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Abstract: This paper presents a compact RF energy harvesting wireless sensor node with the antenna,
rectifier, energy management circuits, and load integrated on a single printed circuit board and a
total size of 53 mm × 59.77 mm × 4.5 mm. By etching rectangular slots in the radiation patch, the
antenna area is reduced by 13.9%. The antenna is tested to have an S11 of −24.9 dB at 2.437 GHz
and a maximum gain of 4.8 dBi. The rectifier has a maximum RF-to-DC conversion efficiency of
52.53% at 7 dBm input energy. The proposed WSN can achieve self-powered operation at a distance
of 13.4 m from the transmitter source. To enhance the conversion efficiency under different input
energy densities, this paper establishes an energy model for two operating modes and proposes an
energy-intensity adaptive management algorithm. The experiments demonstrated that the proposed
WSN can effectively distinguish between the two operating modes based on input energy intensity
and realize efficient energy management.

Keywords: RF energy harvesting; rectenna; compact design; WSN; energy management

1. Introduction

With the rapid development of the Internet of Things and communication technology,
wireless sensor nodes (WSNs) have been widely applied. Traditional wireless sensor nodes
are restricted by the requirements of volume, weight, and battery capacity. As a remedy,
wireless sensor nodes based on ambient energy sources, including vibration, photovoltaic,
thermoelectric, and radio frequency (RF), have emerged [1–5]. RF energy sources, such
as wireless routers and mobile base stations, are widely distributed in the environment
and emit electromagnetic waves (RF energy) all the time. RF energy has become a research
hotspot in self-powered WSN research due to its long-distance wireless transmission, wide
distribution, and resistance to obstruction and environmental influences [6–8].

An RF energy harvesting WSN (RF-EH WSN) typically consists of an RF energy
harvester and its loads, including a microcontroller, wireless transceiver sensors, etc. An RF
energy harvester generally consists of an energy-receiving antenna, a rectifier for RF to DC
conversion, and energy management circuits. Generally, the rectifier contains an impedance-
matching network to achieve impedance matching with the antenna and maximize the
efficiency of energy transmission. The antenna and rectifier, referred to as rectenna, are the
core devices for RF energy harvesting. A compact printed rectenna is important for reducing
the total size and flexible integration in an electronic system [9,10]. In some existing designs,
the antenna and the rectifier are not fabricated on a printed circuit board (PCB) but are
connected through an SMA interface, resulting in a large overall area [11–13]. The antenna
design and rectifier design originally used different software programs. Through separate
design and the use of SMA interfaces for lossless connections, it is possible to minimize
interference between the antenna and rectifier. But, this will undoubtedly result in a
complex and challenging-to-integrate system architecture. For example, in reference [11],
the antenna size is 50 × 50 mm, and the rectifier size is 21.7 mm × 107.6 mm. These
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two sizes cannot achieve effective integration. Some rectennas are printed on a board,
but the integration of rectifier antennas can lead to a decrease in antenna gain due to
changes in antenna parameters. In the referenced literature [14,15], a reflector was used to
enhance antenna gain, and this resulted in a significant increase in overall dimensions or
thickness. Rare studies have achieved the integration of antennas and rectifiers with almost
no increase in antenna size and without affecting antenna performance.

According to the Friis formula [16], the transmission loss of RF energy is significantly
influenced by the distance between the source and the receiver. Additionally, due to
spatial wave reflections, the RF energy density reaching the wireless sensor network (WSN)
exhibits significant variations at different locations. Based on the previous research, there
are two main operating modes for RF-EH WSNs. Mode A involves continuous data
acquisition and transmission until the energy storage components are depleted [7,8,17–21].
Mode B involves periodic sleep, wake-up, data acquisition, and transmission [22–28].

Mode B requires the input energy to exceed the system’s sleep power consumption in
order to enable charging during the sleep period. This imposes more strict demands on the
intensity of the input RF energy. Mode A incurs no standby power consumption during
the two consecutive operating intervals, resulting in a faster charging rate. Compared to
mode A, mode B only requires a single power-up to sustain continuous operation, reducing
power-up losses. However, it introduces additional standby power consumption. It is
evident that mode A is capable of accommodating lower input energy intensities. As the
input energy increases, mode B gradually becomes more advantageous. When the input
energy is sufficiently high for direct driving of the system, there is a negligible difference
between the two methods. To the best of our knowledge, previous research primarily
employed either mode B or mode A without selecting the working mode based on input
energy intensity.

To address the above-mentioned issues, a compact RF-EH WSN with an antenna,
a rectifier, and a load designed on a single PCB is proposed in this paper. A compact
microstrip antenna structure is proposed. Lumped component matching and the rectifier
are used instead of the 50 Ω feedline, which does not introduce additional area and has a
relatively minor impact on antenna performance. The integrated RF-EH WSN adds only
a small amount of area compared to the antenna. Additionally, an energy mathematical
model for two operating modes of the RF-EH WSN is established, and an adaptive energy
management algorithm is proposed. This algorithm enables the selection of the most
suitable operating mode based on the input energy intensity, aiming to maximize the
utilization of RF energy. The contributions of this paper are concluded as follows.

(1) A compact RF energy harvesting wireless sensor node with a total size of 53 mm ×
59.77 mm × 4.5 mm;

(2) An energy mathematical model for two operating modes of the proposed RF-EH WSN;
(3) An adaptive energy management algorithm that enables the selection of the most

suitable operating mode based on the input energy intensity.

The remainder of this paper is organized as follows: Section 2 presents a comprehen-
sive description of the complete design of the proposed RF-EH WSN. Section 3 provides a
detailed introduction to the proposed energy model and energy management algorithm.
Section 4 discusses the results obtained, as well as crucial design considerations. Section 5
concludes the paper.

2. Design of the RF-Powered Wireless Sensor Node
2.1. Design of the Antenna

The structure and photograph of the proposed antenna are shown in Figure 1a,b,
respectively. The antenna was simulated in a High-Frequency Structure Simulator (HFSS)
and fabricated on a Polytetrafluoroethylene (PTFE) substrate of 1.52 mm thickness. The
antenna utilizes an enhanced side-fed microstrip antenna structure. The dimensional
parameters of the antenna and the rectifier are shown in Table 1. The antenna achieves
impedance matching by varying the feed depth L2 and slotted width W2. In Figure 1a, the



Sensors 2023, 23, 8641 3 of 14

current transmission paths are extended, and the antenna area is reduced by etching three
rectangular slots with a width of W3 and a length of L3. Changing the width and length of
the slots can adjust the current distribution within the radiation patch, thus modifying the
antenna’s resonance frequency and dimension. The comparison of the current distribution
before and after slotting is shown in Figure 1c,d. It is evident that the current density and
transmission path are significantly increased and extended after slotting. The total area
of the antenna shown in Figure 1c is 56 mm × 47.7 mm. Compared with the proposed
antenna (53 mm × 43.4 mm), the total area decreases by 13.9% after slotting.
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Figure 1. Antenna. (a) Structure of top layer; (b) photograph of the top layer; (c) current distribution
without rectangular slots; and (d) current distribution with rectangular slots.

Table 1. Dimensional parameters of antenna and rectifier.

Parameter of Antenna W0 L0 W1 L1 W2 L2 W3 L3 Wsub Lsub
Value (mm) 43 33.4 4.15 15 5 10 5 10 53 43.4

Parameter of Rectifier W4 L4 L5 L6 L7 L8 W5
Value (mm) 4.15 3 1 2.75 3 3.08 1.5

Figure 2a shows the comparison between the simulated and measured S11 of the
proposed antenna. The S11 test was performed with an Agilent vector network analyzer,
model N9916A. The measured center frequency of the proposed antenna is located at
2.437 GHz with an S11 of −24.9 dBi. Figure 2b shows the simulations of the radiation
characteristics. The proposed antenna has an omnidirectional radiation efficiency of 89.11%
and a maximum gain of 4.804 dBi, which can be effectively used for RF energy harvesting.
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photograph of the rectenna. 

Figure 2. (a) Simulated and measured S11; (b) simulated radiation pattern.

2.2. Design of the Rectifier

The rectifier is designed in the Advanced Design System (ADS). The rectifier utilizes
the unidirectional conduction of diodes for rectification and combines it with capacitors
to achieve multi-stage voltage boosting. In the design process, it is necessary to add an
impedance-matching network at the front end of the rectifier to efficiently transform the
antenna impedance to the rectifier’s input impedance. Due to the nonlinearity of diodes,
the input impedance of the rectifier varies with load resistance and input power. Therefore,
it is necessary to perform input power and load pull simulations in ADS to achieve the
optimal design. The rectifier and the antenna are fabricated on a single PTFE substrate.
After integration, the rectifying antenna is of the same size as the antenna. As shown
in Figure 3c, the proposed microstrip antenna has a central feed line of 50 Ω impedance,
which is led from the radiating patch and matched to the rectifier by lumped components
(a 6.8 nH and a 7.5 nH inductor from Murata). The isolation capacitor used is 5.1 pF from
Murata, and the diode is HSMS2852 from Broadcom.
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The RF-to-DC conversion efficiency is shown in Figure 4, which was calculated ac-
cording to Equation (1), where Pout, Pin, Vout, and R denote the output energy, input energy,
output voltage, and the load resistance of the rectifier. During testing, the RF signal source
used was the DSG836 from RIGOL, and the voltmeter used was the 15B+ from FLUKE. In
Figure 4, the RF-to-DC conversion efficiencies are higher than 30% for Pin between −5 dBm
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and 11 dBm and reach a peak of 52.53% when Pin is 7 dBm. Compared to references [29]
(maximum efficiency 37%) and [30] (maximum efficiency 40.29%), this paper has a more
significant advantage.

η =
Pout

Pin
=

Vout
2

R · Pin
(1)
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2.3. System Integration

The rectifying antenna is integrated with the energy management circuits and the load to
create the RF-EH WSN. The proposed RF-EH WSN and its internal connection relationship
are shown in Figure 5a and b, respectively. The total size is 53 mm × 59.77 mm × 4.5 mm.
The energy management circuit consists of a load switch chip, a capacitor, a BUCK chip, and a
power management integrated chip (PMIC) that supports a minimum cold start voltage of
0.33 V and a minimum input power of 15 uW. The PMIC can perform threshold management
and control the on/off state of the downstream load switch. In this paper, the high and low
voltage thresholds are set to 5.15 V and 2.8 V, respectively. When the voltage across the energy
storage capacitor exceeds 5.15 V, the PMIC controls the load switch to turn on, allowing the
capacitor to discharge. When the voltage of the energy storage capacitor drops below 2.8 V,
the PMIC controls the load switch to turn off, stopping the discharge of the capacitor. The
PMIC outputs a voltage of 2.8 V through BUCK conversion. The load of the BUCK includes an
ultra-low-power analog–digital converter (ADC), a low-power microcontroller, a sensor, and
a wireless transceiver. The ADC is used to measure the capacitor voltage for implementing
the energy management algorithm in the next section. After the algorithm finishes running,
the ADC is powered off using a load switch. Table 2 lists the chip models and manufacturers
used in the WSN.

In paper [31], an analysis was conducted on the charge consumption of the load used
in this paper at an MCU main frequency of 4 MHz. The charge consumption for power-up
and single data acquisition and transmission are 55 µC (referred to as Qinit ) and 43.41 µC
(referred to as QSingle), respectively. The total charge consumption for a single operation
cycle is 98.41 µC. To ensure the reliable operation of the system, QInit + 3 × QSingle is used
as the load charge amount and combined with Equation (2) to estimate the energy-storage
capacitance. In Equation (2), C represents the capacitance of the energy storage capacitor,
UH denotes the high discharge threshold of the PMIC (5.15 V), UL denotes the low discharge
threshold of the PMIC (2.8 V), ηB denotes the BUCK conversion efficiency (estimated as
90%), PLOAD denotes the load power consumption, and UB indicates the output voltage
of BUCK (2.8 V). The estimated capacitance value is 72.03 uF, and a capacitance value of
100 uF is selected. It is evident that in the “store-and-release” energy management mode,
to ensure the system’s stable power-up and operation, a significant amount of redundant
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power consumption is present in addition to the consumption of single data acquisition
and transmission.

1
2

C
(

UH
2 − UL

2
)
× ηB =

T∫
0

PLOADdt = UB ×
(

QInit + 3 × QSingle

)
(2)
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Table 2. Chip models and manufacturers used in the WSN.

PMIC BUCK MCU ADC Transceiver Sensor

Model BQ25504RGTT TPS62840 STM32L031G6 ADS8866IDRCR nRF24L01 TMP102AIDRLR
Manufacturer TI TI ST TI NORDIC TI

3. Energy Intensity Adaptive Management Algorithm

In this paper, two operating modes for RF-EH WSN are defined. For the same input
power of the PMIC, the mode with the shorter single operating cycle consumes less energy
and has higher efficiency. For mode A, the charging rate is higher during its charging
process, as there is no load sleep power consumption, but the required total charging
amount increases as it runs out of power in a single operation. For mode B, since it does
not require secondary initialization, the capacitor voltage does not drop to the low-voltage
threshold after each acquisition and sending operation. The capacitor is always in the
charging cycle from the intermediate voltage charging to the high voltage threshold. There
is a load sleep power consumption during the charging process of mode B, for which the
charging rate is slower compared to mode A.

This paper conducts a power consumption comparative analysis between the two
modes and proposes an intelligent energy management algorithm. The algorithm adap-
tively adjusts the system operating mode according to the RF energy input intensity and
calculates the system working cycle under mode B to maximize the energy utilization
efficiency. Table 3 lists the variable descriptions and values used in the estimation.
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Table 3. The variable descriptions and values used in the estimation.

Description Value

C Capacitance of the storage capacitor 100 µF
Is1 Self-leakage current of the storage capacitor 260 nA
UH High threshold voltage of the PMIC 5.15 V
UL Low threshold voltage of the PMIC 2.8 V
QInit Power-on charge consumption of the load 55 µC
QSingle Single data collection and transmission charge consumption 43.41 µC
tinit Power on duration 11.42 ms
tSingle Single data collection and transmission duration 45.2 ms
UB Output voltage of BUCK 2.8 V
ηB Conversion efficiency of BUCK 90%
Is2 Current for load in sleep mode 3.5 uA

Equation (3) demonstrates the relationship between the output power of the PMIC
(PPout), the capacitance (C), the capacitor voltage (U), and the capacitor self-leakage current
(Is1) during the charging process in mode A. The leakage current of the load switch (2 nA)
is relatively small, which is not considered in Equation (3). To simplify the derivation, the
second term in Equation (3) is treated as a constant, as shown in Equation (4), where UH
and UL denote the high and low threshold voltage of the PMIC. Bringing Equation (4) into
Equation (3), simplifying and integrating at both ends yields Equation (5), where TA−charge
denotes the charging time in mode A. After simplification, TA−charge can be expressed
by Equation (6). Since the capacitor selection is derating and the PMIC keeps supplying
energy during the discharge process, the energy storage capacitor can supply the system to
achieve multiple data acquisition and transmission work. The total duration of N times of
acquisition and transmission in mode A is expressed by Equation (7), where tSingle denotes
the time of single acquisition and transmission, and tinit denotes the system-initialization
time. N is calculated by Equation (8), which expresses the load power dissipation in relation
to PPout and the voltage drop of the energy storage capacitor in a complete discharge. After
simplification, N can be expressed by Equation (9).

d
(

1
2
× C

(
U2
))

+ Is1 × U × dt = PPout × dt (3)

Is1 × U = Is1 ×
UH + UL

2
(4)

∫ UH

UL

U × dU

PPout − Is1 × UH+UL
2

=

TA−charge∫
0

dt
C

(5)

TA−charge =
1

PPout − Is1 × UH+UL
2

(
1
2
× C × (U2

H − U2
L)

)
(6)

TA = TA−charge + TA−discharge = TA−charge + tinit + N × tSingle (7)

1
2
× C × (U2

H − U2
L) + PPout × (N × tSingle + tinit) =

(
N × QSingle + Qinit

)
× UB

ηB
(8)

N =

Qinit×UB
ηB

− PPout × tinit − 1
2 × C × (U2

H − U2
L)

PPout × tSingle −
QSingle×UB

ηB

(9)
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Equation (10) demonstrates the relationship between the output power of PMIC (PPout)
and its composition during the charging process in mode B, including the load sleeping
consumption (the first term), the capacitor self-leakage consumption (the second term),
and the capacitor charging consumption (the third term). Is2 is the load sleeping current.
To simplify the calculation, the second term is simplified by Equation (11), where U1 and
U2 are the voltages across the capacitor after initialization and single data acquisition and
transmission, respectively. After power-on initialization, the capacitor voltage continues
to be maintained between U1 and U2. Equation (11) is brought into Equation (10) and
simplified and integrated at both ends to obtain Equation (12), where TB−charge is the charging
time in mode B. Since the capacitor voltage charges to the high threshold, drops to U1
after initialization, and then no longer drops to the low threshold, the estimation of the
operating cycle does not include the charging time from the low voltage threshold to the
high voltage threshold but only the charging time from U2 to U1. The energy consumption
of power-up initialization and each data acquisition and transmission are expressed by
Equation (13) and Equation (14), respectively. By substituting the derived values of U1 and
U2 in Equations (13) and (14) into Equation (12), the charging time in mode B (TB−charge) can
be determined, as shown in Equation (15). Equation (16) represents the total duration of N
times of data acquisition and transmission in mode B, where TB−charge is the time consumed
per charge and tSingle is the time consumed per discharge.

Is2 × UB
ηB

+ Is1 × U +
d
(

1
2 × C

(
U2))

dt
= PPout (10)

Is1 × U = Is1 ×
U1 + U2

2
(11)

U1∫
U2

CUdU

PPout − Is2×UB
ηB

− Is1 × U1+U2
2

=

TB−charge∫
0

dt (12)

1
2
× C × (U2

H − U2
1) + PPout × tinit =

Qinit × UB
ηB

(13)

1
2
× C × (U2

1 − U2
2) + PPout × tSingle =

QSingle × UB

ηB
(14)

TB−charge =

QSingle×UB
ηB

− PPout × tSingle

PPout − Is2×UB
ηB

− Is1 × U1+U2
2

(15)

TB = N × TB−charge + N × tSingle (16)

The time difference between the two operating modes with the same N is shown in
Equation (17). As previously mentioned, N is the number of data collection and transmis-
sion cycles supported by a single discharge in mode A, and mode B applies the same N
for comparison with mode A. The input RF energy density and PPout are unknown for
the proposed WSN, but they can be estimated by sampling the capacitor voltage using
an ADC. After power-on initialization, U1 can be measured by the ADC and brought into
Equation (13) and Equation (14) to calculate PPout and U2, respectively. Using Equation (17),
the operating time difference deltaT between the two operating modes can finally be calcu-
lated to determine which operating mode to choose.

deltaT = TA − TB = TA−charge + tinit + N × tSingle −
(

N × TB−charge + N × tSingle

)
= TA−charge − N × TB−charge + tinit

=
1
2 × C × (U2

H−U2
L)

PPout−Is1 × UH+UL
2

− N ×
QSingle × UB

ηB
−PPout × tSingle

PPout− Is2 × UB
ηB

−Is1 × U1+U2
2

+ tinit
(17)
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Figure 6a shows the simulation of TA−charge, N × TB−charge, deltaT, and N versus U1. Figure 6b
shows the simulation of PPout versus U1. The system uses a 16-bit ultra-low power ADC, which can
achieve a sampling accuracy of less than 0.1 mV. The range of U1 in Figure 6 is set to exceed 4.8066 V
because when it falls below this voltage, PPout will approach the load sleeping consumption, resulting
in an excessively long calculated sleeping time, and only mode A can be selected.
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versus U1.

PPout is directly proportional to U1, as observed in Figure 6b. In Figure 6a, mode B consumes
much more time than mode A when PPout is relatively low. When U1 exceeds 4.8077 V and PPout
exceeds 62 µW, two operating modes consume an equal time of 15.62 s. At this point, N is about 6;
that is, the single operating time of mode B is about 1/6 of mode A. As PPout increases, deltaT rises
and then falls, reaching a maximum value of 0.782 s when U1 equals 4.809 V and PPout is 115 µW, and
then gradually decreases. As the energy input rises, the charging time of the two operating modes
is gradually shortened, and the discharging time is gradually extended. When the input energy is
high enough, the charging time will occupy a very small proportion, and even after the charging is
completed, the power will no longer be discharged, at which time there is no significant difference
between the two operating modes. For example, when U1 > 4.8765 V and PPout exceeds 2.97 mW, the
numerator term in Equation (15) will tend to zero, i.e., the energy consumption in the discharge phase
will be completely supplemented by PPout, and the cycle calculation will be meaningless at this point.

In the time consumption comparison of the two operating modes, this article has assumed no
communication quality and calibration retransmission problems. However, in practical application
scenarios, the charge consumed by a single acquisition and transmission is usually higher than QSingle
due to communication distance, environmental electromagnetic interference, and other factors,
and the estimation for N will no longer be accurate. The previous projections in this article are
used to quantitatively describe the energy and time consumption differences between the two
operating modes. In the actual system operating algorithm, the sleep charging cycle of mode B can
be appropriately increased to cope with the sudden additional communication power consumption.

Based on the above analysis, an intelligent energy intensity adaptive management algorithm
is proposed, as shown in Figure 7. The algorithm realizes fine-grained management of energy by
three energy intensity divisions, achieving the highest efficiency of data acquisition and transmission
under the same energy intensity input and improving data transmission reliability.

In this algorithm, mode A is used when the energy input intensity is relatively low (≤62 µW) or
high (≥2.97 mW), and mode B is used when the energy intensity is intermediate. In Figure 7, after
the system power-up initialization is completed, the voltage U1 across the capacitor is measured
by the ADC and the RF input energy intensity is judged with Equation (18) (condition 1), where
4.8077 V is used to determine whether the input energy intensity is too low (≤62 µW) to sustain sleep
power consumption, and 4.8765 V is used to determine whether the energy is sufficiently high (≥2.97
mW) to eliminate the need for sleep. If condition 1 is not satisfied, the system works according to
mode A. If condition 1 is satisfied, the system works according to working mode B, sleeping and
waking up according to the calculated cycle. The periodic calculation is shown in Equation (19),
obtained by substituting the U1 expression of PPout derived from Equation (13) into Equation (15) and
multiplying by 1.5. By simplifying the calculation results in advance in Equation (19), the amount of
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microcontroller calculation and calculation power consumption can be greatly reduced. The charging
duration is appropriately increased by multiplying it by 1.5 times to cope with sudden additional
communication power consumption.

4.8077 V < U1 < 4.8765 V (18)

TB−charge = −0.0678 +
1

21.90669 × U2
1 − 506.11054

(19)
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4. Validation
Figure 8 displays the test results of the proposed energy management algorithm. The testing

oscilloscope is SDS2504X from SIGLENT. The RF signal source used is the DSG836 from RIGOL. The
transmitting antenna is the proposed antenna in this paper. The RF signal source transmitted energy
at different power levels, and then the energy was received by the RF-EH WSN. An oscilloscope
was used to monitor the voltage across the energy storage capacitor. In Figure 8a, due to the weak
energy input, the voltage measured after the power-up initialization is less than or equal to 4.8077 V,
so the system operates according to mode A. At this energy input intensity, the duration required
for charging the capacitor exceeds 15.62 s. Note that the two charging durations during this interval
are not equal. This phenomenon is attributed to the over-discharge of the capacitor, which results
from the untimely closing of the load switch during the wireless transmitting phase of the discharge
process. This issue is influenced by the random operating state and cannot be accounted for in
theoretical estimations. In the case of operating mode B, the aforementioned issue does not arise as
the load switch remains continuously activated.
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Figure 8. Test results of the proposed energy management algorithm. (a) Low energy input intensity,
with the system operating in mode A. The time base is 5 s/div. (b) Intermediate energy input intensity,
with the system operating in mode B. The time base is 500 ms/div. (c) High energy input intensity,
with the system operating in mode A. The time base is 200 ms/div.

For Figure 8b, the energy storage capacitor discharges after the voltage reaches 5.15 V, and the
capacitor voltage is measured to be 4.8425 V, which triggers the MCU to operate in operating mode B
with a cycle time of 63.83 ms. While the system is performing the cycle calculation, the energy storage
capacitor voltage decreases, after which the first data acquisition and transmission is performed.
During each data acquisition and sending process, there is a waiting time of 26 ms for sensor data
conversion. In this period, the system is in a sleeping state with low power consumption, and the
storage capacitor voltage rises until the MCU wakes up. After the data acquisition is completed, the
MCU sends out the data and the capacitor voltage drops. Then, the system enters the sleeping state,
and the capacitor voltage starts to rise. In the second half of Figure 8b, there is a burst of additional
energy consumption, which is mainly caused by the retransmission of the transceiver due to the
instability of the wireless communication. When an additional power consumption is generated, the
capacitor will ramp up at a higher rate at low voltages due to the fixed duration of the single charge.
In addition, there is a margin in the calculated charging cycle, so the capacitor voltage will gradually
return to the original level position over time. In Figures 7 and 8b, the sleep time is set again after the
work mode B acquisition and sending is completed, which can ensure that the charging time is fixed
each time to prevent the effect of irregular discharge time on charging. In Figure 8c, after power-up,
the system will send data acquisition continuously according to operating mode A. Due to the high
input energy, the voltage of the energy storage capacitor is almost constant. The validation results
demonstrate the efficacy of the proposed intelligent energy management algorithm in distinguishing
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between different energy intensities and selecting the appropriate operating mode to improve energy
utilization efficiency.

An RF energy-harvesting experiment was conducted, as illustrated in Figure 9. A 27 dBm signal
source and a 14 dBi panel antenna were employed as the RF power source. The voltage across the
WSN’s capacitor was measured using a multimeter (FLUKE 15B+). A host node was connected to a
laptop to receive the sensor data. The experiments demonstrated that the proposed WSN can achieve
self-powered operation at a distance of 13.4 m from the transmitter source. This distance can be
influenced by the environment (such as reflections from the ground, walls, etc.).
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5. Discussion
This paper introduces a compact RF-EH WSN. Table 4 presents a comparison between this paper

and recent studies. In previous studies, commercially available antennas were widely employed,
and the systems were not integrated on the same PCB board, resulting in challenges in quantifying
the system volume [23,29,32,33]. By comparing with the existing literature, it is evident that the
proposed RF-EH WSN exhibits significant advantages in terms of integration and operating range,
and it possesses the unique capability of energy intensity adaptive management.

Table 4. Comparison of the proposed WSN with reported RF-EH WSN.

Reference Total Size Maximum Gain Maximum Self-Powered
Distance

Adaptive Energy
Management

[32] - - 2 m no
[22] - - 2.3 m no
[29] - - 1.5 m no
[33] 125 mm × 140 mm - - no
[15] 150 mm × 90 mm × 50 mm 6.6 dBi 1.5 m no
[21] 30 mm × 30 mm 4 dBi 1.12 m no

This paper 53 mm × 59.77 mm × 4.5 mm 4.804 dBi 13.4 m yes

This paper achieved a self-powered distance of up to 13.4 m, which significantly surpasses
previous designs. There are two reasons for this. First, this paper made certain design enhancements
to improve antenna gain and rectifier conversion efficiency. Second, the load in this paper has
been optimized and designed to have an extremely low single-operation charge consumption (98.41
µC) [30]. This reduction in energy storage capacitor value and self-leakage current contributed to a
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decrease in the minimum required input energy. Both factors significantly extended the self-powered
distance.

The energy mathematical model and energy management algorithm proposed in this paper are
simple and highly portable. When applying this energy management model to new WSNs, we only
need to measure the variable values in Table 3 and plug them into Equations (15) and (17) to calculate
the boundary voltage of U1. Then, based on the algorithm shown in Figure 7 and the just-computed
boundary voltage, the WSNs can switch operating modes and calculate the sleep duration to achieve
optimal energy management.

6. Conclusions
A compact RF-EH WSN is proposed with a total size of 53 mm × 59.77 mm × 4.5 mm. By

printing the total RF-EH WSN on a single PCB, a high level of integration is achieved. The antenna
area is further reduced by etching rectangular slots. An adaptive RF-energy-intensity management
algorithm is proposed. Through the derivation of energy models for two common operating modes,
the boundary conditions for mode switching are established. The derivation and application of this
energy management algorithm have broad adaptability. The proposed RF-EH WSN can achieve
self-powered operation at a distance of 13.4 m from the RF signal source, providing a reference for
powering wireless sensor nodes in industries, military applications, and other fields. In order to
achieve a compact design, lumped element matching was used in this paper, resulting in a maximum
RF-to-DC conversion efficiency of only 52.53% at 7dBm input power. In the future, more efficient
energy harvesting and a longer self-powered distance can be achieved by changing the matching
method and antenna structure.
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