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Abstract: In certain observation periods of navigation missions for the Taiji formation, ground
observation stations are unable to observe the spacecraft, while the state of the spacecraft can be
estimated through the utilization of dynamic equations simulated on prior knowledge. However,
this method cannot accurately track the spacecraft. In this paper, we focus on appropriately selecting
the available onboard measurement to estimate the state of the spacecraft of the Taiji formation.
We design two schemes to explore the performance of the state estimation based on the interspacecraft
interferometry measurements and the measurements obtained from the Sun sensor and the radial
velocity sensor. The observability of the system is numerically analyzed using the singular value
decomposition method. Furthermore, we analyze error covariance propagation using the cubature
Kalman filter. The results show that using high-precision interspacecraft angle measurement can
improve significantly the observability of the system. The absolute position and velocity of the
spacecraft can be estimated respectively with an accuracy of about 3.1 km and 0.14 m/s in the first
scheme, where the prior information of the precision of the position and velocity is respectively
100 km and 1 m/s. When the measurement from the radial velocity sensor is used in the second
scheme, the estimation accuracy of the velocity can be improved about 18 times better than that in
the first scheme.

Keywords: observability analysis; autonomous state estimation; space-based gravitational wave
detection formation; cubature Kalman filter

1. Introduction

The Taiji mission [1] is a type of space-based gravitational wave (GW) detection
program that aims to detect GWs within a frequency range spanning from 0.1 mHz to
1.0 Hz. The Taiji mission consists of three spacecraft (SC), forming an SC formation known
as the Taiji formation. Each SC follows a heliocentric orbit, forming a massive equilateral
triangle with sides spanning approximately three million kilometers. Generally, navigation
methods for such formations, which are located in heliocentric orbits, rely on a combination
of deep space network (DSN) and other ground observations to estimate the absolute
state of the SC [2,3]. However, due to the limitation of the observation arc, neither of
these methods can provide continuous coverage for the entire observation period of the
formation. As the Taiji formation is like that of LISA [4], we can borrow from the coverage
analysis of observation of LISA. In the case of the LISA formation, there may be only a
few hours a week of ground-based observation time, and the state of the SC is usually
estimated based on the evolution of dynamical equations and a priori knowledge in the
absence of ground observations [5]. These methods cannot track the SC well, especially
when the SC performs unpredictable maneuvers. However, in the Taiji mission, each SC is
equipped with a high-precision laser interspacecraft link measurement system [6] and other
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sensors; thus, these measurements may be used to perform the state estimation. These
measurements include a laser measurement system to measure the relative ranges and
range rates between SCs, and a differential wavefront sensing (DWS) system to measure
the relative angles of SCs. Further, each SC is also equipped with a digital Sun sensor to
determine the relative pointing angle between the SC and Sun. It is also possible to carry
a spectrometer sensor to measure the radial velocity of the SC relative to Sun. Therefore,
in this paper, we will focus on how to combine the available onboard measurements to
autonomously estimate the state of the SC when the ground observations are insufficient.

The autonomous state estimation problem refers to estimating the SC state using only
onboard measurement information. For the Taiji formation, there is currently no existing
literature addressing the autonomous state estimation of the formation based on onboard
sensors of the SC. Research approaches from another space-based GW detection formation
with a design similar to the Taiji formation include the LISA formation [7], which can serve
as valuable references. For both of these formations, the current approaches are to perform
state estimation or orbit determination of the SC typically involving utilizing ground-based
measurements (such as DSN and very long baseline interferometry (VLBI) measurement)
in combination with interspacecraft measurements. For the LISA formation, Chung [2]
investigated the absolute orbit determination and relative orbit determination of the SC
utilizing ground observations and measurements of relative range and relative range rate
between the SCs. This paper shows that when attempting to estimate the state of the SC
solely based on interspacecraft range and range rate measurements, the filtering results
would diverge, and the system is unobservable. Wang et al. [8] discovered that relying
solely on interspacecraft measurements yields poor estimation of the absolute position
state, while relative distance estimation remains accurate. For other formations with similar
configurations, Hu et al. [9] found that the observability of the system using angles-only
measurements is enhanced when there is a significant difference in eccentricity or inclina-
tion among SC orbits. On the other hand, studies [10–12] focusing on other interspacecraft
measurements, such as relative range or relative range rate, indicate that using these mea-
surements alone can determine the initial absolute orbit of the SC. However, when the
SC orbits are coplanar, the state of the system using range or range rate measurement is
usually unobservable.

Based on the aforementioned study on autonomous state estimation, we find that
the observability of the system only using interspacecraft measurements becomes poor
when the difference in eccentricity or inclination of SC orbits is small. For the Taiji or
LISA formation, their nominal Keplerian orbit elements also exhibit these features, such
as having the same inclination and eccentricity [13,14]. Consequently, the autonomous
state estimation system may become unobservable or weakly observable in such cases.
Studies [15–17] show that the addition of interspacecraft measurements can improve
the accuracy of the state estimation. In addition to interspacecraft measurements, other
onboard sensors can also be utilized. In these papers, they also show that, when using the
measurements from the Sun sensor and the spectrometer sensor, the estimation accuracy of
the absolute state of the SC can also be improved. Thus, like the study [18] that proposes
a sensor selection algorithm to assess and compare the effects of different sensors on the
accuracy of state estimation, for the Taiji mission, choosing the right sensors to model
observation schemes for estimating the state of the SCs is an important study for the
mission design.

In this paper, we investigate the problem of autonomous state estimation in the Taiji
formation by utilizing all available onboard sensors. We specifically address state estima-
tion in a multibody perturbation environment. Considering the payload configuration
and sensor costs, for instance, the Taiji formation may opt not to equip a spectrometer for
measuring relative velocity. We establish two observation schemes: the first case contains
all measurements except the radial velocity of the spacecraft relative to Sun, and the second
case contains all measurements. Furthermore, we explore the impact of high-precision opti-
cal angle sensors on the observability of the system using the singular value decomposition
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(SVD) method. Our findings demonstrate that the inclusion of high-precision angle sensors
can enhance the observability of the system. Additionally, we analyze the propagation
of error covariance of the state using the square cubature Kalman filter, particularly in
a scenario with poor prior knowledge. Through our research, we achieve an estimated
accuracy of approximately 3 km for the absolute position of the SC and approximately
0.1 m/s for the absolute velocity, where the prior information of the precision of the position
and velocity is respectively 100 km and 1 m/s. These results contribute valuable a priori
knowledge for the tasks in the Taiji mission, which need precision state information of SCs.

This paper is structured as follows: In Section 2, we introduce the dynamics and obser-
vation models of the Taiji mission. Section 3 focuses on the analysis of system observability
using different schemes and measurement accuracies. In Section 4, we design a square root
format of the cubature Kalman filter and then perform the simulation experiments of state
estimation for the Taiji mission. Finally, Section 5 provides a summary of the main results
of this paper.

2. System Model

The Taiji formation consists of three identical spacecraft (SC1, SC2, SC3). These three
SCs form an approximately equilateral triangle formation with a side length of 3× 106 km,
orbiting Sun [19], as shown in Figure 1. The reference coordinate frame for the formation
is selected from the solar center of a mass inertial coordinate system. In this coordinate
system, the origin is positioned at the center of the mass of Sun, the fundamental plane
aligns with the plane of the ecliptic, the x-axis points towards the equinox, the y-axis lies
within the fundamental plane and is perpendicular to the x-axis, and the z-axis extends
perpendicular to the origin, following the right-hand rule.

Figure 1. The Taiji formation.

The nonlinear dynamical model characterizing the Taiji formation is expressed
as follows: {

ẋ(t) = f (x(t)) + w(t)

y(k) = h(x(k)) + v(k)
. (1)

where x represents the state vector of the system, f (x(t)) corresponds to the nonlinear
continuous dynamical model of the system, w(t) represents the process noise of the system,
h(x(k)) denotes the discrete observation model of the system, and v(k) represents the
measurement noise of the state. A comprehensive explanation of these variables will be
provided in the subsequent subsections.

2.1. Dynamics Model

The state vector of the system x is defined as follows:
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ri = [xi, yi, zi]
T (i = 1, 2, 3), (2)

ṙi = [ẋi, ẏi, żi]
T (i = 1, 2, 3), (3)

x = [r1, r2, r3, ṙ1, ṙ2, ṙ3]
T ∈ R18, (4)

where i represents the index of the SC in the formation, ri represents the position state of the
SC in Cartesian form, and ṙi represents the velocity state of the SC in the coordinate frame.

f (x(t)) represents the nonlinear dynamical equations of the system:

f (x(t)) =



ṙ1
ṙ2
ṙ3
r̈1
r̈2
r̈3

 ∈ R18. (5)

where

r̈i = −
µs

r3
i

ri +
np

∑
j=1

µj

[
rpj − ri

‖rpj − ri‖3 −
rpj

r3
pj

]
(i = 1, 2, 3, j = 1, 2, 3, . . . , 6), (6)

where µs represents the gravitational constant of Sun, ri =
√

x2
i + y2

i + z2
i represents the

range from the i-th SC to the center of Sun, µj represents the gravitational constant of the
j-th perturbing planet, rpj represents the heliocentric coordinate system position vector
of the j-th perturbing planet, rpj − ri represents the position vector of the j-th perturbing
planet relative to the i-th SC, and np = 6 is the number of perturbing planets. For each SC,
we have considered the gravitational influence of six celestial bodies, including Mercury,
Venus, Earth, Mars, Jupiter, and Saturn.

w(t) and v(t) are modeled as the zero-mean Gaussian white noise and are not related
to each other: 

w(t) ∼ (0, Qc)

v(k) ∼ (0, Rk)

E(w(t)w(t− τ)T) = Qcδ(t− τ)

E(v(k)v(k− τ)T) = Rkδ(k− τ)

E(w(t)v(k)T) = 0

. (7)

where Qc is the covariance of the process noise distribution, and Rk is the covariance of the
measurement noise distribution.

2.2. Observational Model

In our study, we employ a high-precision interspacecraft measurement system along
with other onboard sensors on the SC to gather measurement information for the purpose of
state estimation. The interspacecraft measurements for the SC primarily encompass relative
range measurements, relative range rate measurements, and relative angle measurements.
In addition, we make use of the digital Sun sensor and spectrometer installed on the SC
as supplementary measurement sensors. It is important to note that the measurement
information considered in our study undergoes preprocessing and time synchronization.
Consequently, we provide detailed descriptions of the specific instrumentation used and
present simplified mathematical models for interpreting these measurement data.
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2.2.1. Interspacecraft Measurements

Space-based GW detection formations employ a laser interferometry instrument [20]
with extremely high measurement accuracy to capture the information between spacecraft.
For the sake of convenience, we initially denote the relative position and relative velocity
vectors between the spacecraft:

rij = [xi − xj, yi − yj, zi − zj], (8)

˙rij = [ẋi − ẋj, ẏi − ẏj, żi − żj], (9)

where i and j represent the indices of the SC. The relative range between the i-th SC and
the j-th SC is measured by the laser ranging system, which can be modeled as

Lij = ||rij||, (10)

The relative range rate measured by the Doppler shift measurement system can be
modeled as

L̇ij = (
rij

||rij||
)T ˙rij. (11)

The relative angles between spacecraft are measured using the DWS system, a widely
recognized technique for precisely quantifying the relative wavefront misalignment be-
tween two beams with high sensitivity. In this context, the measured relative angles include
the azimuth angle denoted by λ and the elevation angle denoted by φ, which are gener-
ally measured using CCD and quadrant photodiode (QPD) sensors. In the Taiji program,
relative angles can be measured with a very high accuracy of 1 nrad [21,22]. The DWS
measurement of these angles can be modeled as follows:

λij = arctan(
yij

xij
), (12)

φij = arcsin(
zij

||rij||
), (13)

where xij = xi − xj and yij, zij are similar to it. Moreover, the relative angle measurements
can also be alternatively modeled using the light-of-sight (LOS) vector, which provides an
equivalent representation:

Aij =
rij

||rij||
. (14)

2.2.2. Other Measurements Onboard the Spacecraft

The measurement of the relative Sun-pointing angles between Sun and the i-th SC is
obtained using the digital Sun sensor, which can be modeled as follows:

Asi =
ri

||ri||
, (15)

The radial velocity can be measured using the spectrometer on the SC, which de-
tects the Doppler shift caused by the relative motion between Sun and the i-th SC. This
measurement can be modeled as follows:

Vi = (
ri

||ri||
)T ṙi. (16)

2.2.3. Measurement Equations

Considering the payload constraints of the SC, we have developed two observation
model schemes as demonstrated in Table 1. The first scheme, referred to as case 1, does not
include the radial velocity information provided by the spectrometer. On the other hand,
the second scheme, known as case 2, incorporates this additional measurement.
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Table 1. Measurement cases.

Interspacecraft Measurements Sun Angle
Measurements

Radial Velocity
MeasurementsRange Range Rate Angle

case 1 X X X X
case 2 X X X X X

These two observation models of the system can be written as

h1(x) =
[
L12, L13, L23, ˙L12, ˙L13, ˙L23, A12, A13, A23, As1, As2, As3

]T ∈ R24, (17)

h2(x) = [h1(x), V1, V2, V3]
T ∈ R27. (18)

3. Observability Analysis

The observability analysis of a system provides a crucial theoretical foundation for
state estimation. It helps determine whether the system’s state can be accurately estimated
based on available measurement information. If the system is observable, the convergence
of the state error occurs gradually as the measurement information is continually updated.
The observability of nonlinear systems is typically assessed using the rank criterion ap-
proach, where the rank of the observability matrix serves as an indicator of the system’s
observability level. In this study, we employ the observability Gramian matrix [23] to com-
pute the system’s observability matrix. Specifically, for discrete systems, the observability
Gramian matrix without considering measurement noise can be expressed as follows:

G0,n =
n

∑
k=0

ΦT
0,k HT

k HkΦ0,k, (19)

where n represents the total number of measurement instances starting from t0. Φ0,k denotes
the system transfer matrix from t0 to tk, while Hk represents the Jacobian derivative matrix
derived from the observation model at time tk.

Ak =
∂ f
∂x

∣∣∣
xk

, (20)

Hk =
∂h
∂x

∣∣∣
xk

, (21)

Φk = eAk∆t, (22)

In the provided equation, for small sampling times ∆t, the system transfer matrix Φk
can be approximated as Φk = I + ∆tAk. To numerically quantify the initial observability
of the system at time tk, we employ the singular value decomposition (SVD) method to
analyze the observability Gramian matrix G0,n as follows:

G0,n = UΣVT . (23)

In the last equation, the matrix Σ represents the diagonal matrix composed of the
singular values of the observability Gramian matrix G0,n, while U and V correspond to the
left and right unitary matrices, respectively. We employ two metrics to measure the degree
of observability of the system:

OI = σmin, (24)

CN =
σmax

σmin
. (25)
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The variable σmin represents the smallest individual singular value obtained from the
matrix Σ, and σmax represents the largest individual singular value obtained from that. The
observability index (OI) signifies the measure of observability for the observability matrix,
while the condition number (CN) denotes the numerical condition of the observability
matrix. A lower OI value or a higher CN value signifies reduced system observability.
These two indicators serve as evaluative metrics to assess the degree of observability of the
system. For our study, we numerically calculate these two metrics, OI and CN, for both
case 1 and case 2, using the initial state of the system. The initial state vector for each SC
within the Taiji formation in the inertial frame can be derived from the initial Keplerian
orbital elements [24].

One initial Keplerian orbital parameter for the Taiji formation is present in Table 2,
encompassing the semimajor axis a, eccentricity e, inclination i, right ascension of the
ascending node Ω, argument of the perihelion ω, and true anomaly f . To determine
the true value of the measurement information, we calculate it indirectly based on the
state value at the initial time t0. For both case 1 and case 2, we compute the condition
number (CN) and observability index (OI) of the initial observability Gramian matrix G0,0
as demonstrated in Table 3.

Table 2. Initial Keplerian orbital elements for the Taiji formation.

a (m) e i (rad) Ω (rad) ω (rad) f (rad)

SC1 149596345656 0.0057765 0.41885699
04957726

6.2789100
17676982

4.5455776
28265889

3.14159265
3580112

SC2 149596558992 0.0057787 0.40563848
15646019

0.0236941
87073916

0.3314021
192709651

1.05695599
21295202

SC3 149596971939 0.0057800 0.40266269
23819615

6.2634647
12324839

2.4647099
56430478

−1.0565641
717284677

Table 3. The observability metrics for two observation schemes.

OI CN

case 1 3.251× 10−32 9.227× 1031

case 2 2.404× 10−31 1.248× 1031

Our findings indicate that the observability of the system employing an observation
scheme similar to case 1 is slightly weaker compared with the system employing the case
2 scheme. This disparity may be attributed to the principle that the inclusion of a greater
variety of observation types enhances the effectiveness of state estimation.

The observability of a system is also influenced by the accuracy of the measurement
information. For instance, Geller et al. [25] discovered that when the angle measurement
accuracy is on the order of 1 mrad, certain initial orbit determination challenges become
difficult to resolve. Additionally, Yim et al. [26] found that there is a linear relationship
between the observability of a system utilizing angles-only measurements and the angle
measurement accuracy. In the Taiji formation, each SC is equipped with high-precision
angle measurement sensors, such as CCD and QPD. In this study, our focus lies in inves-
tigating the extent to which the accuracy of the angle measurement sensor impacts the
observability of the system.

We also use the observability Gramian matrix with measurement noise to investigate
this issue:

L0,n =
n

∑
k=0

ΦT
0,k HT

k R−1
k HkΦ0,k (26)

Here, Rk represents the measurement covariance of the system at time k. To quantify
the impact of measurement accuracy on the observability of the system, we employ a
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ratio metric proposed by Hu et al. [9] to measure the effect of measurement accuracy on
the observability of the system, where a smaller value indicates weaker observability of
the system.

OIr =
OIL
OIG

=
min σ(L0,k)

min σ(G0,k)
. (27)

In our research, we focus on the case 2 observation scheme, which involves the
utilization of almost all available measurement sensors on the SC. To assess the observability
of the system, we compare three levels of angle measurement accuracy. These accuracy
levels represent different types of sensors: low-precision sensors, reflecting current sensor
capabilities; common sensors, planned to be installed on the SC; and high-precision sensors
that may be used in the future. These accuracy levels are separated by a factor of 103. We
assume that the measurement noise of the sensors follows a Gaussian distribution, and the
standard deviation of the sensors for each level is presented in Table 4:

Table 4. The measurement standard deviation of measurement sensors.

Interspacecraft Measurements Sun Angle
Measurements

Radial Velocity
Measurements

Range (m) Range Rate (m/s) Angle (rad) Sun-Pointing
Angle (rad)

Range Rate to Sun
(m/s)

level 1 (low-precision)
1 1× 10−6

1× 10−3

1× 10−5 1× 10−2level 2 (common) 1× 10−6

level 3 (high-precision) 1× 10−9

To assess and compare the observability of the system, we calculate the observability
index ratio (OIr) using 1000 data points within each interval. The measurement standard
deviation step for each level is set as 1× 10−9 from level 3 to level 2. From level 2 to level 1,
the measurement standard deviation step for a sensor is set as 1× 10−6. The OIr values for
the system with varying measurement accuracy are presented below:

Table 5 below presents OI and CN of the observability matrix of the system at different
levels of measurement accuracy.

Table 5. OI and CN for different measurement accuracy levels.

OI CN

level 1 2.090× 10−26 1.436× 1026

level 2 1.542× 10−23 1.945× 1023

level 3 1.244× 10−20 2.412× 1020

From Figure 2, we observe that the degree of observability of the system demonstrates
a nearly linear growth pattern as the accuracy of angle measurement increases, particularly
from level 2 to level 1. However, we find that the observability of the system shows minimal
improvement from level 3 to level 2, despite the increase in angle measurement accuracy
from approximately 3× 10−9 rad to 1× 10−9 rad. There are several factors contributing to
these observations. First, in the absence of ground-based observations, the system tends
to exhibit weak observability. Additionally, the unique orbit configurations of the Taiji
formation, such as having orbits with similar inclinations or eccentricities, also contribute
to the reduced observability of the system.

Through the above analysis, we find that high-precision angle measurement informa-
tion can significantly improve the observability of the system. In the Taiji formation, each
SC is equipped with high-precision angle sensors like CCD and QPD. To further investigate
the impact of angle measurement accuracy on system observability, numerical simulation
experiments were conducted using the nonlinear Kalman filter as described in Section 4.
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Additionally, a comparative evaluation of the state estimation accuracy was performed for
two observation schemes.

(a) OIr of the system from level 3 to level 2. (b) OIr of the system from level 2 to level 1.

Figure 2. Observability measures with different angle measurement accuracy.

4. Numerical Simulation
4.1. Simulation Initialization

Since the Taiji formation has not yet been launched, there is a lack of real data available
for research. We employ a numerical simulation method to investigate the problem of
autonomous state estimation. The initial state of the formation is computed using the
Keplerian orbits, as illustrated in Table 2. Subsequently, we employ the fourth-order
Runge–Kutta method to solve differential Equation (5) and simulate the true state of the SC
from the initial time. For this simulation, we use a discrete step length of 1/3 s. The true
measurement values for case 1 and case 2 at each time instant k are computed using
Equations (17) and (18), respectively. It is assumed that the measurement information has
been preprocessed, including time synchronization. In the state estimation process, the
measurement information employed comprises the true measurement value with added
noise. The process noise w(t) and the measurement noise v(k) are assumed to adhere to
Equation (7). Specific noise deviations and simulation parameters are provided in Table 6:

Table 6. The simulation parameters.

Parameter Value

process noise standard deviation 1× 10−12

relative range noise standard deviation 1 m
relative range rate noise standard deviation 1× 10−6 m/s

relative angle noise standard deviation 1× 10−6 rad
Sun-pointing angle noise standard deviation 1× 10−5 rad

radial velocity noise standard deviation 1× 10−2 m/s
simulation time step 1/3 s
simulation duration 216/3 s

measurement frequency once per 1/3 s

The covariance matrix of the process noise, denoted as Q, is set as Q = diag([I1×18× 10−12]).
Similarly, the measurement noise matrix, denoted as R, is set as R = diag([I1×3 · 1, I1×3 ·
10−12, I1×9 · 10−12, I1×9 · 10−10, I1×3 · 10−4]). In general, the a priori estimation error of the
spacecraft’s position state is assumed to be 10 km, while the a priori knowledge error of
the velocity state is 0.1 m/s. However, to consider a worst-case scenario with less accurate
prior state knowledge, we increase the uncertainty by a factor of 10. Consequently, the
covariance matrix of the state uncertainty is set as P0 = diag([I1×9 · 1010, I1×9 · 1]).
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We employ the cubature Kalman filter (CKF) [27,28] to estimate the state, leveraging
its robustness against divergence in highly nonlinear systems. Considering numerical
stability, we adopt the square root form of the filter to perform covariance analysis in the
case of weakly observable systems. The algorithmic process of the square root cubature
Kalman filter (SR-CKF) for a hybrid system, consisting of continuous dynamics equations
and discrete observation equations, can be described as follows:

Given the initial state estimation x̂0|0 and the covariance matrix of the uncertainty
estimation P0|0 obtained from prior knowledge, the initial square root of the error covariance
S0|0 can be computed using the Cholesky decomposition of P0|0.

P0|0 = S0|0ST
0|0 (28)

The time update process can be described as follows:

1. Calculate the cubature points Xi,k−1|k−1 (where i = 1, 2, . . . , m) using the square root
factor Sk−1|k−1 and the common cubature points ζ i:

Xi,k−1|k−1 = Sk−1|k−1ζ i + x̂k−1|k−1 (29)

Here, m is twice the dimension nx of the state variable x, and ζ i can be defined as

ζ i =


√

m
2
· εi i = 1, 2 · · · nx

−
√

m
2
· εi−nx i = nx + 1, nx + 2 · · ·m

(30)

where εi denotes the i-th column of the unit matrix Inx .
2. Evaluate the propagated cubature points:

X∗i,k|k−1 = f
(

Xi,k−1|k−1

)
(31)

3. Estimate the predicted state:

x̂k|k−1 =
1
m

m

∑
i=1

X∗i,k|k−1 (32)

4. Estimate the square root factor of the predicted error covariance:

Sk|k−1 = qr([X ∗k|k−1 SQ,k−1]) (33)

Qk−1 = SQ,k−1ST
Q,k−1 (34)

Here, qr denotes the QR decomposition of the matrix, SQ,k−1 represents the square
root factor of the process noise matrix Qk−1 at time k, and Xk|k−1 is the centered
weighted matrix, which can be calculated as

X ∗k|k−1 = 1√
m

[
X∗1,k|k−1 − x̂k|k−1 X∗2,k|k−1 − x̂k|k−1 · · ·X∗m,k|k−1 − x̂k|k−1

]
(35)

The measurement update process is as follows:

1. Calculate the cubature points again:

Xi,k|k−1 = Sk|k−1ζ i + x̂k|k−1 (36)

2. Evaluate the propagated cubature points:

Yi,k|k−1 = h
(

Xi,k|k−1

)
(37)
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3. Estimate the predicted measurement:

ŷk|k−1 =
1
m

m

∑
i=1

Y∗i,k|k−1 (38)

4. Estimate the square root factor of the innovation covariance matrix:

Syy,k|k−1 = qr([Yk|k−1 SR,k−1]) (39)

Rk−1 = SR,k−1ST
R,k−1 (40)

Here, SR,k−1 is a square root factor of the measurement noise matrix Rk−1 at time k,
and Yk|k−1 is the centered weighted matrix, calculated as

Yk|k−1 = 1√
m

[
Y1,k|k−1 − ŷk|k−1 Y2,k|k−1 − ŷk|k−1 · · ·Ym,k|k−1 − ŷk|k−1

]
(41)

Additionally, the centered weighted matrix Xk|k−1 can be calculated as

Xk|k−1 = 1√
m

[
X1,k|k−1 − x̂k|k−1 X2,k|k−1 − x̂k|k−1 · · ·Xm,k|k−1 − x̂k|k−1

]
(42)

5. Calculate the cross-covariance matrix:

Pxy,k|k−1 = Xk|k−1YT
k|k−1 (43)

6. Estimate the Kalman gain:

Kk = (Pxy,k|k−1/Syy,k|k−1)/Syy,k|k−1 (44)

7. Update the state estimation:

x̂k|k = x̂k|k−1 + Kk(yk − ŷk|k−1) (45)

Then the square root factor of the corresponding error covariance can be estimated as

Sk|k = qr([Xk|k−1 − KkYk|k−1 KkSR,k]) (46)

This state estimation algorithm is executed recursively for each sampling time, denoted
as k. The simulation results are presented in the subsequent subsection, as demon-
strated below.

4.2. Simulation Results

As depicted in Table 4, three levels of accuracy are considered for relative angle
measurement. Initially, we conduct state estimation experiments on case 2, varying the
accuracy of angle measurements, to validate the results obtained from the observability
analysis of the system presented in Section 3. Subsequently, we compare the influence of
case 1 and case 2 on the accuracy of state estimation to investigate the significance of the
radial velocity sensor.

As illustrated in Figures 3–5 and Table 7, we can see that the worst-case estimation er-
rors for position and velocity states are approximately 2.0 km and 0.0078 m/s, respectively;
under the highest relative angular measurement accuracy of 1 nrad, the state estimation
outcomes for the three SCs in the Taiji formation exhibit similar trends. That may be due to
the fact that the three spacecraft have similar orbital configurations and the same sensor
configuration. We find that the estimation error of the position state of the SC gradually
increases at level 1 but converges progressively at level 2 and level 3. The velocity state
error remains stable across all three levels of measurement accuracy. This stability can be
attributed to the direct availability of velocity measurement information from the radial



Sensors 2023, 23, 8672 12 of 16

velocity sensor, whereas the position state cannot be directly measured. Notably, as the
relative angular measurement accuracy improves, the accuracy of SC state estimation
also increases.

Considering the SC payload limitations and other practical considerations, it is possible
that the SC in the Taiji formation may not be equipped with an extensive array of sensors
specifically designed for solar measurement purposes, such as a spectrometer capable of
measuring the spacecraft’s velocity with respect to Sun. To assess the impact of the radial
velocity sensor on state estimation, we conduct identical simulation experiments in case 1.
This allows for a direct comparison and evaluation of the effect of the radial velocity sensor
on the accuracy of state estimation.

(a) Position error of spacecraft. (b) Velocity error of spacecraft.

Figure 3. Error of state estimation of the Taiji formation with the measurement accuracy of level 1.

(a) Position error of spacecraft. (b) Velocity error of spacecraft.

Figure 4. Error of state estimation of the Taiji formation with the measurement accuracy of level 2.
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(a) Position error of spacecraft. (b) Velocity error of spacecraft.

Figure 5. Error of state estimation of the Taiji formation with the measurement accuracy of level 3.

Table 7. The state estimation errors of the spacecraft in case 2.

Measurement
Level x (km) y (km) z (km) ẋ (m/s) ẏ (m/s) ż (m/s)

SC1
level 1 61.089 202.740 100.296 0.077 −0.065 0.124
level 2 12.657 55.100 9.132 4.197× 10−3 0.987× 10−3 −2.164× 10−3

level 3 1.987 1.415 −0.746 1.733× 10−3 3.475× 10−3 −7.778× 10−3

SC2
level 1 41.785 212.048 113.512 0.076 −0.066 0.126
level 2 12.650 55.104 9.136 4.248× 10−3 1.174× 10−3 −2.203× 10−3

level 3 1.988 1.416 −0.747 1.732× 10−3 3.480× 10−3 −7.767× 10−3

SC3
level 1 39.591 209.159 88.955 0.073 −0.068 0.126
level 2 12.647 55.088 9.130 4.200× 10−3 0.818× 10−3 −2.131× 10−3

level 3 1.985 1.414 −0.745 1.734× 10−3 3.478× 10−3 −7.768× 10−3

As illustrated in Figures 5 and 6 and Tables 7 and 8, we can see that the worst-case
estimation errors for position and velocity states are approximately 3.1 km and 0.14 m/s,
respectively, under the highest relative angular measurement accuracy of 1 nrad. When
comparing the state estimation results between case 1 and case 2 with the same relative
angle measurement accuracy, there is little difference in the accuracy of position state
estimation of the SC. However, there is a significant disparity in the estimation of velocity
of the SC. The velocity estimation results in case 2 are approximately 18 times more precise
than those in case 1. This is likely due to the inclusion of radial velocity measurements
in case 2, which directly provides velocity information of the SC, resulting in significant
improvement of velocity estimation. Further, the filter is more stable in case 2 compared
with that in case 1.

Table 8. The state estimation errors of the spacecraft with the accuracy of level 3 in case 1.

x (km) y (km) z (km) ẋ (m/s) ẏ (m/s) ż (m/s)

SC1 1.290 −3.120 −0.885 −0.103 −0.143 −0.024
SC2 1.291 −3.118 −0.883 −0.101 −0.142 −0.027
SC3 1.289 −3.121 −0.883 −0.103 −0.146 −0.022
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(a) Position error of spacecraft. (b) Velocity error of spacecraft.

Figure 6. Error of state estimation of the Taiji formation with the measurement accuracy of level 3 in
case 1.

5. Conclusions

This paper presents an analysis of the autonomous state estimation problem of the
Taiji formation. To assess the importance of a radial velocity sensor and considering
the sensor configuration of the formation, we propose two observation schemes: case 1
contains all measurements except the radial velocity measurement, and case 2 contains all
measurements. Considering that there are high-precision optical relative angle sensors in
the Taiji formation, we study the influence of three distinct angular measurement accuracies
on state estimation precision. By the observability analysis, we find that the utilization of
high-precision angle measurement sensors can significantly enhance the observability of the
system. By numerical simulation experiments, we find that, in case 2 with a relative angle
measurement accuracy of 1 nrad, even with poor prior state knowledge, in which the prior
information of the precision of the position and velocity is respectively 100 km and 1 m/s,
the position of the SC can be estimated with an accuracy of approximately 2.0 km, while the
velocity can reach approximately 0.0078 m/s. In the absence of radial velocity measurement
in case 1, with a relative angle measurement accuracy of 1 nrad, the estimated accuracy
of the position is approximately 3.1 km. However, the estimation accuracy of velocity is
approximately 0.14 m/s. This could be attributed to the absence of measured velocity
state information of the SC. It is noteworthy that the Taiji formation may not carry the
spectrometer to measure the radial velocity of the SC relative to Sun. For certain missions,
such as the alignment of laser between two distant SCs, of the Taiji formation, the sensor
configuration of case 1 may also meet the requirements for SC state estimation accuracy,
especially when the SC is equipped with a high-precision relative angle measurement
sensor. The study proposed in this paper can be applied to address the autonomous state
estimation problem when ground measurement information is unavailable and can assist in
selecting the appropriate sensor configuration for the state estimation of the Taiji formation.
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