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Abstract: Variations with respect to perspective, lighting, weather, and interference from dynamic
objects may all have an impact on the accuracy of the entire system during autonomous positioning
and during the navigation of mobile visual simultaneous localization and mapping (SLAM) robots.
As it is an essential element of visual SLAM systems, loop closure detection plays a vital role in
eradicating front-end-induced accumulated errors and guaranteeing the map’s general consistency:.
Presently, deep-learning-based loop closure detection techniques place more emphasis on enhancing
the robustness of image descriptors while neglecting similarity calculations or the connections within
the internal regions of the image. In response to this issue, this article proposes a loop closure
detection method based on similarity differences between image blocks. Firstly, image descriptors are
extracted using a lightweight convolutional neural network (CNN) model with effective loop closure
detection. Subsequently, the image pairs with the greatest degree of similarity are evenly divided into
blocks, and the level of similarity among the blocks is used to recalculate the degree of the overall
similarity of the image pairs. The block similarity calculation module can effectively reduce the
similarity of incorrect loop closure image pairs, which makes it easier to identify the correct loopback.
Finally, the approach proposed in this article is compared with loop closure detection methods based
on four distinct CNN models with a recall rate of 100% accuracy; said approach performs significantly
superiorly. The application of the block similarity calculation module proposed in this article to the
aforementioned four CNN models can increase the recall rate’s accuracy to 100%; this proves that
the proposed method can successfully improve the loop closure detection effect, and the similarity
calculation module in the algorithm has a certain degree of universality.

Keywords: visual simultaneous localization and mapping; loop closure detection; similarity difference;
convolutional neural network

1. Introduction

Mobile robots are capable of determining their own motion trajectories in uncharted
territory utilizing simultaneous localization and mapping (SLAM) [1,2], which enables
the generation of maps of their surroundings. The application of SLAM technology is
widespread in industries, including mobile robots, virtual reality [3,4], smart mobile homes,
and autonomous driving [5]. Visual sensors are accessible and can capture detailed images;
thus, visual SLAM with cameras has broad appeal [6]. However, variations with respect
to perspective, lighting, weather, and interference from moving objects may all have a
detrimental effect on the precision of the entire system when visual SLAM mobile robots
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perform autonomous positioning and navigation [7]. As a robot keeps moving, cumula-
tive errors begin to occur when the robot uses images that a camera has taken and then
comprehends the data within to obtain its own positioning and environmental observation
data. Cumulative errors can only be eliminated by constraining the adjacent keyframes in
the previous paragraph. By determining that the camera is returning to the same position,
loop closure detection (LCD) can provide long-term keyframe constraints. When utilized
in conjunction with the backend, it can generate globally consistent trajectories and maps
and eliminate cumulative errors [8,9].

The current loop closure detection algorithm uses appearance information to address
the issue of data association between images, and it is primarily based on the similarity
matching method of the image and its data. The robot’s trajectory can vary in practical
applications due to the interference of dynamic objects, which causes visual bias in the
collected images [10], further resulting in inaccurate loop closure detection results. False
negativity or perceptual bias are terms used to describe this phenomenon. The existence of
localized similar scenes in various environments may also occur at the same time, leading to
the accurate classification of a loop as a non-loop. False positives and perceptual confusion
are terms used to describe this phenomenon. False negatives decrease the effectiveness of
loop closure detection, while false positives cause map creation to fail and robot positioning
to be lost [11,12]. As a result, the loop closure detection algorithm must increase loop
closure recognition accuracy while reducing false positives. The bag-of-words (BoW)
model, which represents the image using locally created features, is a frequently employed
technique in the conventional loop closure detection algorithm [13]. The word vectors
in this model are produced by clustering a large number of image feature vectors, but
similarity comparisons are difficult due to the randomness of image collection and the
limitations of clustering methods [14-16]. Some scholars have improved and proposed
gridding place recognition (GPR) [17] and COVFast-LCD [18] methods on this basis. Deep
learning has driven the development of computer vision and has achieved good results in
areas such as image classification [19], object detection [20], instance segmentation [21], and
object tracking [22]. The global description vector of an image can be successfully extracted
using deep learning, offering a fresh approach to loop closure detection. An approach for
loop closure detection based on convolutional neural networks (CNNs) was first proposed
by Chen et al. in 2014 [23]. The Euclidean distance between the vectors used in this method
to represent the similarity between images uses a pretraining network called Overfeel
to extract image description vectors. The outcomes demonstrated that the loop closure
detection effect outperforms FAB-MAP and SeqSLAM. The use of an autoencoder to extract
the image description vector was suggested by Gao et al. [24]. An autoencoder is a type of
unsupervised network model and does not need a lot of training using annotated images.
This method exhibits good loop closure detection performance, as evidenced by the results,
and uses a similarity matrix to represent the similarity between images. Merrill et al. [25]
proposed a lightweight unsupervised deep neural network model, CALC, based on the
autoencoder. The model trains the network model with the aim of extracting the global
HoG descriptor of the image [26], and it randomly projects the input image to ensure that
the output feature vectors have higher robustness relative to changes in perspective. The
results show that the loop closure detection performance and real-time performance of this
method are superior to the comparison algorithm. At the same time, there are NetVLAD
and VGG-NetVLAD methods that combine the bag-of-words model with deep learning.
NetVLAD combines the VLAD descriptor with CNN to propose a CNN architecture for
weakly supervised location recognition. VGG-NetVLAD [27] combines NetVLAD with
VGG16 to form a new algorithm.

Compared with the artificial features used in the traditional bag-of-words model, deep
learning can extract more abundant image information [28] and is more robust in the case
of light changes, viewpoint changes, etc. [29,30]. However, the accuracy of loop closure
detection in deep learning depends on the performance of the deep learning network
framework in extracting features and on the level of training. At present, deep learning
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based on loop closure detection algorithms is mostly focused on improving the robustness
of image descriptors, ignoring the importance of similarity calculation and rarely paying
attention to the connections between the internal regions of the image [31,32]. At present,
although deep learning methods using local areal features may produce better results, these
methods are complex in their calculations, require a large number of calculations, and are
challenging in terms of ensuring that the extracted regional information is effective [33-35].

Therefore, we redesigned the loop closure detection algorithm in SLAM by combining
MobileNet_v3 and block similarity calculation. The main work of this paper is as follows.
(1) In comparing the precision-recall curves of existing excellent CNN models, the global
descriptor of the image sequences is extracted using the pretrained lightweight neural
network model MobileNet_v3 as the feature extractor in combination with the inverse
residual structure in the network. (2) A principal component analysis (PCA) and whitening
are used to improve the computational efficiency. (3) A block similarity calculation module
is introduced to extract the local information of image block descriptors from the previously
determined possible loop closure detection similarity pairs in fixed blocks and to re-judge
the loop through a similarity calculation in order to improve the method’s loop detection
accuracy. Finally, in order to verify the feasibility of the proposed method, a loop closure
detection experiment is designed, and the results are analyzed. Experimental results show
that the proposed method is effective and robust.

The structure of this paper is as follows: In Section 2, the overall framework of
the designed algorithm is briefly introduced. Section 3 introduces the structure of the
MobileNet_v3 network and the extraction and dimensionality reduction of image descrip-
tors. Section 4 introduces the image block similarity calculation module in detail. In
Section 5, the experimental results are discussed and analyzed, and in Section 6, the full
text is summarized.

2. Method Framework

The method mainly consists of the extraction of image descriptors, the reduction of
the dimensionality of image descriptors, and block similarity calculation. The overall
framework of the method is shown in Figure 1.

image sequence | CNN feature extraction: descriptor set  low dimensional descriptor

high similarity image pairs cosine similarity
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Figure 1. Loop closure detection method framework based on differences in the similarity of
graphic blocks.
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Firstly, the pretrained CNN model is used to extract image descriptors and gather all
the descriptors extracted from the image sequence. Then, the descriptors are subjected to a
principal component analysis (PCA) and whitening to reduce some relevant dimensions,
thereby reducing the subsequent computational complexity and preserving the main
information. Finally, the cosine similarity of these descriptors is calculated, and a similarity
matrix is generated. The similarity matrix is a symmetric matrix, each row of which can be
regarded as a sequence of the current query image; each column can be regarded as a loop
closure candidate. The query image is only compared with the image before the current
time, and the image with the highest similarity to the query image can be found in this
matrix. The two images with the most similarity are found, and the overall similarity is
recalculated using the block similarity calculation module. The recalculated similarity is
used to determine whether loop closure has occurred.

3. Image Descriptor
3.1. Image Descriptor Extraction

Directly calculating similarity from image data requires a significant amount of compu-
tation, and the results are frequently unreliable due to variables such as changing lighting,
shifting viewpoints, and dynamic environments. An image descriptor is a vector used to
represent an image, and representing the image as a vector is a necessary process for loop
closure detection. Pretrained CNN models typically have good generalization performance
while also reducing the time cost of retraining the network. Using a pretrained CNN to
extract image features means richer image information can be used than with manually
designed features. Visual Geometry Group 16 (VGG16) [36], AlexNet [37], Residual Net-
work 18 (ResNet18) [38], MobileNet version 3 (MobileNet_v3), etc. [39], have shown good
performance in practical applications such as image classification, image retrieval, image
recognition, and other tasks. We performed loop closure detection on these CNN models
using a public dataset from New College. Using the fully connected layers of these network
models to extract image description vectors, the cosine similarity between the description
vectors can be utilized to represent the similarity between images. The accuracy achieved
with different recall rates is obtained by adjusting the similarity threshold, and these data
are plotted into precision-recall curves. The precision-recall curves of different pretrained
CNN models are shown in Figure 2.
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Figure 2. Precision-recall curves of distinct pretrained CNN models.

Figure 2 shows that when compared with other pretrained CNN models, MobileNet_v3
has an outstanding recall rate and 100% accuracy. As a consequence, the pretrained CNN
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model chosen for image descriptor extraction is MobileNet_v3. Bneck is the primary pro-
cessing method within the MobileNet_v3 network structure, and Figure 3 portrays its
structure [39].

MobileNet_v3 block

“““'-‘_‘ Relu Hard-g—

Figure 3. Diagram of Bneck'’s structure.

In order to meet the size requirements of the input image of the CNN model, the
image size of the dataset should be adjusted to the input picture size of MobileNet_v3.
To reduce the gradient value during the training, the model converges smoothly, and the
image data are naturalized; the grayscale range of the image element is mapped from 0
to 255, in proportion, to between 0 and 1. After the naturalization process, the image is
consistent with the original image, and the image’s information is unchanged.

At the same time, with standardized processing, the grayscale value of the image
pixel point is mapped from —1 to 1, and decentralization is achieved; it is then easier for
the image data to be subsequently generalized. Images are naturalized and standardized
when training CNN models, so the input image is processed in the same way in order to
achieve the extraction of characteristics. The calculation formula for image standardization
is as follows:

. _x—pu
img_std = sid @D

In this case, img_std represents the image matrix after standardized processing, with
x representing the original image matrices, y representing the average of the ImageNet
dataset training images, and std representing the standard difference of the ImageNet
dataset training images. y# and std are values of [0.485, 0.456, 0.406] and [0.229, 0.224, 0.225],
respectively; these three components correspond to the three channels of the training image,
and since these values are calculated from millions of images, they are directly credited
when the input image processing is standardized.

The fully connected layer 1280-dimensional output vector of MobileNet_v3 is em-
ployed as the descriptor of the input image by the algorithm in order to verify the universal-
ity of the block similarity calculation method developed in the method. Other CNN models
in the experiment also used the fully connected layer as the descriptor for the input image.

3.2. Image Descriptor Dimensionality Reduction

Due to the high number of sub-dimensions of the extracted image description, dimen-
sionality reduction processing is needed to increase the speed of the subsequent cosine
similarity calculation. Principal component analysis (PCA) can help vectors better represent
images by reducing their dimensionality while also preserving the essential information in
the vectors.
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Suppose there are m images in the image sequence, the descriptor sub-dimension

extracted from each image is 7, and these image descriptors are combined together in rows
to generate a generator matrix D, then D is expressed as

@
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The specific calculation process of PCA is as follows.

The mean is calculated for each column.
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The corresponding mean is subtracted from each column of D to obtain a matrix X
centered around 0 for each column.
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The covariance matrix X of matrix X,y is calculated.
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Covariance matrix X¢,, undergoes singular value decomposition. As Xy is a sym-
metric matrix, its singular value decomposition form can be expressed as follows:

A0 e 0 T

. 0 Ay - 0 u’
Xeoo=ULU" =[uy uwpy - uy |- o ] (6)

00 o A u, T

where A4, g € [1,2,---,n]. The non-zero part is the singular value of matrix X, ar-
ranged from largest to smallest, with the remaining values being 0. These singular val-
ues can be regarded as the contribution values of the dimension. u,, p € [1,2,---,n]
is the vector obtained via the orthogonalization of the eigenvectors corresponding
to singular values, and these vectors are arranged according to the corresponding
singular values.

The first k columns of matrix X and matrix U are multiplied for dimensionality reduction.

Dp=XtUy=[ m x o xn [ [ mow m ]
P P P
BB %
| A A e dy @)
AP g )

ml m2 mk
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among them, k € N* and k = min(m, n). Through PCA dimension reduction, the
dimensions of the image descriptor generator matrix D are reduced from 7 to k, and
the main information is extracted. In order to reduce the correlation between various
dimensions, whitening is usually performed after PCA dimensionality reduction, and
the calculation process is as follows.

B d(P)

_u

(P) U

T Viare vre I AL B
(P) (P) (P) 11 12 %k
dy) dyy Ly AW W) (W)
DW — \//\]Jr&' \//\24’8 \//\k+€ — 21 22 2k (8)
@ Ay dig dyy ey
LVA+e  VAx+e VA+e 4

where ¢ = 10~* is used to prevent situations where the denominator is 0.

After the aforementioned PCA dimensionality reduction and whitening processing,
the image descriptor subcombination matrix D is transformed into a low-dimensional
matrix Dy . Not only can it reduce the computational workload, but it can also retain the
main information for subsequent similarity calculations.

4. Block Similarity Analysis
4.1. Image Pair Filtering

The reduced dimensionality image descriptors can better represent the image and
facilitate calculation. The cosine similarity between these descriptors can be calculated
directly to produce a similarity matrix. Through calculating the cosine value between
two description vectors, which represents the angular distance between the two description
vectors, the cosine similarity is obtained. The calculation equation is as follows:

VA" YB
*(©ar28) = 00 = o oy ©
where term 6 represents the angle between v 4 and vp in an n-dimensional vector space. As
the cosine similarity increases and the vector angle decreases, the similarity between the
images increases.

The images are read in chronological order, and the similarity between the images
closest to the current query image and the query image is relatively high, so images near
the query image are not detected. Of the remaining images, the image with the highest
similarity to the query image is used for subsequent block similarity calculation.

Figure 4 shows the similarity matrix calculated using the dataset from New College
and the MobileNet_v3 model and shows the true loop closure matrix of the dataset itself.

The similarity matrix is used to measure the similarity between the query image
and the loop closure candidate image. This matrix is a symmetric matrix. The value at
(i, j) represents the similarity between the i-th image and the j-th image in the dataset.
Therefore, the value on the diagonal is 1. The darker the color in Figure 4, the higher the
similarity. Only the lower triangular matrix area of the loop closure matrix has values, and
the white area indicates that there is loop closure. Figure 4 shows that the regions with
higher similarity in the similarity matrix and calculated directly using cosine similarity
have some overlap with the real loop closure regions in the loop closure matrix. However,
there are still many false positives among them. The main reason for this is that the method
of directly using the global descriptor of the image to calculate similarity is not sensitive
enough to some locally changing images. Therefore, in addition to the global information
of the image to calculate similarity, the local information of the image can be utilized.
However, it often cannot be determined whether changes in the local area of the image
are caused by correct looping in a dynamic environment or by incorrect looping due to
local differences, which can easily lead to false negatives. Therefore, it is also necessary to
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utilize the interrelationships between the local regions of the image to connect the local
information of the image with the overall image.

Figure 4. Similarity matrix and loop closure matrix of the New College dataset: (a) similarity matrix
in the MobileNet_v3 model; (b) loop closure matrix.

4.2. Blocking Similarity

In order to utilize the local information in the images and obtain some images from the
New College dataset for experiments, the given query image and loop closure candidate
image are evenly divided into nine image blocks. Then, each small block of the image is
input into MobileNet_v3, and nine description vectors are obtained for each image. The
cosine similarity is used to calculate the similarity between the query image and loop
closure candidate image, as well as between the query image and its own image block. A
matrix similarity is then built based on image blocks, as shown in Figure 5.

In Figure 5, subgraphs (a) and (b) are correct loops, while subgraphs (a) and (c) are
incorrect loop closures. Subgraph (d) is the matrix similarity SM1 between each image block
of subgraph (a) and all image blocks of subgraph (a). Subgraph (e) is the matrix similarity
SM2 between each image block of subgraph (a) and all image blocks of subgraph (b).
Subgraph (f) is the matrix similarity SM3 between each image block of subgraph (a) and all
image blocks of subgraph (c).

SM1, SM2, and SM3 are all 9 x 9 matrices that are normalized. The value located
at (i, j) represents the similarity between the i-th and j-th image blocks in the image. It
can be seen from subgraph (e) and subgraph (f) that the elements on the main diagonal
of the matrix similarity of the correct loop closure image pair are darker and more similar
than the elements on the matrix similarity of the wrong loop closure image pair, which
indicates that the overall similarity between the loop closure image pairs can be expressed
by the elements of the main diagonal of the matrix similarity, to a certain extent. However,
in order to avoid the false negative results caused by direct calculation, it is necessary to
further use the connection between image blocks, thereby connecting the local information
of the image with the overall information. Comparing subgraphs (d) with (e) and (f), it
can be found that the correct loop closure image is more similar to the matrix similarity
as a whole, while the error loop closure image is more different from the matrix similarity
as a whole. Therefore, the similarity of image pairs is recalculated based on the similarity
difference between the image blocks mentioned above, further distinguishing between
correct and incorrect loops.



Sensors 2023, 23, 8632

90f17

(e) (f)

Figure 5. (a) img1; (b) img2; (c) img3; (d) the similarity matrix between imgl and img1 image blocks;
(e) the similarity matrix between img1 and img?2 image blocks; (f) the similarity matrix between img1
and img3 image blocks.

To more intuitively represent the difference between the correct loop closure image
pair and the incorrect loop closure image pair, the matrices SM1 and SM2 are subtracted
and taken as absolute values, and the matrices SM1 and SM3 are subtracted and taken as
absolute values. The calculation process is as follows, and the results are shown in Figure 6.

8
di= Y ‘SMij—SM;].,ie{0,1,2,...,8} (10)
J=0j#i
where d; represents the similarity difference between the query image and the i-th image
block of the loop closure candidate image.

[
@ (b)

Figure 6. (a) Subtracting SM1 and SM2 to obtain the similarity difference matrix SM_d1; (b) subtract-
ing SM1 and SM3 to obtain the similarity difference matrix SM_d2.
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In Figure 6, subgraph (a) represents the similarity difference matrix SM_d1, obtained
by subtracting the absolute values of SM1 and SM2; subgraph (b) represents the similarity
difference matrix SM_d2, obtained by subtracting the absolute values of SM1 and SM3.

SM_d1 and SM_ d2 both are 9 x 9 matrices located at (i, j); they represent the difference
in similarity between the i-th and j-th image blocks in the image pair. The lighter the color,
the smaller the similarity difference, while the darker the color, the greater the similarity
difference. The correct loop closure image has a lighter color representing the similarity
difference matrix compared with the incorrect loop closure image, indicating that the loop
closure image has a smaller overall difference.

Each line of SM_d1 except the elements on the main diagonal is added to obtain the
similarity difference value of nine image blocks: K_1 = [0.16, 0.17, 0.20, 0.16, 0.13, 0.14,
0.17, 0.05, 0.08]. Each line of SM_d2 except the elements on the main diagonal is added
to obtain the similarity difference value of nine image blocks: K_2 =[0.30, 0.34, 0.32, 0.19,
0.22,0.39,0.19, 0.11, 0.18]. Each element in K_1 and K_2 represents the overall similarity
difference between the corresponding image blocks in the correct looping image pair and
the incorrect looping image pair; the smaller the value, the smaller the difference. Through
more intuitive data comparison, it can be found that individual values in K_2 are not
significantly different from those in K_1, but overall, K_2 has a larger value than K_1.
Therefore, the similarity difference value can be used to recalculate the similarity between
image pairs, thereby reducing the similarity of error loops to a greater extent.

In observing subgraph (d), subgraph (e), and subgraph (f) in Figure 5, it can be found
that the elements on the main diagonal, that is, the similarity between image blocks in the
same position, can represent the overall similarity of the image. However, this will neglect
the connection between the local areas of the image and the overall image, causing the
overall similarity to be significantly affected by local area similarity. Particularly in some
cases of local environmental changes, significant changes in similarity are easily caused,
meaning this method is not suitable for dynamic environments. Therefore, the matrix
similarity SM main diagonal elements are weighted, and the weight distribution of the
algorithm is as follows:

Ai=1—(1401k)d;, ke {-10,-9,...,0,...,9,10} (11)

where the term A; represents the similarity weight between the query image and the i-th
image block of the loop closure candidate image. The term k is an adjustment parameter
used to indicate the degree to which similarity differences (d;) affect weights (A;). k = —10
indicates that d; has no effect on A;, while the larger the value of k, the greater the impact
of d; on A;. From Equation (11), the weight (A;) is a number less than 1; the smaller the
similarity difference (d;), the closer n is to 1. The larger the similarity difference (d;), the
smaller A; is.

The overall similarity between the query image and the loop closure matching image
is denoted as Sim, and the similarity between the corresponding image blocks after the
query image and the loop closure candidate image are segmented is denoted as Sim_a;, i €
{0, 1, 2,...,8}. The similarity after recalculation is represented as follows:

_ Sim- Y8 oA~ Sim_a;

S Ty
Yo Sim_a;

(12)

From Equation (12), the closer A; is to 1, the closer the recalculated similarity is to the
overall image similarity of Sim. The smaller A; is, the smaller the similarity after recalculation.

4.3. Numerical Calculation

To visualize the calculations, a set of images are separately extracted from the New
College and City Center datasets. Take the New College dataset, for example, which
includes an image to be queried, serial number 793; a correct loop closure image, serial
number 580; and four images with similarities to images to be interrogated, with serial
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numbers 570, 574, 650, and 653, respectively. The City Center dataset images are extracted
using the same method, as shown in Figure 7.

A

(1184)

(527) (1064) (1066)
(b)
Figure 7. Dataset loop closure comparison between (a) New College and (b) City Center datasets.
The adjustment parameter k = —7 is used to calculate the likeness of the image

before and after the image partition with the image to be queried, as well as the similarity
difference for each image block, as shown in Tables 1 and 2.

Table 1. New College dataset calculation results.

Image Similarity to 793 to Block Similarity Difference Value

Be Queried
Block
Image Serial  Before Block  After Block

Number Calculation  Calculation 2 3 4 5 6 7 8 ?

Images to be queried 793 1 1 0 0 0 0 0 0 0 0 0
Loop closure 580 0.87 0.81 021 025 025 019 019 027 016 017 0.26
570 0.71 0.42 051 082 091 041 0.61 074 034 034 073
Non-loop closure 574 0.73 0.41 062 073 081 044 062 063 049 036 0.66
p 650 0.74 0.45 055 062 063 042 058 031 049 039 048

653 0.59 0.35 063 074 052 043 080 054 049 045 0.60
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Table 2. City Center dataset calculation results.
Image Slmllant}.’ to 1184 to Block Similarity Difference Value
Be Queried
Block
Image Serial  Before Block  After Block

Number Calculation  Calculation 2 3 4 > 6 7 8 ?

Images to be queried 1184 1 1 0 0 0 0 0 0 0 0 0
Loop closure 645 0.91 0.83 020 027 018 017 016 019 013 020 025
521 0.73 0.53 021 036 041 055 061 055 038 050 051
Non-loop closure 527 0.72 0.52 031 041 033 059 083 077 037 046 048
p 1064 0.73 0.55 026 023 037 048 065 054 033 048 055
1066 0.71 0.49 026 034 038 057 078 073 039 049 058

From the comparison data, it can be observed that images with a higher similarity but
non-loop closure have higher differential values of similarity compared to the loop closure
image pair, and after the calculation of the similarity of the block, similarity decreases more,
which is more conducive to judging the correct loop closure.

5. Results and Discussion
5.1. Experimental Environment and Datasets

The experiment used two publicly available datasets, namely, the New College and
City Center datasets. New College and City Center are datasets provided by the Mobile
Robotics Group of the University of Oxford [40]. During the robot’s image acquisition
process, images are collected approximately every 1.5 m and are commonly used for loop
closure detection evaluation testing. Images of the dataset are shown in Figure 8. The
detailed parameters of the dataset are shown in Table 3. Both datasets are composed of
binocular images, and only the left images are utilized in this experiment.

£

(b)

Figure 8. Partial dataset images from the (a) New College dataset and (b) City Center dataset.
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Table 3. Dataset information.

Dataset New College City Center
Total length (m) 2260 2025
Revisit length (m) 1570 801
Number of images 1073 1237
Resolution (px x px) 640 x 480 640 x 480

5.2. Discussion of Experimental Results

Within the block similarity calculation module, an adjustment parameter k is added.
The algorithm can adjust for various environments via altering the value of k. As a result,
the parameter k impacts the extent to which the algorithm performs in terms of time
and loop closure detection. The effectiveness of the loop closure detection is expressed
through accuracy and recall. Accuracy is defined as the ratio of the correct loop closure
detected (true positive (TP)) to all loop closure, as determined by the algorithm (true
positive (TP) and false positive (FP)). The recall rate is defined as the ratio of detected
correct loop closure (true positive (TP)) to all loop closure (true positive (TP) and false
negative (FN)) in the dataset. Due to the occurrence of false positives leading to errors in
backend optimization algorithms, the loop closure detection effect is represented by a recall
(%) with 100% accuracy. The time performance is represented by the average query time ¢
(ms) of each image in the algorithm. The experimental results are shown in Figure 9.

T T T T T 10 0.8 T T T T T 50
= 0.7F .".'--..: 745
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- - - . -4
| g™ . . 430 0.6 - ._--' 1.
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Figure 9. Effect of adjusting parameter k on the loop closure detection performance of the algorithm:
(a) loop closure detection performance using the New College dataset; (b) loop closure detection
performance using the City Center dataset.

In Figure 9, subfigure(a) represents the experimental data from the New College
dataset, and subfigure (b) represents the experimental data from the City Center dataset.
The red dot at k = —10 indicates the recall rate of the loop closure detection algorithm based
on the MobileNet_v3 CNN model at 100% accuracy, without applying the block similarity
calculation module. The experimental results show that as parameter k increases, the loop
closure detection performance of this algorithm first increases and then decreases. Within
a certain range, the recall rate at 100% accuracy is higher than the red dot; outside of this
range, it will be lower than this point. This is mainly because as parameter k increases, the
similarity of error loop closure image pairs with similar appearances gradually increases
compared to many correct loop closure image pairs with less similar appearances, resulting
in a decrease in recall rate at 100% accuracy.
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The average detection time of the method consists of three parts: image descriptor
extraction, image descriptor reduction, and block similarity calculation. On the New
College dataset, this algorithm performs best in loop closure detection when k = —7. At this
point, the recall rate at 100% accuracy is 0.758, and the average detection time is 31.02 ms.
On the City Center dataset, this algorithm performs best in loop closure detection when
k =7. At this point, the recall rate at 100% accuracy is 0.744, and the average detection
time is 41.21 ms. The improvement in the loop closure detection effect is accompanied by
a decrease in time efficiency, which is mainly reflected in the calculation process of block
similarity. This is due to the need to input image blocks into the CNN model again to
recalculate similarity, which increases time consumption. However, the average calculation
time still meets the real-time requirements of loop closure detection, and greater time
efficiency can be achieved by taking a smaller k value.

We undertook a comparison of the present method with the loop closure detection
algorithms of four CNN models: GPR, COVFast-LCD, VGG-NetVLAD, MobileNet_v3,
VGG16, AlexNet, and ResNet18; the recall rates at 100% accuracy on two datasets are
shown in Figure 10.

Present method
GPR
0.8 COVFast-LCD
' 0.76 - VGG-NetVLAD
071 o MobileNet_v3
0.7 0.68 VGG16
AlexNet
0.6 L ResNet18
0.5 05 105
= 045
= 10.45]
o 04
& 0.4 0.39 0.39 04
031 0.33 0.32
0.3
0.2 0.17]
] 0.11
0.1
0.0 r
New College City Center
Data set

Figure 10. Loop closure detection performance of the algorithm on two datasets: the New College
dataset and City Center dataset.

As depicted in Figure 10, compared with the loop closure detection algorithms based
on four CNN models—MobileNet_v3, VGG16, AlexNet, and ResNet18—the proposed
present method has improved recall rates at 100% accuracy. The results show that this
method can effectively improve the loop closure detection effect. Compared to the New
College dataset, this method demonstrated a significant improvement in performance on
the City Center dataset. There are many dynamic environments in the City Center dataset,
indicating that the present method is more suitable for such scenarios.

The block similarity calculation module proposed in the present method is applied to
three CNN models: VGG16, AlexNet, and ResNet18. The experimental results are shown
in Figure 11.
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Figure 11. Loop closure back detection effect applied to three CNN models: VGG16, AlexNet,
and ResNet8: (a) loop closure detection performance on the New College dataset; (b) loop closure
detection performance on the City Center dataset.

In Figure 11, the red dot at k = —10 represents the recall rate at 100% accuracy of
the loop closure detection algorithm based on the CNN model without the application of
the block similarity calculation module. We found that the experimental results show a
similar trend to the experimental results in Figure 9; the VGG16, AlexNet, and ResNet8
CNN models have improved recall rates at 100% accuracy after the application of the block
similarity calculation module. This indicates that the block similarity calculation module
can effectively improve the loop closure detection effect, reflecting the universality of the
block similarity calculation module. It is worth noting that VGG16, due to the long time
needed to extract image descriptors, increases rapidly with the increase in k, resulting in
difficulties in real-time performance.

6. Conclusions

This article presents the use of the MobileNet_v3 neural network model to extract
image descriptors and presents a block similarity calculation module used to reduce the
similarity of error loop closure image pairs. We successfully improved the recall rate of
the visual SLAM loop closure detection method at 100% accuracy, while meeting real-
time requirements. Regarding the New College and City Center datasets, this method
increased the recall rate at 100% accuracy by 8%, 31%, 26%, and 43% and by 34%, 57%, 42%,
and 63%, respectively, compared to four CNN models based on MobileNet_v3, VGG16,
AlexNet, and ResNet18. The three CNN models VGG16, AlexNet, and ResNet18 show
improved recall rates at 100% accuracy after the block similarity calculation module is
applied, demonstrating the method’s universality.

Author Contributions: Conceptualization, Y.H. and J.S.; methodology, B.H. and Z.Z.; software, B.H.
and Z.Z.; validation, Y.H., Y.S. and Y.Y.; formal analysis, Y.S.; investigation, Y.Y.; resources, J.S.;
data curation, J.S.; writing—original draft preparation, B.H.; writing—review and editing, Y.H. and
Z.7.; visualization, Y.S.; supervision, Y.Y.; project administration, Y.H.; funding acquisition, Y.H. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Guangxi Innovation Driven Development Special Fund
Project, grant number AA22068060-6, and the International Scientific and Technological Cooperation
R&D Project in Hainan Province, grant number GHYF2023002.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available on request.



Sensors 2023, 23, 8632 16 of 17

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Durrant-Whyte, H.; Bailey, T. Simultaneous localization and mapping: Part I. IEEE Robot. Autom. Mag. 2006, 13, 99-110. [CrossRef]

2. Taketomi, T.; Uchiyama, H.; Ikeda, S. Visual SLAM algorithms: A survey from 2010 to 2016. IPS] Trans. Comput. Vis. Appl. 2017,
9, 16. [CrossRef]

3. Kim, SK; Kang, S.J.; Choi, Y.J.; Choi, M.H.; Hong, M. Augmented-Reality Survey: From Concept to Application. Ksii Trans.
Internet Inf. Syst. 2017, 11, 982-1004. [CrossRef]

4. Covolan, ].PM.; Sementille, A.C.; Sanches, S.R.R. A mapping of visual SLAM algorithms and their applications in augmented
reality. In Proceedings of the 2020 22nd Symposium on Virtual and Augmented Reality (SVR), Porto de Galinhas, Brazil, 7-10
November 2020; pp. 20-29.

5. Kim, Y.N.; Ko, D.W,; Suh, LH. Visual navigation using place recognition with visual line words. In Proceedings of the 2014 11th
International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Kuala Lumpur, Malaysia, 12-15 November
2014; p. 676.

6. Zhang, X.; Zheng, L.; Tan, Z.; Li, S. Loop Closure Detection Based on Residual Network and Capsule Network for Mobile Robot.
Sensors 2022, 22, 7137. [CrossRef] [PubMed]

7. Wang, J.; Yang, M.Q.; Liang, F.; Feng, K.R.; Zhang, K.; Wang, Q. An Algorithm for Painting Large Objects Based on a Nine-Axis
UR5 Robotic Manipulator. Appl. Sci. 2022, 12, 7219. [CrossRef]

8. Mur-Artal, R.; Tardés, J.D. Fast relocalisation and loop closing in keyframe-based SLAM. In Proceedings of the 2014 IEEE
International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May 2014-7 June 2014; pp. 846-853.

9. Tsintotas, K.A.; Bampis, L.; Gasteratos, A. The Revisiting Problem in Simultaneous Localization and Mapping: A Survey on
Visual Loop Closure Detection. IEEE Trans. Intell. Transp. Syst. 2022, 23, 19929-19953. [CrossRef]

10. Williams, B.; Cummins, M.; Neira, J.; Newman, P; Reid, I.; Tardoés, J. A comparison of loop closing techniques in monocular
SLAM. Robot. Auton. Syst. 2009, 57, 1188-1197. [CrossRef]

11.  Sun,Y,; Liu, M.; Meng, M.Q.-H. Motion removal for reliable RGB-D SLAM in dynamic environments. Robot. Auton. Syst. 2018,
108, 115-128. [CrossRef]

12.  Fan, Y,; Zhang, Q.; Tang, Y.; Liu, S.; Han, H. Blitz-SLAM: A semantic SLAM in dynamic environments. Pattern Recognit. 2022,
121, 108225. [CrossRef]

13.  Sivic, Z. Video Google: A text retrieval approach to object matching in videos. In Proceedings of the Proceedings Ninth IEEE
International Conference on Computer Vision, Nice, France, 13-16 October 2003; Volume 2, pp. 1470-1477.

14. Lowe, D.G. Distinctive Image Feature from Scale-Invariant Key points. Int. J. Comput. Vis. 2004, 60, 91-110. [CrossRef]

15. Rosten, E. Machine Learning for Very High-Speed Corner Detection. ECCV’06, May 2006. Available online: https:
/ /www.researchgate.net/profile/ Edward-Rosten/publication/215458901_Machine_Learning_for_High-Speed_Corner_
Detection/links /0fcfd511134efe25ab000000/ Machine-Learning-for-High-Speed-Corner-Detection.pdf (accessed on 1 June 2022).

16. Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G.R. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the IEEE
International Conference on Computer Vision, ICCV 2011, Barcelona, Spain, 6-13 November 2011.

17.  Zhao, S.; Guan, Q.; Ding, D.; Wei, G.; Shang, C. COVFast-LCD: Combined ORB and VLAD for fast loop closure detection. J. Chin.
Comput. Syst. 2023, 44, 1318-1323.

18. Yang, Z.; Pan, Y,; Huan, R.; Bao, Y. Gridding place recognition for fast loop closure detection on mobile platforms. Electron. Lett.
2019, 55, 931-933. [CrossRef]

19. Emma, L.; Mirvana, H,; Ryan, F;; Vincent, O.B.; Anne, H. Deep Learning and Entropy-Based Texture Features for Color Image
Classification. Entropy 2022, 24, 1577. [CrossRef]

20. Liu, H.;Ma, X;; Yu, Y.; Wang, L.; Hao, L. Application of Deep Learning-Based Object Detection Techniques in Fish Aquaculture: A
Review. J. Mar. Sci. Eng. 2023, 11, 867. [CrossRef]

21. Pan, H.; Zhang, M.; Bai, W.; Li, B.; Wang, H.; Geng, H.; Zhao, X.; Zhang, D.; Li, Y.; Chen, M. An Instance Segmentation Model
Based on Deep Learning for Intelligent Diagnosis of Uterine Myomas in MRI. Diagnostics 2023, 13, 1525. [CrossRef]

22. Guo, S.; Wang, S.; Yang, Z.; Wang, L.; Zhang, H.; Guo, P.; Gao, Y.; Guo, J. A Review of Deep Learning-Based Visual Multi-Object
Tracking Algorithms for Autonomous Driving. Appl. Sci. 2022, 12, 10741. [CrossRef]

23.  Chen, Z.; Lam, O.; Jacobson, A.; Milford, M. Convolutional Neural Network-based Place Recognition. arXiv 2014, arXiv:1411.1509.

24. Gao, X.; Zhang, T. Loop closure detection for visual SLAM systems using deep neural networks. In Proceedings of the 2015 34th
Chinese Control Conference (CCC), Hangzhou, China, 28-30 July 2015; pp. 5851-5856.

25. Merrill, N.; Huang, G. Lightweight Unsupervised Deep Loop Closure. arXiv 2018. [CrossRef]

26. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20-25 June 2005; Volume 1, pp. 886-893.

27. Li, A.; Ruan, X.; Huang, J.; Zhu, X. Loop closure detection algorithm based on convolutional neural network and VLAD. Comput.
Appl. Softw. 2021, 38, 135-142.

28. He, K,; Zhang, X;; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans.

Pattern Anal. Mach. Intell. 2015, 37, 1904-1916. [CrossRef] [PubMed]


https://doi.org/10.1109/MRA.2006.1638022
https://doi.org/10.1186/s41074-017-0027-2
https://doi.org/10.3837/tiis.2017.02.019
https://doi.org/10.3390/s22197137
https://www.ncbi.nlm.nih.gov/pubmed/36236235
https://doi.org/10.3390/app12147219
https://doi.org/10.1109/TITS.2022.3175656
https://doi.org/10.1016/j.robot.2009.06.010
https://doi.org/10.1016/j.robot.2018.07.002
https://doi.org/10.1016/j.patcog.2021.108225
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://www.researchgate.net/profile/Edward-Rosten/publication/215458901_Machine_Learning_for_High-Speed_Corner_Detection/links/0fcfd511134efe25ab000000/Machine-Learning-for-High-Speed-Corner-Detection.pdf
https://www.researchgate.net/profile/Edward-Rosten/publication/215458901_Machine_Learning_for_High-Speed_Corner_Detection/links/0fcfd511134efe25ab000000/Machine-Learning-for-High-Speed-Corner-Detection.pdf
https://www.researchgate.net/profile/Edward-Rosten/publication/215458901_Machine_Learning_for_High-Speed_Corner_Detection/links/0fcfd511134efe25ab000000/Machine-Learning-for-High-Speed-Corner-Detection.pdf
https://doi.org/10.1049/el.2019.1148
https://doi.org/10.3390/E24111577
https://doi.org/10.3390/jmse11040867
https://doi.org/10.3390/diagnostics13091525
https://doi.org/10.3390/app122110741
https://doi.org/10.48550/arXiv.1805.07703
https://doi.org/10.1109/TPAMI.2015.2389824
https://www.ncbi.nlm.nih.gov/pubmed/26353135

Sensors 2023, 23, 8632 17 of 17

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

Zhang, X.; Su, Y.; Zhu, X. Loop closure detection for visual SLAM systems using convolutional neural network. In Proceedings of
the 2017 23rd International Conference on Automation and Computing (ICAC), Huddersfield, UK, 7-8 September 2017; pp. 1-6.
Wang, S.; Lv, X,; Liu, X.; Ye, D. Compressed Holistic ConvNet Representations for Detecting Loop Closures in Dynamic
Environments. IEEE Access 2020, 8, 60552-60574. [CrossRef]

Jegou, H.; Perronnin, F.; Douze, M.; Sanchez, J.; Perez, P.; Schmid, C. Aggregating Local Image Descriptors into Compact Codes.
IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 1704-1716. [CrossRef]

Arandjelovi¢, R.; Gronat, P; Torii, A.; Pajdla, T.; Sivic, ]. NetVLAD: CNN Architecture for Weakly Supervised Place Recognition.
IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 1437-1451. [CrossRef]

Galvez-Lopez, D.; Tardés, ].D. Real-time loop detection with bags of binary words. In Proceedings of the 2011 IEEE/RS]
International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25-30 September 2011; pp. 51-58.

Yu, M.; Zhang, L.; Wang, W.; Huang, H. Loop Closure Detection by Using Global and Local Features with Photometric and
Viewpoint Invariance. IEEE Trans. Image Process. A Publ. IEEE Signal Process. Soc. 2021, 30, 8873-8885. [CrossRef] [PubMed]

Jin, S.; Dai, X.; Meng, Q. Loop closure detection with patch-level local features and visual saliency prediction. Eng. Appl. Artif.
Intell. 2023, 120, 105902. [CrossRef]

Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014. [CrossRef]
Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM
2017, 60, 84-90. [CrossRef]

He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June-7 July 2016. [CrossRef]

Howard, A.; Sandler, M.; Chen, B.; Wang, W.; Chen, L.C.; Tan, M.; Chu, G.; Vasudevan, V.; Zhu, Y; Pang, R.; et al. Searching for
MobileNetV3. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of
Korea, 27 October—2 November 2019; pp. 1314-1324.

Cummins, M.; Newman, P. FAB-MAP: Probabilistic localization and mapping in the space of appearance. Int. J. Robot. Res. 2008,
27, 647-665. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1109/ACCESS.2020.2982228
https://doi.org/10.1109/TPAMI.2011.235
https://doi.org/10.1109/TPAMI.2017.2711011
https://doi.org/10.1109/TIP.2021.3116898
https://www.ncbi.nlm.nih.gov/pubmed/34699356
https://doi.org/10.1016/j.engappai.2023.105902
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1145/3065386
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1177/0278364908090961

	Introduction 
	Method Framework 
	Image Descriptor 
	Image Descriptor Extraction 
	Image Descriptor Dimensionality Reduction 

	Block Similarity Analysis 
	Image Pair Filtering 
	Blocking Similarity 
	Numerical Calculation 

	Results and Discussion 
	Experimental Environment and Datasets 
	Discussion of Experimental Results 

	Conclusions 
	References

