, the present study specifically focuses on carbon capture and storage (CCS)
technology [3], assuming a high carbon capture rate of 90-95% from fossil fuel systems.

Achieving carbon neutrality requires a balance between emissions and removals of
greenhouse gases [4]. However, in many sectors, complete decarbonization is proving to
be a challenging reality. A prime example of this challenge is the power generation sector.
In this context, CCS technology plays an indispensable role in effectively reducing CO,
emissions and achieving the goal of carbon neutrality. The automotive industry is also
progressing towards decarbonization. The transition from internal combustion engines to
electric motors has led to a reduction in CO, emissions. However, charging the batteries of
electric vehicles requires a substantial amount of electricity, and relying solely on renewable
energy sources to meet this demand presents a formidable challenge. Nuclear power
as an alternative energy source remains a subject of debate, and its utilization presents
significant challenges. These challenges include the management of nuclear waste, the
threat of terrorism, and the need to learn from past nuclear power plant accidents while
undertaking long-term decommissioning processes, which are complex and require careful
consideration. To achieve carbon neutrality, a diverse array of strategies and approaches
is imperative.

CCS refers to the collective techniques of capturing carbon dioxide emitted from
factories, power plants, and other sources and storing it underground before its release into
the atmosphere [5]. The selection of storage locations is based on geological models derived
from borehole surveys and probability statistics. However, the current statistical methods
used to create geological models from limited sampling information obtained through
borehole drilling present challenges in terms of accuracy. By obtaining investigations of
the entire geological formation, there is a possibility to construct a geological model that is
more precise and accurate. In our research project [6], we specifically focus on outcrops,
which are exposed parts of geological formations visible on the Earth’s surface and are
covered by surface soil and vegetation. By analyzing images of outcrops, we aim to identify
optimal locations for storage by creating high-precision geological models. Therefore, this
study aims to explore the optimal backbone for semantic segmentation of outcrop images
using deep learning techniques, taking into consideration both the latest advancements in
the field and computational efficiency to minimize processing time.
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In this study, the primary focus was on the examination of the outcrop shown in the
photograph presented in Figure 1. This paper presents our research efforts in developing a
precise and efficient methodology for the classification of geological formations in outcrop
images. Our approach leverages deep learning-based semantic segmentation techniques
for this purpose, aiming to achieve accurate and reliable results. We investigate various
backbone architectures to determine the most suitable approach for this task. By accurately
characterizing geological formations, our proposed methodology can contribute to identi-
fying optimal locations for CCS and promoting effective carbon sequestration, which is
crucial for mitigating the impact of climate change.

Figure 1. Oibanazaki Outcrop located at the southern tip of the Oga Peninsula, Akita, Japan
(39°95'00” N, 139°90/00" E).

2. Related Studies

The field of computer vision has extensively utilized segmentation techniques for
pixel-wise object classification in images. Segmentation serves as a fundamental technol-
ogy in various practical tasks, including autonomous driving and other computer vision
applications [7]. Until recently, Convolutional Neural Networks (CNNs) [8] have been the
predominant approach for segmentation tasks in computer vision, following the introduc-
tion of Fully Convolutional Networks (FCN) [9] and their subsequent advancements. In
2020, Vision Transformer (ViT) [10] was introduced as an architecture that adapted the
successful Transformer model [11] from natural language processing to image recognition.
ViT surpassed the state-of-the-art BiT (Big Transfer) [12] method in terms of accuracy,
leading to a surge of research utilizing ViT in the field of image segmentation.

As a transformer-based architecture for image recognition, ViT builds upon the Trans-
former model that revolutionized natural language processing tasks. By omitting con-
volutional operations, ViT achieves improved computational efficiency and scalability.
Unlike CNNSs, Transformers lack the inherent inductive bias that considers the proximity
of information in convolutional layers as relevant, necessitating a large amount of training
data for generalization. Geirhos et al. [13] highlighted the classification characteristics
of CNNs, which prioritize textures over object shapes, as differing from human percep-
tion. Conversely, Tuli et al. [14] revealed that ViT’s classification characteristics are biased
towards object shapes and align more closely with human perception.

In recent years, there has been a growing interest in investigating not only CNNs
and ViTs as individual backbone architectures but also hybrid backbone architectures that
combine both approaches. Moreover, there has been a resurgence of interest in employing
a simplistic backbone architecture that solely comprises Multi-Layer Perceptron (MLP)
networks [15]. MLPs are feedforward neural networks composed of multiple layers of
interconnected perceptrons, each consisting of weighted inputs, an activation function,
and a bias term. MLPs can be seen as a deep extension of traditional neural network
architectures, where the concept of depth refers to the increased number of layers in
the network. By stacking multiple layers, MLPs can capture hierarchical representations
of input data, enabling them to learn intricate and abstract features through their deep
structure. This deep layering allows MLPs to effectively model complex relationships



Sensors 2023, 23, 8809

4 of 30

and patterns in the input data, making them powerful tools in various machine learning
tasks. While MLP-based backbones demonstrate performance comparable to BiT and ViT
in classification tasks, their applicability to segmentation tasks has not been fully explored.

Traditionally, high-precision 3D models of geological strata were created using ground-
based laser scanning methods [16]. However, this approach has limitations such as the
weight of surveying equipment, the need for scans from multiple field-based positions,
and the time-consuming nature of data acquisition. Consequently, the modeling process
presents significant challenges in regions where conducting in situ measurements and
data collection is impractical or entails risks. In such cases, drones equipped with cameras
are being utilized. Researchers such as Corradetti et al. [17] employed drones to capture
photographs of cliffs composed of nearly vertical outcrops, creating 3D models that were
used for crack analysis and understanding crack propagation patterns. Similarly, Sharad
et al. [18] used drones to capture high-resolution images of complex and hazardous
landslides, generating cm-level accuracy 3D models. Javier et al. [19] employed drones
to create highly accurate and high-resolution 3D models for identifying and interpreting
ancient Roman gold mining sites in Northwestern Spain, revealing areas such as excavation
sites, canals, reservoirs, and drainage channels. Mirkes et al. [20] proposed a semantic
segmentation method for rock outcrops that leads to the detection and segmentation of
various geometric features, including fractures, faults, and sedimentary layers. Zhang
etal. [21] state that most existing semantic segmentation methods are based on FCNs, which
replace the fully connected layer with fully convolutional layers for pixel-level prediction.
Malik et al. [22] proposed a segmentation method using a model that combines U-Net [23]
and LinkNet [24] to classify three classes: background, sandstone, and mudstone. They
conducted an evaluation experiment on a self-collected dataset of 102 images from a field
in Brunei Darussalam, demonstrating higher accuracy compared to conventional methods.
However, their proposed method and the comparison methods were based on conventional
CNN-based backbones, without considering recent advancements in deep learning. Vasuki
et al. [25] proposed an interactive segmentation method primarily using edge features
extracted from rock images obtained using a drone. They focused on superpixels as the
minimum resolution, emphasizing geological analysis and engaging in image sensing and
analysis. However, their segmentation method relied on conventional image processing
methods for feature extraction and did not incorporate learning-based techniques, which
might not provide sufficient accuracy and generalizability for this application domain.

Although research utilizing drones in geosciences has gained momentum [26], most
studies focus on analyzing topography using 3D models generated from captured pho-
tographs. However, there are a limited number of reported studies [22,25] that apply
segmentation-based approaches to classify lithostratigraphy in geological outcrops. This
paper emphasizes the mounting interest in employing CNNSs, ViT, and investigating hybrid
backbone architectures for segmentation tasks, while also acknowledging the expanding
utilization of drones in geological studies. Furthermore, it identifies a research gap concern-
ing the application of segmentation-based approaches to the lithostratigraphic classification
of geological outcrops.

3. OutcropHyBNet

We propose a novel approach named OutcropHyBNet, which combines a state-of-the-
art CNN architecture, DeepLabv3+ [27], and a transformer-based vision model, SegFormer,
to tackle the task of stratum semantic segmentation in outcrop images. The overall architec-
ture of our proposed method is illustrated in Figure 2. OutcropHyBNet leverages the robust
segmentation capabilities of DeepLabv3+ and the expressive power of SegFormer [28] as
the backbone networks for accurate and efficient stratum segmentation. To enhance the
diversity of training data, we employ Only Adversarial Supervision for Semantic Image
Synthesis (OASIS) [29] in image synthesis. During the segmentation training process, our
dataset includes both original outcrop images and synthetic images generated using OASIS.
OASIS utilizes the power of generative models to produce synthetic outcrop images that
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manifest characteristics closely resembling those observed in real-world data. By incorpo-
rating OASIS-generated images into the training dataset, we expand the available data and
improve the model capability to handle various outcrop images.
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Figure 2. Overall architecture of OutcropHyBNet.

The OutcropHyBNet architecture is designed to harness the power of CNN and ViT
backbones for accurate semantic segmentation of outcrop images. The input images are
processed through both backbones, allowing for efficient feature extraction and comprehen-
sive contextual understanding. The extracted features are further processed by additional
layers to perform pixel-wise classification, resulting in the generation of high-quality seg-
mentation maps. As the baseline model for OutcropHyBNet, we integrate DeepLabv3+ and
SegFormer into the architecture. Herein, SegFormer is one of the state-of-the-art semantic
segmentation models that adopts a transformer-based architecture [30]. By leveraging the
capabilities of SegFormer, we aim to improve the accuracy and performance of outcrop im-
age segmentation in our proposed method. By contrast, DeepLabv3+ is a lightweight model
that exhibits superiority in stuff classification. Although the ViT has gained significant
attention in the field of computer vision, CNNs still demonstrate strong potential in seg-
mentation tasks, particularly in areas involving texture and stuff [31]. For this mechanism,
OutcropHyBNet can flexibly utilize both backbones based on the segmentation target.

3.1. Semantic Image Synthesis
3.1.1. Data Augmentation with GANs

Generative Adversarial Networks (GANSs) [32] are a generative model based on adver-
sarial training without extensively annotated training data [33]. GANs offer a technique for
generating realistic data, such as images, from random noise. In our previous study [34], we
demonstrated the power and effectiveness of image synthesis for semantic segmentation
applications in agriculture.

The network architecture of GANs consists of two main components: a generator G
and a discriminator D. The G is responsible for generating synthetic images, while the role
of D is to distinguish between real images from a dataset and fake images generated by
G. The G aims to deceive D by generating images that closely resemble real ones, while
D strives to accurately classify the input images as real or fake. Both G and D networks
are trained adversarially and simultaneously. The training process involves iteratively
updating the networks in an attempt to achieve a dynamic equilibrium, where G becomes
increasingly proficient at generating realistic images, and D becomes increasingly adept
at discriminating between real and fake images. The G receives random noise as input
and transforms it into synthesized images. The D, on the other hand, receives either real
images from a dataset or generated images from G as input and outputs a probability score
indicating the likelihood of the input being real.

By optimizing the respective objectives of G and D through backpropagation and
gradient descent, GANs learn to generate high-quality synthetic data that closely resembles
the real data distribution. Since their introduction, GANs have undergone significant im-
provements and spawned various derivative models. These improvements have expanded
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the capabilities of GANs and paved the way for extensive research in the realm of semantic
image synthesis. In this study, we introduce OASIS [29], a novel generative model based
on GANs, which harnesses the power of the adversarial training paradigm to synthesize
images with desired semantic content.

3.1.2. OASIS

In recent years, research on data generation has gained significant momentum, driven
by the introduction of diffusion models (DMs) [35]. Although DMs have demonstrated their
efficacy in various vision tasks [36], they often require substantial computational resources
and impose a heavy memory burden. In this study, prioritizing ease of implementation
and computational efficiency, we have selected OASIS [29] as our model of choice, which is
based on the GAN framework.

To generate high-quality images that align with the input semantic label map, G
requires D, which can effectively capture semantic features at various resolutions. In the
OASIS framework, the role of D is structured as a multi-class segmentation task. The
architecture adopted in D is an encoder-decoder network, specifically based on the U-
Net [23] with skip connections. The segmentation task for D aims to predict per-pixel
class labels for real images, considering the given semantic label map as the ground
truth. In addition to the N semantic classes obtained from the label map, all pixels of
the synthesized images are classified as an additional class. Therefore, the formulated
segmentation task involves N + 1 classes, and OASIS employs a cross-entropy loss with
N + 1 classes for training.

As the segmentation task deals with class imbalance due to varying class frequencies,
there is a possibility that the performance may be hindered. To mitigate this issue, OASIS
leverages pixel-level loss calculation in D. Specifically, each class is weighted inversely
proportional to the frequency of occurrence at the pixel level within a batch. This weighting
scheme assigns higher weights to classes with lower frequencies, aiming to alleviate the
impact of class imbalance and improve accuracy for classes with low occurrence. As a
result, the contribution of each class to the loss is normalized, leading to improved accuracy
for classes with low occurrence. The loss Lp of the updated D is formulated as follows:

HxW
Lp = —E(p Z log D(G(z,t))ijc=N+1 ey
i

where x represents real images, H and W represent the image height and width, (z,t) is
the combination of noise and label map used by G to produce synthesized images, and D
maps real or synthesized images to per-pixel (N + 1)-class prediction probabilities. Here,
[E denotes a unit vector in a normed vector space. The ground truth label ¢ is a 3D tensor,
where the first two dimensions correspond to spatial positions (i,j) € H x W, and the third
dimension encodes the class ¢ € 1,..., N + 1 as a one-hot vector. When designing G to
align with D, the loss function for G is expressed as following.

N HxW
Lc=—Eqgn| Y ac ). tijclogD(G(z1))ijc|- 2)
=1 i

To enable multi-modal synthesis through noise sampling, G is designed to synthesize
diverse outputs from input noise. Hence, a noise tensor of size M x H x W is constructed
to match the spatial dimensions of the N x H x W label map, where N represents the
number of semantic classes, and M corresponds to the number of masks. During training,
the 3D noise tensor is sampled channel-wise and fed to each pixel of the image. After
sampling, the noise and label maps are concatenated along the channel dimension, forming
a (M+ N) x H x W noise-label concatenation 3D tensor. This concatenation tensor serves
as input to the first generation layer and spatially adaptive normalization layers of each
generation block. The 3D noise has sensitivity at the channel and pixel levels, allowing for
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specific object-level image generation by sampling noise locally for each channel, label, or
pixel during testing.

3.2. Semantic Segmentation
3.2.1. DeepLabv3+

For pixel-level image segmentation, DeepLabv3+ [27] represents a significant ad-
vancement within the renowned DeepLab model family [37]. This architecture has been
specifically designed to excel in the task of precise and detailed segmentation, offering
exceptional performance and accuracy. By leveraging advanced techniques and innova-
tions, DeepLabv3+ pushes the boundaries of pixel-level image segmentation and stands
as a testament to the ongoing progress within the DeepLab model family. DeepLabv3+
has garnered significant acclaim for their remarkable prowess in achieving precise and
efficient semantic image segmentation. With its enhanced architecture and refined tech-
niques, DeepLabv3+ builds upon the foundation established by its predecessors, pushing
the boundaries of segmentation capabilities even further. Moreover, DeepLabv3+ has
achieved outstanding performance on various benchmark datasets, surpassing previous
state-of-the-art methods in terms of accuracy and computational efficiency. Its ability to
capture contextual information at multiple scales and preserve fine details has made it
particularly effective in tasks such as object recognition, scene understanding, and medical
image analysis.

The architecture of DeepLabv3+ builds upon the strengths of its predecessors by
incorporating an encoder-decoder structure along with atrous convolutions [38] and atrous
spatial pyramid pooling (ASPP) modules [27]. The encoder network, usually based on
pre-trained CNNs such as ResNet [39] or Xception [40], extracts high-level features from
the input image while preserving spatial information. The atrous convolutions enable the
network to capture multi-scale contextual information without significantly increasing
the computational cost. The decoder network employs bilinear upsampling to restore the
spatial resolution of the features obtained from the encoder. Additionally, skip connections
from earlier layers are incorporated to ensure that fine-grained details are preserved in
the final segmentation. The ASPP module further enhances the receptive field of the
network by applying atrous convolutions at multiple dilation rates and capturing contextual
information at different scales.

3.2.2. SegFormer

SegFormer [28] adopts a ViT-based methodology, leveraging its distinctive Mix Trans-
former (MiT) encoder. The MiT encoder consists of a hierarchical Transformer, overlapped
patch merging, efficient self-attention, and Mix-FFN. These components collectively con-
tribute to the effectiveness and efficiency of the SegFormer model for segmentation tasks.
Unlike ViT, which can only generate feature maps at a single resolution, the hierarchical
Transformer in SegFormer produces multi-level feature maps. These maps provide both
high-resolution coarse features and low-resolution fine-grained details, contributing to
improved segmentation accuracy.

ViT incorporates Positional Encoding (PE) to capture positional information. However,
the resolution of PE is fixed. As a result, when the resolution differs between training and
testing, the accuracy may deteriorate. To address this issue, a Mix-FFN is introduced, which
applies a 3 x 3 convolutional layer directly to the feed-forward network (FFN).

SegFormer adopts a lightweight decoder consisting solely of MLP layers, known as
the All-MLP decoder. This avoids the computationally expensive configurations used in
other methods. The hierarchical Transformer encoder in SegFormer enables this simple
decoder by having a larger effective receptive field (ERF) compared to the encoder of
traditional CNNs.



Sensors 2023, 23, 8809

8 of 30

3.3. Cross-Entropy Loss

To train DeepLabv3+ and SegFormer, a large-scale dataset annotated with pixel-level
labels is required. Typically, the network is trained in a supervised manner using a cross-
entropy loss function Lcg given by:

C
Leg = _ﬁ Z Yij log( pz] 3)

] Mz

where N is the number of pixels; C is the number of classes; y;; represents the ground truth
label for pixel i and class j; and p;; is the predicted probability of pixel i belonging to class j.

3.4. Evaluation Criteria

In this study, we employ the Fréchet Inception Distance (FID) [41,42] as a formal
evaluation criterion. By incorporating information about the underlying distributions and
the representation of features, the FID metric provides a comprehensive assessment that
captures the fidelity and resemblance of the generated samples to the real data. The FID
metric utilizes a pre-trained Inception network [43] that has been trained on the ImageNet
dataset [44]. The pre-training on ImageNet helps capture general visual features and
enables transfer learning, where the learned representations are fine-tuned for specific
tasks [45]. By leveraging the representation power of the Inception network, FID provides
a quantitative measure of the quality and diversity of generated images compared to the
real image distribution. FID calculates the distance between the feature vectors extracted
from the real images and the generated images, quantitatively evaluating the similarity
between the two. The FID is defined as follows:

FID = ||m — myl|* + Tr(C + Co — 20/Ca), (4)

where m,, and m represent the means of the feature vectors extracted from the generated
images and the real images, respectively. Cy, and C represent the covariance matrices of the
feature vectors.

Subsequently, to assess the quality of segmentation, Intersection over Union (IoU) is
employed as the evaluation metric in this study. IoU represents the degree of intersection
between the predicted region and the ground truth region, and mloU represents the average
IoU across all classes. IoU is calculated using the following equation:

TP
IoU= ————0—.
U= TP rFPTEN ©)
Herein , True Positive (TP) corresponds to the instances where both the prediction and the
class are true. False Positive (FP) represents the instances where the prediction is false, but
the class is true. False Negative (FN) denotes the instances where the prediction is true,
but the class is false.

4. Preliminary Performance Evaluation with Benchmark Datasets
4.1. Data Profiles and Setups

We evaluated the performance of the proposed method, OutcropHyBNet, in a general
context using two benchmark datasets: COCO-Stuff10K [46] and ADE20K [47]. These
datasets encompass diverse scenes and objects commonly encountered in everyday envi-
ronments, facilitating a comprehensive evaluation of the proposed method’s performance
in real-world scenarios.

The COCO-Stuff10K serves as an extensively utilized benchmark dataset for tasks
related to scene understanding and segmentation. Comprising 10,000 high-resolution
images, this dataset features pixel-wise annotations. The images within this dataset exhibit
diverse resolutions, ranging from 480 x 640 to 960 x 1280 pixels, while maintaining an
aspect ratio of 3:4. The dataset provides comprehensive annotations for both objects
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and stuff categories. It includes 80 object categories, such as person, car, and dog, and
91 stuff categories, such as sky, grass, and road. The pixel-level annotations enable detailed
semantic segmentation of scenes, facilitating the evaluation and development of advanced
computer vision algorithms. Moreover, the dataset provides a wide array of visual scenes,
encompassing a comprehensive spectrum of both indoor and outdoor environments. It
serves as a standard benchmark for evaluating and contrasting the performance of semantic
segmentation models.

The ADE20K dataset is a widely used dataset for semantic segmentation tasks. It
comprises more than 20,000 high-resolution images, specifically 150 objects and 50 stuff
categories. All images in the dataset have a fixed resolution of 512 x 512 pixels. The
ADE20K dataset provides pixel-level annotations for both objects and stuff categories,
enabling fine-grained semantic segmentation. It covers a diverse range of scenes, includ-
ing indoor and outdoor environments, and captures various objects and stuff categories
commonly encountered in everyday life. Moreover, the ADE20K dataset is designed to
facilitate research and development in scene parsing and semantic understanding. It serves
as a benchmark for evaluating the performance of semantic segmentation models and has
been widely adopted in the computer vision community. The inclusion of this dataset
allows for a comprehensive assessment of the generalization capability of the proposed
method, OutcropHyBNet.

4.2. Experimental Setup

For this study, we utilized MMSegmentation [48], an open-source segmentation tool-
box developed by OpenMMLab, as the designated implementation platform. MMSeg-
mentation offers a comprehensive and versatile solution specifically tailored for semantic
segmentation tasks. Its open-source nature and seamless integration with PyTorch provide
us with a valuable resource for conducting our evaluation experiments. One of the key
strengths of MMSegmentation lies in its wide array of segmentation models, catering to di-
verse requirements in the field. This rich collection of models establishes MMSegmentation
as an invaluable asset for various developers. With its extensive toolkit, we can effectively
address various segmentation tasks and explore different approaches, thereby enhancing
the depth and breadth of our research and practical applications.

The computation for this study was carried out on a single NVIDIA RTX A6000 GPU.
Renowned as a high-performance GPU, the A6000 is purpose-built to tackle professional
workloads in various fields, including data science, deep learning, Al research, and content
creation. Its exceptional capabilities make it an ideal choice for handling the intensive
computational tasks. The A6000 has 10752 CUDA cores, 48 GB of GDDR6 memory, and a
memory bandwidth of 768 GB/s. With its powerful architecture, it delivers exceptional per-
formance for tasks such as deep learning training, real-time ray tracing, and high-resolution
rendering. The parameters for each method were determined using the configuration file
of the pretrained model that achieved the highest accuracy on the ADE20K dataset, which
is provided by MMSegmentation [49].

4.3. Class Balancing for Uneven Data

To mitigate the challenge of class imbalance [50], we employed class balancing tech-
niques [51] as a simple and practical approach for data adjustment and enhancement. Let
x represent the number of pixels in a class and y represent the total number of pixels
excluding unlabeled pixels. The weight w is calculated using the following equations:

z= and w =

(6)

NN

x

Y

where Z represents the median of z.
Table 1 provides a comprehensive overview of the calculated weights, which were

determined considering the pixel occupancy ratio. The weights were assigned in such a
way that they decrease as the pixel occupancy ratio increases, and conversely, they increase
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as the pixel occupancy ratio decreases. The approach aims to effectively mitigate the issue
of class imbalance by assigning higher weights to underrepresented classes with lower
pixel occupancy ratios. This strategy ensures that these classes receive greater attention
during the training process, thereby addressing their significance in a more comprehensive
manner. By incorporating these calculated weights, we aim to achieve a more balanced
and accurate model performance, ultimately improving the overall effectiveness of our
approach in handling imbalanced datasets.

Table 1. Calculated weights based on pixel occupancy ratio for class balancing.

Class Black Red Cyan Yellow
Calculated weights 1.0000 1.2570 0.7384 0.3792

We evaluate the performance of the models using the Intersection over Union (IoU)
metric for each class. Table 2 presents the comparison of class balancing results for both
DeepLabv3+ and SegFormer models. From the results, we observe that class balancing has
a significant impact on the performance of both models. SegFormer shows improvements
in most classes, except for the Black class. The decrease in performance for the Black class
in SegFormer can be attributed to a specific image (Image 10), where the IoU is significantly
lower compared to other images. The IoU for the Black class in DeepLabv3+ remains
relatively stable across all images.

Table 2. Comparison of class balancing results for both models [%].

Class DeepLabv3+ Difference SegFormer Difference
Black 80.31 2.96 80.64 —6.85
Red 26.23 4.60 36.10 0.82
Cyan 49.35 4.81 56.08 1.57
Yellow 59.42 0.25 66.84 2.38
mean 45.64 2.97 51.19 0.35

4.4. Data Augmentation

Our proposed approach, OutcropHyBNet, utilizes OASIS to generate images and
augment the dataset. By leveraging OASIS-generated images, we expand the breadth
and depth of our dataset, enabling a more comprehensive representation of geological
features and variations. Integrating OASIS into our methodology addresses the challenge
of limited real-world outcrop data and enriches the learning process of OutcropHyBNet.
The combination of synthetic and real data enhances the model’s capacity to accurately
analyze and interpret geological formations with improved precision and reliability.

Table 3 presents the parameters used for this purpose. In this experiment, a dataset
with a sampling number of 256 images was utilized, and the same dataset was used for both
training and testing. DeepLabv3+ and SegFormer were used as the comparative methods.
A total of 3661 images were used for evaluation, which consisted of 333 images generated
using OASIS and 256 x 13 images from the dataset used in the full image experiment. The
training and testing data were randomly allocated in a 9:1 ratio, resulting in 3294 images
for training and 367 images for testing.
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Table 3. Parameters for OASIS.

Parameter Value
Training Iterations 37,399 (200 epochs)
Generator Learning Rate 0.0001
Discriminator Learning Rate 0.0004
Batch Size 16
Input Size [pixels] 256 x 256
Number of Training Data 2995
Number of Testing Data 333

Table 4 shows the results of class balancing. For the Black class, both methods im-
proved accuracy in 4 out of 6 images. For the Red class, DeepLabv3+ improved accuracy in
10 out of 13 images, while SegFormer improved accuracy in 8 images. Similarly, for the
Cyan class, DeepLabv3+ improved accuracy in 11 out of 13 images, and SegFormer im-
proved accuracy in 8 images. Regarding the Yellow class, DeepLabv3+ improved accuracy
in 6 out of 13 images, while SegFormer improved accuracy in 4 images. In terms of mloU,
DeepLabv3+ improved accuracy in 10 out of 13 images, and SegFormer improved accuracy
in 6 images. It is worth noting that the Yellow class exhibited a decrease in accuracy in
more than half of the images for both methods. This can be attributed to the initial weight
of 0.3792, which is significantly lower compared to the absence of class balancing.

Table 4. Comparison of class balancing results [%].

Image Index Model Black Red Cyan Yellow Mean
1 DeepLabv3+ 89.08 5.39 52.20 46.09 48.19
SegFormer 92.18 14.36 69.47 92.80 67.20

2 DeepLabv3+ 78.14 12.02 34.91 84.88 52.49
SegFormer 64.60 19.09 31.71 85.58 50.24

3 DeepLabv3+ 94.99 5.76 52.30 83.08 59.03
SegFormer 96.35 8.75 59.20 84.04 62.09

4 DeepLabv3+ 95.71 3.53 48.22 86.09 58.39
SegFormer 95.94 10.05 53.74 91.30 62.76

5 DeepLabv3+ - 16.81 50.46 57.14 31.10
SegFormer - 45.32 42.81 56.62 36.19

6 DeepLabv3+ - 54.92 26.19 56.15 34.32
SegFormer - 61.51 26.55 54.52 35.65

7 DeepLabv3+ - 31.12 50.21 61.31 47.54
SegFormer - 39.67 59.78 67.43 55.63

8 DeepLabv3+ - 31.94 45.46 33.06 27.61
SegFormer - 42.34 71.59 45.88 39.95

9 DeepLabv3+ - 40.38 47.75 59.20 49.11
SegFormer - 48.87 50.59 65.66 55.04

10 DeepLabv3+ 31.54 21.71 32.80 35.00 30.26
SegFormer 40.75 30.37 49.43 41.15 40.42

11 DeepLabv3+ - 29.29 74.77 14.37 39.48
SegFormer - 54.02 76.17 21.85 38.01

12 DeepLabv3+ - 69.86 66.88 63.95 50.17
SegFormer - 78.45 69.02 69.04 54.13

13 DeepLabv3+ 92.42 18.31 59.46 92.20 65.60
SegFormer 94.02 16.50 68.96 92.99 68.12

Table 5 demonstrates the improved mloU scores achieved by incorporating OASIS-
generated images. These images significantly enhance the accuracy of segmenting and
classifying geological formations in our proposed approach. Both segmentation methods
showed improved accuracy, denoted A, for all classes compared to the dataset before
augmentation. Particularly, they achieved an accuracy improvement of over 3% for the
Cyan class. Therefore, it can be concluded that dataset augmentation using OASIS for data
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generation contributes to the improvement in accuracy. Furthermore, the consistent trend of
CNN’s backbones outperforming ViT backbones was observed throughout the evaluation.

Table 5. Improved mloU [%] for OASIS Evaluation.

Class DeepLabv3+ A SegFormer A
Black 98.67 1.98 98.34 0.66
Red 92.60 1.78 92.04 1.84
Cyan 94.75 3.57 94.27 3.40
Yellow 96.01 1.96 95.41 191
mean 95.51 2.33 95.02 1.96

4.5. Selection of Backbones

To verify the effectiveness of the proposed approach, a preliminary experiment was
conducted for performance comparison using seven different network models with varying
backbones. The backbones used for comparison were ResNet [39], HRNet [52], U-Net [23],
Swin Transformer [53], MiT [28], ViT [10], and SVT [54]. Table 6 presents the specific
parameter configurations for each backbone utilized in this experiment. The common
parameters included a batch size of 8, a class count of 4, 4 sampling patterns (64, 128, 256,
and 512 images), an input image size of 256 X256 pixels, and a training epoch set to 50.
Regarding the input data, a random sampling was performed on 13 images, allocating
them to training and testing data in a 9:1 ratio.

Table 6. Model configurations for semantic segmentation.

Method Backbone Crop Size Learning Rate Weight Decay
DeepLabv3+ [27] ResNet-101 512 x 512 1.0 x 102 50x 1074
OCRNet [55] HRNetV2p-W48 512 x 512 1.0 x 102 5.0 x 107*
U-Net U-Net 512 x 1024 1.0 x 1072 5.0 x 1074
K-Net(Swin) [53,56] Swin-L 640 x 640 6.0 x 107> 5.0 x 1074
SETR [57] ViT-L 512 x 512 1.0 x 1073 0.0
Twins [54] SVT-L 512 x 512 6.0 x 107> 1.0 x 1072
SegFormer MiT-B5 640 x 640 6.0 x 1072 1.0 x 1072

The left panel of Figure 3 illustrates the accuracy of CNN-based methods [37]. DeepLa-
bv3+ [27] consistently demonstrated the highest accuracy among all sampling numbers.
Additionally, across all methods, the highest accuracy was achieved when the sampling
number was 256 images. Subsequently, the right panel of Figure 3 presents the accuracy
of ViT and hybrid-based methods [28,57]. SegFormer consistently exhibited the highest
accuracy across all sampling numbers. Moreover, excluding SEgmentation TRansformer
(SETR) [57], SegFormer achieved the highest accuracy when the sampling number was
256 images.
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Figure 3. Comparison of CNN-based and ViT-based methods in terms of accuracy at different

sampling numbers.
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Figure 4 depicts the accuracy trends and distributions for all backbones and the top
two models. The red lines correspond to ViT-based backbone [10], the green lines represent
hybrid backbones [57], and the blue lines represent CNN-based backbones [38]. The graph
visually depicts how the accuracy of these methods varies across different experimental
settings. Comparing the results, the methods can be ranked in terms of accuracy as follows:
DeepLabv3+ [27], SegFormer [28], Twins [54], ResNet [39], and ViT [10]. In other words, on
the original dataset, CNNs outperformed ViT in terms of accuracy for this context.
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Figure 4. Accuracy trends and distributions for all backbones and top two models.

Table 7 presents mloU of each class [27,28]. Comparing the results, DeepLabv3+
demonstrated superiority for all classes except for the Black class at sampling numbers of
64. Additionally, in all sampling numbers except for 64 images, DeepLabv3+ outperformed
SegFormer. Analyzing the mean scores, DeepLabv3+ consistently showed superior perfor-
mance in all classes. Furthermore, in both methods, the classes with the highest accuracy
were ranked as follows: Black, Yellow, Cyan, and Red.

Table 7. mIoU of each class [%].

Class DeepLabv3+ SegFormer
Black 96.69 97.68
Red 90.82 90.20
Cyan 91.18 90.87
Yellow 94.05 93.50
mean 93.18 93.06

4.6. Segmentation Results

Figure 5 shows the comparison results for all classes in each dataset. In ADE20K,
DeepLabv3+ achieved an mloU of 29.36%, while SegFormer achieved an mloU of 41.38%.
SegFormer demonstrated superiority in 154 out of 171 classes (90% of the total classes). In
COCO-5tuff10K, DeepLabv3+ achieved an mloU of 38.78%, while SegFormer achieved
an mloU of 48.40%. SegFormer exhibited superiority in 138 out of 150 classes (92% of the
total classes, see Appendix A).

In COCO-5tuff10K, DeepLabv3+ outperformed SegFormer in terms of accuracy for
certain classes. Among the things classes, DeepLabv3+ exhibited higher accuracy than
SegFormer in four classes: surfboard, sports ball, car, and mouse, out of the 80 classes. In
the stuff classes, DeepLabv3+ demonstrated higher accuracy in 13 classes: platform, moun-
tain, stone, straw, bush, bridge, roof, house, cabinet, floor-other, float-wood, carpet, and
wall-panel, out of the 91 classes. Conversely, SegFormer showed higher overall accuracy
compared to DeepLabv3+ in both datasets. Similarly, in ADE20K, DeepLabv3+ surpassed
SegFormer in accuracy for specific classes. Among the things classes, DeepLabv3+ achieved
higher accuracy than SegFormer in 4 classes: railing, base, food, and monitor, out of the
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115 classes. In the stuff classes, DeepLabv3+ demonstrated higher accuracy in 8 classes:
house, river, skyscraper, hovel, path, tower, stairway, and pier, out of the 35 classes. Once
again, SegFormer exhibited higher overall accuracy than DeepLabv3+ in ADE20K. In both
datasets, the percentage of classes where DeepLabv3+ showed superiority was higher in
the stuff classes compared to the things classes. This can be attributed to the fact that
stuff classes lack well-defined boundaries, and the CNN-based architecture of DeepLabv3
utilized by DeepLabv3+ may have provided an advantage in texture classification, as
mentioned earlier.
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Figure 5. Scatter plots of accuracy for DeepLabv3+ and SegFormer.

Table 8 presents the top score classes observed in the COCO-Stuff10K dataset, while
Table 9 showcases the top score classes identified in the ADE20K dataset. These tables
provide a comprehensive overview of the most prominent classes present in each dataset,
shedding light on the prevalent semantic categories and objects captured in the respective
datasets. The identification and analysis of these top score classes contribute to a deeper
understanding of the dataset composition and can inform the development of more effective
models and algorithms for semantic segmentation and scene understanding tasks.

Focusing on the stuff classes, which are the classes of interest in this study, the top
10 classes combined for both methods include 3 classes (15%) in COCO-Stuff10K and
8 classes (40%) in ADE20K. On the other hand, the bottom 10 classes combined include
24 classes (75%) in COCO-Stuff10K and 9 classes (45%) in ADE20K. Therefore, it can be
inferred that stuff classes have a lower representation in the top classes and a higher
representation in the bottom classes.

Table 8. Top score classes in COCO-Stuff10K [%].

Pixel Frequency DeepLabv3+ SegFormer
Rank Class Ratio Rank Class IoU Rank Class IoU
1 person 8.94 1 zebra 86.91 1 snow 91.54
2 tree 5.26 2 person 78.55 2 cow 90.44
3 sky-other 493 3 snow 73.16 3 broccoli 90.13
4 wall-other 4.80 4 stop sign  73.00 4 parking meter  89.54
5 grass 391 5 horse 71.81 5 bear 89.50
6 clouds 3.36 6 surfboard ~ 71.80 6 elephant 88.81
7 building-other ~ 2.76 7 bus 70.55 7 cat 88.63
8 dining table 244 8 fire hydrant  70.29 8 train 88.32
9 road 2.39 9 airplane 68.95 9 fire hydrant ~ 87.96
10 sea 2.08 10 tree 68.23 10 zebra 87.57
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Table 9. Top score classes in ADE20K [%].
Pixel Frequency DeepLabv3+ SegFormer
Rank Class Ratio Rank Class IoU Rank Class IoU
1 wall 15.53 1 sky 92.35 1 sky 93.98
2 building 10.56 2 bed 84.09 2 pool table 91.59
3 sky 8.65 3 pool table  79.52 3 tent 89.36
4 floor 6.11 4 road 79.11 4 bed 88.08
5 tree 4.72 5 ceiling  78.69 5 bus 86.24
6 ceiling 443 6 car 78.68 6 microwave 86.21
7 road 3.92 7 building  77.96 7 ceiling 83.96
8 bed 2.28 8 toilet 77.77 8 road 83.36
9 windowpane  1.95 9 floor 73.83 9 car 82.59
10 grass 1.80 10 cradle 72.71 10 toilet 82.28

5. Outcrop Segmentation
5.1. Custom Dataset Profile

To assess the effectiveness of the proposed method, we employed two custom bench-
mark datasets: stationary camera-captured ground-level images and aerial images captured
by drones. The stationary images dataset consists of a collection of images captured from
the perspective of a person on the ground, with meticulous attention given to their in-
clusion and additional insights provided by domain experts. These images were taken
using a Ricoh GR Il camera, an off-the-shelf device widely recognized for its high-quality
imaging capabilities.

The aerial images dataset comprises images captured from drones flying at varying
altitudes. These images afford a bird’s-eye view perspective, facilitating the analysis of
expansive scenes and the capture of distinctive visual information. The dataset includes
diverse landscapes, urban areas, and natural environments, enabling the evaluation of the
proposed method’s effectiveness in aerial image analysis tasks. Both datasets were carefully
curated and annotated to provide ground truth labels for evaluation. The inclusion of these
custom evaluation datasets allows for a thorough assessment of the proposed method’s
performance across different viewing angles and environments.

5.1.1. Stationary Ground-Level Images

Figure 6 presents the original images from our dataset, accompanied by their cor-
responding annotation images. The images were annotated by geological experts, who
selectively cropped them to capture the regions of interest (RoI). Consequently, the image
sizes exhibit variability due to the purposeful Rol extraction limited to the pertinent areas.

Figure 6. Original and annotation images of our custom dataset.
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Table 10 presents the relationship between geological lithology, grain size, grain
sorting, and annotation colors: Yellow, Cyan, Red, and Black. Average grain size is shown
on the Krumbein ¢ scale based on geological analysis. The degree of grain sorting depends
on the particle size classification.

Table 10. The relationship between geological lithology, grain size, grain sorting, and annotation colors.

Annotations Geological Lithofacies Average Grain Size (¢) Grain Sorting
Yellow Medium to fine sandstone 2.4 Well
Cyan Fine to silty sandstone 2.6 Moderate
Red Coarse to silty sandstone 3.0 Poor
Black Siltstone greater than 4.0 Very poor

Table 11 presents the resolutions in each image. Due to the burden of annotation, we
clipped saliency partical images as Rols because this is the standard way of annotation
by geological experts. The burden is extremely high if the full sizes of images are set to
annotation targets.

Table 11. Image size and number.

Index Resolution [Pixels] Index Resolution [Pixels] Index Resolution [Pixels]

1 1500 x 687 2 4608 x 3456 3 1500 x 783
4 1500 x 894 5 632 x 1036 6 596 x 747

7 1147 x 767 8 1180 x 998 9 1265 x 1125
10 591 x 1013 11 1288 x 753 12 836 x 868

13 653 x 995

Table 12 presents the pixel frequency for each class, providing a comprehensive
overview of the distribution of pixels among different semantic classes. The presence
of class imbalance within the dataset necessitates the implementation of class balancing
techniques to ensure equitable representation and promote accurate model performance.

Table 12. Pixel frequency for each class.

Sampling Numbers  Black [%] Red [%] Cyan [%] Yellow [%] Green [%]
64 2.62 12.29 23.67 45.61 15.82
128 2.72 12.89 22.99 45.48 15.92
256 2.56 13.12 23.13 45.22 15.97
512 2.59 13.08 23.10 45.20 16.04

Our custom dataset comprises outcrop images captured using a stationary camera.
These images were manually annotated by domain experts specializing in geological
analysis, using four labels. For the sake of convenience, unlabeled regions were assigned
None, represented by the Green label. This labeling approach facilitates the handling of
regions without specific semantic attributes. The semantic classes were allocated using a
color scheme, with the unlabeled pixels represented by the color green, and the labeled
pixels distributed among Black, Red, Cyan, and Yellow, resulting in a total of four labels
used for classification. The green pixels were excluded from the calculations, and thus the
classification was performed using the remaining 4 labels across a total of 13 images, as
shown in Figure 6.

5.1.2. Aerial Images

We have utilized various types of drones for sensing the vertical distributions of
CO, [58], horizontal distributions of particulate matter [59], and crops in rice paddy
fields [60]. For this study, aerial images were obtained using the DJI Mavic 2 Pro, which
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is a compact drone manufactured by DJI. The process of capturing the images is depicted
in Figure 7. The scale of the outcrop can be visually compared with the size of the two
individuals captured in the photograph.

Drone
(Mavic 2 Pro)

Figure 7. Process of capturing aerial images with the involvement of geological experts and a drone.

Among the collected images, one specific image was chosen for evaluation, as depicted
in Figure 8a. We divided this image into 64 equal-sized rectangles to make it suitable for
segmentation. To facilitate the evaluation process, geological experts provided annotations
for five specific labels on the image, as illustrated in Figure 8b.

Figure 8. Selected aerial image for evaluation.

The image used for evaluation had a resolution of 5464 x 3640 pixels. The annotation
data applied to this image followed the same criteria as the original dataset, performed
by domain experts. The trained models used for inference were trained using the OASIS
extended dataset for DeepLabv3+ and SegFormer. During inference, the aerial image was
divided into an 8 x 8 grid and each sub-image was used as input. Consequently, the
input size for each sub-image was 683 x 455 pixels. The dataset consisted of a total of
64 sub-images resulting from the division.

Table 13 presents the class-wise Intersection over Union (IoU) of each image. The
scores are arranged in descending order of mloU. Although there are 13 images, there is
a 2-fold difference in accuracy. Additionally, “—” indicates images that do not contain the
Black label. While the individual class-wise IoU for Black is high, it represents the average
value across four images. The Red class has the lowest IoU.
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Table 13. Class-wise IoU of each image [%].
Index Black Red Cyan Yellow mloU
13 92.23 15.60 69.74 93.45 67.75
4 94.50 18.53 52.34 93.24 64.65
3 94.85 7.18 56.87 84.00 60.73
7 - 46.42 62.91 74.44 61.26
12 - 76.44 71.71 72.39 55.14
2 71.83 16.46 31.51 86.35 51.54
9 - 36.98 53.22 66.76 52.32
1 91.88 5.28 55.93 46.75 49.96
5 - 48.19 43.13 57.07 37.10
10 79.65 34.85 46.52 41.16 50.54
6 - 53.58 22.28 50.99 31.71
8 - 49.78 66.37 50.90 41.76
11 - 49.35 76.07 20.46 36.74
mean 87.49 35.28 54.51 64.46 50.84

Table 14 shows the correlation coefficients between the pixel occupancy ratio and
ranking of each image. Note that “green” is not included as it does not affect the accuracy.
The ranking of mloU is based on the accuracy order of the average mloU for both methods.
The correlation coefficient represents the correlation between the ranking of the class’s
pixel occupancy ratio and the ranking of mIoU. Negative correlation was observed for
“red”. This can be attributed to the low overall pixel occupancy ratio of the Red dataset,
which is 13.12%. As the pixel occupancy ratio of Red in the test data increases, the pixel
occupancy ratio of Red in the training data decreases, leading to a decrease in accuracy due
to insufficient data.

Negative correlation was also observed for “Cyan”, which is believed to be for the
same reasons as red. On the other hand, strong positive correlation was observed for
“Yellow”. This is because the overall pixel occupancy ratio of the Yellow dataset is high
at 45.22%, and the training data is sufficient. Therefore, as the pixel occupancy ratio of
Yellow in the test data increases, the accuracy improves. No correlation was found for
“Black”. Hence, it can be inferred that the imbalance in pixel occupancy ratio affects the
accuracy. This is likely due to data insufficiency, indicating the need for techniques such as
data augmentation to balance the pixel occupancy ratios.

Table 14. Correlation between the pixel occupancy ratio and ranking of each image [%].

Black Red Cyan Yellow mloU
Index Rate Rank Rate Rank Rate Rank Rate Rank mloU[%] Rank
1 6.86 3 32.37 2 0.80 11 32.76 10 48.89 7
2 10.63 1 0.62 12 5.91 13 44.59 7 51.02 6
3 8.86 2 2.31 10 14.87 7 58.54 4 57.97 3
4 3.82 4 0.52 13 7.58 12 74.97 2 62.07 2
5 0.00 - 6.87 8 42.86 3 39.43 8 34.82 12
6 0.00 - 29.98 3 9.59 10 47.78 6 35.03 11
7 0.00 - 8.24 7 21.11 5 58.72 3 54.40 4
8 0.00 - 8.83 6 49.72 2 32.50 11 32.82 13
9 0.00 - 23.52 4 13.89 8 53.67 5 45.71 8
10 0.79 6 2.51 9 64.93 1 27.04 12 35.59 10
11 0.00 - 40.72 1 31.51 4 8.92 13 37.70 9
12 0.00 - 13.44 5 19.42 6 33.62 9 52.37 5
13 2.34 5 0.68 11 11.25 9 75.30 1 65.51 1
mean  2.56 - 13.12 - 23.13 - 45.22 - - -
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Figure 9 illustrates the segmentation results. Table 15 presents the compared mloU
for each class. In terms of IoU, SegFormer demonstrates superiority across all classes. The
overall IoU shows a difference of 8.18%. The largest accuracy difference is observed for the
Black class, while the smallest difference is observed for the Yellow class.
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Figure 9. Segmentation results with DeepLabv3+ (first and third rows) and SegFormer (second and
fourth rows).

Table 15. Compared mloU for each class [%].

Class DeepLabv3+ SegFormer
Black 51.57 87.49
red 24.11 35.28
Cyan 44.45 54.51
Yellow 59.17 64.46
mean 42.66 50.84

Confusion matrices are widely used in deep learning for evaluating the performance
of classification models [61]. Due to significant variations in accuracy across images, we
present the confusion matrices for image 13, which has the highest accuracy, and image 8,
which has the lowest accuracy, in Figure 10, as depicted in Table 14. The Confusion Matrix
reveals that the accuracy of SegFormer, compared to DeepLabv3+, is 40% higher for the
Black class and 16% higher for the Cyan class. This difference in accuracy contributes to
the discrepancy in mloU.

These results unequivocally demonstrate the superior performance of SegFormer in
semantic segmentation compared to DeepLabv3+. The higher IoU scores obtained by
SegFormer indicate its capability to better capture object boundaries and classify pixels
accurately. This can be attributed to the architecture of SegFormer, which incorporates
Transformer-based models, allowing for more effective feature extraction and contextual
understanding. The significant accuracy difference observed for the Black class suggests
that SegFormer excels in segmenting objects with complex shapes and intricate details. The
Black class objects may possess fine textures or indistinct boundaries, and SegFormer’s
capability to capture such nuances contributes to its superior performance. On the other
hand, the minimal difference in accuracy for the Yellow class implies that both models
perform similarly in segmenting objects of this class, which may have more distinguishable
features or simpler shapes.
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Figure 10. Confusion matrices of the highest and lowest accuracies.

5.2. Segmentation Results of Aerial Images

In order to broaden the scope of validation and explore new possibilities, we applied
OutcropHyBNet to aerial images for segmentation, expanding the range of applications in
CCS. The segmentation results are evaluated using the mIoU metric, which assesses the
accuracy and consistency of the predicted segmentation masks with respect to the ground
truth masks. We applied our model, OutcropHyBNet, which had been trained using
ground-level stationary images, to the aerial images in the dataset and obtain segmentation
results. The model assigned a semantic label to each pixel, effectively distinguishing
and categorizing different objects and regions within the image. The resulting segmented
images provide a visual representation of the distinct entities present in the aerial scenes. By
presenting the segmentation results obtained using OutcropHyBNet, we aim to demonstrate
its effectiveness in segmenting aerial images.

Figure 11 presents the segmentation results obtained by applying DeepLabv3+ and
SegFormer to the input image depicted in Figure 8a. The comparison reveals that SegFormer
surpasses DeepLabv3+ in effectively capturing fine details and accurately delineating object
boundaries. Specifically, a notable distinction can be observed in the segmentation results
of the Black class, where SegFormer exhibits significantly improved performance compared
to DeepLabv3+.

A comparison of the confusion matrices shown in Figure 12 reveals notable differences
in accuracy between the two methods. Specifically, SegFormer achieves a 40% higher
accuracy for the Black class and a 16% higher accuracy for the Cyan class compared to
DeepLabv3+. These differences in accuracy directly contribute to the observed discrepancy
in mean IoU (mloU) between the two methods. The segmentation results produced by
SegFormer exhibit clearer and more accurate delineation of the object classes, particularly
for the Black and Cyan classes. On the other hand, DeepLabv3+ tends to produce more
fragmented and less precise segmentation outputs. Overall, these figures visually demon-
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strate the superior performance of SegFormer in terms of accurate and detailed semantic
segmentation compared to DeepLabv3+.

4 5 6 7 8

(b) SegFormer

Figure 11. Segmentation results obtained from both backbone networks for aerial images.
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Figure 12. Confusion matrices for both segmentation results.

Table 16 presents the average IoU for each class. It is noteworthy that SegFormer ex-
hibits superior performance in terms of IoU for all classes when compared to DeepLabv3+.
Particularly, there is a significant 40% difference in the Black class, which results in a notable
16% difference in mIloU between the two methods. Nevertheless, the mIoU scores for both
methods are below 50%, highlighting the need for further improvements to enhance the
segmentation accuracy for this aerial image dataset. Examining the results in Table 16, Seg-
Former consistently outperforms DeepLabv3+ in capturing the fine details and boundaries
of the objects, leading to higher IoU scores. The Black class exhibits the largest disparity,
highlighting the difficulty of accurately segmenting this class with DeepLabv3+. On the
other hand, SegFormer achieves significantly better results for the Black class, indicating its
effectiveness in handling such challenging scenarios. Overall, the results demonstrate that
SegFormer provides improved performance in semantic segmentation tasks, especially in
capturing detailed structures and enhancing the accuracy of challenging classes.

Figure 13 illustrates the segmentation results for the top three images based on the
average mloU scores of both backbone networks on OutcropHyBNet. These images pre-
dominantly capture the central regions of the scene. This suggests that the models have
successfully captured the patterns and can generalize well to unknown images. On the
other hand, the bottom images predominantly contain only the outer regions with the Black
class. This indicates a potential deviation in the characteristics of the Black class compared
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(a) Input

to the original dataset. To address this issue, some of the images underwent re-annotation
by experts.

Table 16. Comparison of mloU for each class [%].

Class DeepLabv3+ SegFormer
Black 25.66 65.56
Red 8.96 11.30
Cyan 20.12 29.73
Yellow 41.93 54.61
mean 24.17 40.30

(b) GT (c) DeepLabv3+ (d) SegFormer
Figure 13. Segmentation results of the top three images.

Table 17 presents the mloU results after re-annotation. The fourth and sixth columns
denote the differences A in comparison to the results obtained from the initial annotation,
illustrating the changes resulting from the re-annotation process. In all conditions except
for SegFormer in the 1st row and 7th column, clear improvements in accuracy are observed
after re-annotation. For SegFormer in the 1st row and 7th column, the model predicted
the regions that turned from Cyan to Black after re-annotation as Black, resulting in a
slight improvement of less than 1% in accuracy. It can be concluded that the performance
improvement was limited in this case. These results suggest the potential of deep learning
models to suggest re-evaluation of annotations by humans, as they can contribute to the
improvement of accuracy in semantic segmentation tasks.

Table 17. mIoU after re-annotation [%].

Position DeepLabv3+ SegFormer
Row Column mloU A mloU A
1 7 25.96 25.94 16.26 0.87
3 8 18.85 18.64 23.54 20.83
8 2 10.75 10.23 50.09 39.69

Figure 14 presents the segmentation results of three images from Table 17 after the
re-annotation process. In comparison to the results depicted in Figure 11, the colored labels
in Figure 14 have been mapped according to the texture in respective stratums.
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(b) After annotation (c) DeepLabv3+ (d) SegFormer

Figure 14. Segmentation results of three images after re-annotation.

6. Conclusions

The objective of this study was to analyze the distribution of geological strata through
the application of segmentation techniques on geological outcrop images, facilitating a
comprehensive understanding of their spatial arrangement. We proposed OutcropHyB-
Net, which leverage DeepLabv3+ and SegFormer for semantic segmentation, along with
OAGSIS for data augmentation. We conducted evaluations and comparisons of the classifica-
tion performance and accuracy of both models across different classes using two publicly
available benchmark datasets. In our preliminary experiments, we presented compelling
evidence of the enhanced performance of DeepLabv3+ in classes heavily reliant on textures,
particularly in the context of stuff classes. The superiority of DeepLabv3+ in accurately
classifying textures within the dataset was observed to a significant extent, substantiating
its effectiveness in such scenarios. In the evaluation experiments using our original datasets,
we revealed that for non-standard objects with ambiguous shapes resembling geological
strata, where classification depended on texture, CNNs exhibited superiority. Our study
revealed that SegFormer outperformed other models in scenarios with limited data avail-
ability. Additionally, we identified that imbalanced class distributions had a notable impact
on the accuracy of the models. Notably, we found that employing class balancing tech-
niques resulted in enhanced accuracy for DeepLabv3+ compared to SegFormer. Moreover,
our findings revealed that the utilization of OASIS for data augmentation significantly
contributed to enhanced accuracy. By incorporating OASIS into the training process, we
observed improved precision and performance in the classification task, highlighting the
effectiveness of data augmentation techniques in enhancing the overall accuracy of the
models. In the evaluation experiments conducted on ground-level images obtained using a
stationary camera and aerial images obtained using a drone, we successfully demonstrated
the superior performance of SegFormer across all classes. The comprehensive analysis
revealed that SegFormer consistently outperformed other models in accurately classifying
various objects and features present in the aerial images, highlighting its effectiveness and
superiority in this specific context.

Our future endeavors encompass several challenges, including the augmentation
of diversity through the collection of aerial images from various sources and types. By
expanding our dataset to include a broader range of aerial images, we aim to improve
the robustness and generalization capabilities of our models. Additionally, we plan to
further explore and enhance data augmentation techniques to augment the diversity within
the existing dataset, thereby fostering more comprehensive and representative training
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samples. Moreover, we will explore methods to improve the reproducibility of texture
and color in image generation using GANs and DMs. We will also propose annotation
modifications based on the inference results to further improve accuracy.
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Appendix A

Below are the IoU scores for all classes belonging to things and stuff in the COCO-Stuff
10K and ADE20K datasets. These scores indicate the detailed accuracy of both models,
DeepLabv3+ and SegFormer, in correctly segmenting the classes. The bolded numbers
highlight higher scores obtained when comparing both models.

Table Al. Class-wise IoU for things in COCO-Stuff10K [%].

Class DeepLabv3 SegFormer Class DeepLabv3 SegFormer
tennis racket 15.76 27.68 surfboard 71.80 70.94
skateboard 26.65 48.34 baseball bat 13.37 30.81
baseball glove 0.00 0.00 kite 45.88 68.52
sports ball 55.70 11.14 snowboard 21.28 45.61
skis 2.78 21.03 frisbee 11.60 44.03
suitcase 25.18 66.25 tie 0.00 240
handbag 4.05 8.36 umbrella 62.33 69.19
backpack 5.93 21.17 giraffe 52.74 83.98
zebra 86.91 87.57 bear 37.99 89.50
elephant 59.93 88.81 cow 53.15 90.44
sheep 40.97 84.38 horse 71.81 86.98
cat 55.29 88.63 dog 2411 77.93
bird 38.15 59.87 bench 29.19 37.20
parking meter 59.48 89.54 traffic light 36.82 70.60
fire hydrant 70.29 87.96 stop sign 73.00 74.41
bicycle 33.22 60.91 car 46.04 44.54
motorcycle 66.16 80.05 airplane 68.95 78.95
bus 70.55 82.24 train 60.39 88.32
truck 35.67 70.61 boat 52.48 63.09
person 78.55 84.16 book 45.09 47.84
clock 35.16 64.99 vase 46.74 48.94
scissors 26.62 54.65 teddy bear 33.03 81.55
hair drier 0.00 0.00 toothbrush 0.00 1.99
microwave 34.35 41.33 oven 50.00 59.42
toaster 0.00 18.69 sink 42.76 58.39
refrigerator 50.54 59.53 tv 42.25 59.01
laptop 36.15 64.43 mouse 45.62 42.46
remote 0.84 66.56 keyboard 17.29 81.95
cell phone 24.06 33.89 chair 33.54 48.63
couch 59.02 59.05 potted plant 35.47 36.99
bed 53.02 63.53 dining table 48.94 58.11
toilet 59.77 83.22 banana 38.59 41.56
apple 1.10 38.13 sandwich 61.63 63.95
orange 25.74 32.78 broccoli 67.00 90.13
carrot 7.92 37.40 hot dog 41.91 42.32
pizza 67.11 81.37 donut 22.61 57.08
cake 17.93 57.46 bottle 42.24 51.86
wine glass 49.48 72.08 cup 32.78 44.00
fork 0.65 19.05 knife 3.51 46.00

spoon 2.49 32.52 bowl 42.07 53.98
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Table A2. Class-wise IoU for stuff in COCO-Stuff10K [%].

Class DeepLabv3  SegFormer Class DeepLabv3  SegFormer
water-other 19.24 21.55 waterdrops 0.00 0.00
sea 65.57 66.52 river 11.40 44.62
fog 0.00 0.00 ground-other 3.14 9.84
platform 20.64 20.55 playingfield 63.24 63.64
railroad 43.87 53.73 road 51.84 65.22
pavement 42.58 47.46 gravel 2.19 20.74
mud 0.00 2.39 dirt 31.02 40.61
snow 73.16 91.54 sand 50.21 63.95
solid-other 0.00 0.00 hill 27.78 30.05
mountain 28.62 27.21 stone 5.36 0.17
rock 28.32 54.30 wood 2.88 8.85
sky-other 55.20 61.01 clouds 40.09 48.49
plant-other 12.16 25.00 straw 19.70 14.40
moss 0.00 0.00 branch 0.00 0.16
flower 4.71 13.86 bush 17.87 15.57
leaves 4.00 16.76 tree 68.23 75.57
grass 68.18 71.86 structural-other 12.52 12.93
railing 8.90 15.33 net 28.41 37.45
cage 0.00 7.05 fence 36.62 38.94
building-other 51.70 52.49 bridge 8.07 0.62
roof 8.55 291 tent 38.95 56.80
skyscraper 9.06 24.91 house 29.26 28.10
food-other 8.13 29.58 fruit 9.43 21.61
vegetable 19.34 3211 salad 0.00 0.00
textile-other 2.07 11.86 banner 32.09 37.99
blanket 0.00 0.00 pillow 0.00 0.00
cloth 0.00 0.99 clothes 2.17 19.50
curtain 47.46 63.77 towel 16.01 34.49
mat 0.00 6.49 rug 38.87 57.84
napkin 0.00 1.63 furniture-other 8.68 10.82
shelf 5.40 20.65 stairs 15.86 26.10
light 22.23 26.23 counter 18.30 31.64
cupboard 43.17 49.49 cabinet 17.07 13.55
desk-stuff 28.84 36.96 door-stuff 27.93 39.87
table 2.51 18.01 mirror-stuff 25.12 35.67
window-blind 29.20 31.76 window-other 33.33 38.89
floor-marble 0.00 2.84 floor-other 28.67 21.44
floor-stone 0.00 14.96 floor-tile 33.41 43.29
floor-wood 48.12 46.96 carpet 50.39 46.40
ceiling-other 59.20 65.81 ceiling-tile 0.00 1.45
wall-brick 33.96 44.85 wall-concrete 16.80 29.21
wall-other 50.18 58.33 wall-panel 6.01 4.82
wall-stone 15.68 30.08 wall-tile 32.40 51.68
wall-wood 21.83 29.07 cardboard 0.20 12.39
metal 4.25 5.86 paper 5.53 21.37
plastic 0.00 11.73
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Table A3. Class-wise IoU for things in ADE20K [%].

Class DeepLabv3 SegFormer Class DeepLabv3 SegFormer
tree 69.39 74.16 bed 84.09 88.08
windowpane 56.51 59.29 cabinet 52.60 60.51
person 71.29 78.94 door 37.36 46.76
table 51.40 60.59 plant 48.27 50.30
curtain 66.07 71.38 chair 48.92 56.77
car 78.68 82.59 painting 59.54 70.40
sofa 59.97 64.29 shelf 34.34 43.31
mirror 57.72 65.78 armchair 35.21 46.35
seat 51.01 64.79 fence 39.88 45.26
desk 42.37 51.99 rock 31.84 36.84
wardrobe 38.05 46.14 lamp 57.51 63.08
bathtub 60.63 74.37 railing 35.41 31.87
cushion 50.82 52.77 base 27.48 27.04
box 15.89 26.15 column 36.92 46.16
signboard 3291 37.49 chest of drawers 41.70 44.49
counter 20.46 24.83 sink 62.19 67.65
fireplace 63.16 73.39 refrigerator 57.58 78.26
stairs 27.06 28.35 case 42.07 50.71
pool table 79.52 91.59 pillow 51.72 55.75
screen door 53.31 70.11 bookcase 24.73 42.20
blind 34.86 39.10 coffee table 53.47 55.82
toilet 77.77 82.28 flower 24.44 44.49
book 41.04 45.69 bench 40.14 40.26
countertop 52.14 58.24 stove 68.52 76.59
palm 39.55 43.87 kitchen island 27.19 34.10
computer 36.40 65.94 swivel chair 34.71 40.12
boat 25.24 39.25 bar 28.48 44.11
arcade machine 36.14 69.37 bus 56.52 86.24
towel 48.11 62.31 light 43.41 53.20
truck 25.04 34.85 chandelier 60.90 69.86
awning 13.61 25.62 streetlight 21.71 23.86
booth 22.90 52.80 television receiver 64.69 65.75
airplane 24.01 66.39 apparel 24.74 29.85
pole 17.60 23.12 bannister 9.32 11.50
ottoman 44.25 48.14 bottle 10.61 21.03
buffet 27.79 30.45 poster 25.29 25.88
van 26.74 40.40 ship 33.57 63.45
fountain 11.22 20.58 canopy 11.63 23.29
washer 51.52 68.49 plaything 17.54 27.21
stool 26.82 38.10 barrel 11.91 56.82
basket 23.40 33.98 tent 72.27 89.36
bag 4.96 9.14 minibike 63.70 63.94
cradle 72.71 74.44 oven 32.33 58.40
ball 25.58 40.12 food 38.72 15.93
step 2.08 14.52 tank 31.03 53.08
trade name 18.61 29.28 microwave 30.98 86.21
pot 35.62 42.08 animal 48.20 50.62
bicycle 47.71 50.56 dishwasher 59.88 75.42
screen 37.17 61.95 blanket 5.96 12.79
sculpture 31.79 56.36 hood 47.06 70.65
sconce 34.15 43.78 vase 29.11 32.15
traffic light 21.66 32.36 tray 1.21 6.37
ashcan 26.08 41.41 fan 47.26 61.35
crt screen 0.00 11.63 plate 31.14 49.25
monitor 25.07 7.29 bulletin board 22.62 48.28
shower 0.19 2.73 radiator 45.10 58.74
glass 8.70 12.77 clock 20.38 41.62

flag 27.18 62.82
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Table A4. Class-wise IoU for stuff in ADE20K [%].

Class DeepLabv3 SegFormer Class DeepLabv3 SegFormer
wall 70.78 76.42 building 77.96 79.87
sky 92.35 93.98 floor 73.83 79.80
ceiling 78.69 83.96 road 79.11 83.36
grass 65.56 69.11 sidewalk 60.75 65.40
earth 31.13 38.42 mountain 51.07 56.70
water 46.40 48.64 house 42.56 31.97
sea 41.07 56.82 rug 48.01 56.01
field 26.18 28.27 sand 25.95 48.70
skyscraper 58.30 49.58 grandstand 32.72 36.39
path 20.01 19.70 runway 58.27 67.16
stairway 32.61 31.64 river 22.90 12.57
bridge 49.25 68.01 hill 8.62 15.33
hovel 17.67 8.90 tower 39.34 6.38
dirt track 3.54 21.65 land 0.02 3.73
escalator 2.68 44.32 stage 7.84 13.89
conveyor belt 42.59 71.14 swimming pool 26.95 55.45
waterfall 46.91 51.06 lake 18.20 58.32

pier 40.95 26.90
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