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Abstract: Accurate robot localization and mapping can be improved through the adoption of globally
optimal registration methods, like the Angular Radon Spectrum (ARS). In this paper, we present Cud-
ARS, an efficient variant of the ARS algorithm for 2D registration designed for parallel execution of
the most computationally expensive steps on Nvidia™ Graphics Processing Units (GPUs). Cud-ARS
is able to compute the ARS in parallel blocks, with each associated to a subset of input points. We also
propose a global branch-and-bound method for translation estimation. This novel parallel algorithm
has been tested on multiple datasets. The proposed method is able to speed up the execution
time by two orders of magnitude while obtaining more accurate results in rotation estimation than
state-of-the-art correspondence-based algorithms. Our experiments also assess the potential of this
novel approach in mapping applications, showing the contribution of GPU programming to efficient
solutions of robotic tasks.

Keywords: registration; mapping; parallel processing; GPU

1. Introduction

In recent years, robot localization and mapping research has been focused on globally
optimal registration of point clouds. Registration is the problem of finding the best rigid
transformation that links multiple overlapping measurements acquired from different
viewpoints. This primitive operation is essential in robot localization, motion tracking
systems, and shape reconstruction from partial point clouds. Standard registration methods
such as iterative closest point (ICP) [1] are often referred to as local algorithms, as they rely
on an accurate initial guess, e.g., provided by robot odometry, to find the transformation
that locally minimizes their objective function. Local alignment is usually achieved through
associations between corresponding points in the input point clouds. Point matching is
feasible when point clouds are close, through a raw assessment of their relative transfor-
mation. When a reliable initial estimation is not available, local algorithms may fail to
compute consistent and accurate solutions.

Global registration methods [2–5] compute the aligning pose corresponding to the
global minimum of the objective function. These algorithms are often referred to as
certifiable, as they do not depend (or are less dependent on) an initial guess of the rigid
transformation among the input point clouds, and are robust to a large amount of outliers.
Global registration usually relies either on robust outlier rejection algorithms for detection
of globally consistent correspondences, or on effective global descriptors of point clouds. In
order to guarantee global optimality, global registration generally requires computationally
intensive operations.

The last decade has been characterized by the rapid and continuous development of
graphic cards in terms of performance and application domains. As a matter of fact, the
most advanced graphic cards today can be considered additional processing units; they are
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commonly called Graphic Processing Units (GPUs). As such, global registration methods
that are composed of highly parallelizable operations can greatly benefit from GPU process-
ing. In particular, correspondence-less registration methods like Angular Radon Spectrum
(ARS) [2,3] separately operate on each point cloud. ARS is a descriptor that captures
collinearity among a set of planar points, possibly capturing the simplest and strongest
invariant property to rigid motion. The rotation between two point clouds is accurately
estimated by finding the maximum correlation between their corresponding spectra. The
main limitation of ARS lies in its quadratic complexity, and using GPUs could significantly
speed up their computations operating on independent parts. Mathematical frameworks
built to deal with similar problems using GPUs have already been proposed [6–8], but they
tend to lack in guidance for implementation.

In this paper, we propose Cud-ARS, a novel parallel algorithm for the registration of
planar point clouds using ARS, implemented for execution on Nvidia GPUs through CUDA.
ARS descriptors are represented by Fourier coefficients and depended on each point pair.
The pairwise assessment of coefficients has been decomposed into independent tasks and
assigned to different GPU cores. More specifically, the grid-like structure originates from
splitting data into blocks. Computations are then performed among in-block point pairs by
parallel threads, then by inter-block comparisons, and finally by a follow-up summation of
partial results. In order to limit the computational load on each CUDA thread while also
coping with the limited memory capabilities on each said thread, a matrix-like structure,
adaptive to the size of the problem to be dealt with, has been implemented and is discussed
in this paper. Our self-contained implementation also limits unnecessary dependencies
and improves reusability for other projects and frameworks. Cud-ARS has been integrated
into a full registration pipeline including translation estimation to perform pairwise scan
alignment. Our experiments show a significant reduction in execution time guaranteed
by GPU-based assessments of rotation. Moreover, the mapping experiments on standard
datasets show that the performance of Cud-ARS pairwise registration is comparable with
tools performing state-of-the-art scan-to-map registration. In summary, the contributions
of this paper are the following:

1. Introducing the parallel algorithm Cud-ARS for computation of the Fourier coeffi-
cients of ARS suitable for parallel execution of GPUs.

2. The implementation of Cud-ARS using the Nvidia CUDA library and conducting
experiments comparing performance with state-of-the-art registration methods on
benchmarks.

3. A branch-and-bound (B&B)-based translation estimation method improves accuracy
over previous versions used in ARS, completing the pose estimation pipeline.

This paper is organized as follows: Section 2 presents the related literature. Section 3
illustrates ARS and its application to point cloud registration. Section 4 presents novel
algorithmic contributions, and in Section 5, we discuss our experimental assessment. Finally,
Section 6 presents our final remarks.

2. Related Work

The scientific literature on registration is extensive, covering several application do-
mains [9] and including different formulations for a variety of problems. Despite it being
a problem that has been investigated for over three decades, there is still room for better
generalization and overall improvement in areas that are today considered state-of-the-art
solutions [10]. A general classification criterion divides registration methods for point
clouds into correspondence-based and correspondence-less methods. Correspondence-based
methods rely on the estimation of corresponding points between two point clouds to be
aligned. As point association is usually achieved through a rough initial assessment of the
transformation between the point clouds, correspondence-based algorithms usually achieve
locally optimal registration. Iterative Closest Point (ICP) [1,11] is perhaps the most popular
registration algorithm that iteratively refines the transformation by matching each point
of the source point set with its closest point in the target set. Notable variants use other
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cost functions like point-to-plane and plane-to-plane distance [12]. Several approaches
have been proposed to address uncertainty in correspondences. The Normal Distributions
Transform (NDT) [13,14] performs a soft association based on a probability distribution
instead of points. Stein-ICP [15] explicitly evaluates transform uncertainty using Stein
variational gradient descent to achieve consistent associations. Recently, Kolpakov and
Werman [16] propose an algorithm to assess the initial guess of ICP’s explicit reasoning on
point covariances.

Some registration techniques have been proposed to specifically fit widely used sensors
like LIDARs. A recent work from Jaimez et al. [17] deals with odometry oriented methods
for registration of planar LIDAR data using range flow constraint equations. LIDAR
odometry and mapping (LOAM) [18] and its successive variants [19,20] estimate the
transformation through detection and association of sparse features like edges and planar
patches in point clouds. Customized systems like LIO [21] also integrate other sensory
data, such as inertial measurements, in order to improve accuracy.

Correspondence-less and globally optimal methods are less common in the literature.
Strong outlier rejection algorithms can make registration less dependent on initial guess or
on correspondences. Coherence point drift (CPD) [22] and Vector Field Consensus (VFC)
exploit the relative position of points belonging to the same cloud, with the goal of filtering
outlier correspondences. TEASER [4] is able to perform registration through a truncated
least squares formulation. It also presents sophisticated outlier rejection techniques for
dealing with noisy input data. Although they are robust to a high percentage of outliers,
these approaches rely on an initial set of correspondences; hence, they cannot be considered
fully global methods. In contrast, GO-ICP [5] is the clearest example of globally optimal
registration using the branch-and-bound method. Although it exploits approximations
such as the Euclidean distance transform for closest point computation, this algorithm is
computationally intensive and practically unsuitable for online estimation. Another way
of addressing correspondence-less registration is by using strong global features in point
clouds. The Hough Spectrum (HS) [23,24] and ARS [2,3] are collinearity descriptors for
planar point set that can be used in rotation estimation, decoupling it from translation. ARS
has the advantages to overcome the discretization issues of HS and to accurately evaluate
rotation. Zhang et al. [25] have recently proposed a formulation based on uncertain
landmark data. The common element between [25] and ARS stands in basing for the
SLAM formulation on working with uncertain data, which should naturally help them
in performing better on real sensory data. Other estimation frameworks that are based
on the factor graph formulation [26] move in a similar direction. A recent example of this,
encompassing an even broader span of applications, is WOLF by Solà et al. [27].

Even if the usage of SLAM methods in real-time applications has been a long-time
concern [28,29], the exploitation of GPUs to speed up perception and sensor processing [30]
is less frequent in the literature. It is instead more common to see it paired with computer
vision primitives or straight-up deep learning methods [31–33]. Milioto et al. have proposed
Bonnet [34] and RangeNet++ [35] for performing segmentation based on deep learning.
Collet et al. [36,37] propose a series of works leading to MOPED, which is a framework for
estimating the pose of objects based on recognizing feature keypoints. A typical application
for some of these frameworks is robotic manipulation [38]. Furthermore, Titan [39] is a
library comprising parallel algorithms to handle geometry in soft-body and multi-robot
physics simulations. This approach to Nvidia CUDA parallel processing closely resembles
the proposed operational decomposition of ARS. GPU-related literature also includes a
class of works that focuses on high-level formal analysis of computational optimization
and parallelization. Ha et al. [40] present an optimal parallel scan method, showing
experiments on throughput and MIPS on a data-intensive simulation of a prefix sum
problem. The goal of this paper is to help fill the gap between parallelization analysis of
benchmark problems and deep learning-related applications, specifically in the field of
robotic registration and mapping.
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3. Angular Radon Spectrum for Registration
3.1. Angular Radon Spectrum of a Gaussian Mixture Model

ARS is a function suitable for the estimation of rotation between two point clouds. It
has been introduced in [2,3]. Input point clouds must be represented as a Gaussian Mixture
Model (GMM). Although other solutions are possible, a straightforward choice to convert
a point cloud into a GMM is to associate each point to a Gaussian kernel centered on the
point, with a covariance matrix representing the uncertainty about the point position. We
let P = {µi}i=1,...,np with µi ∈ R2 be the estimated position vectors of the points. It is
convenient to define the density function f : R2 → R>0 that represents the point density in
the plane and is proportional to the probability density function (PDF) of finding a point.
Then, the GMM density function is defined as

f (r) =
np

∑
i=1

wi fi(r) =
np

∑
i=1

wi n(r− µi, Σi), (1)

where the sum of positive weights wi is equal to one, and symbol n(µi, Σi) is used for a
Gaussian kernel of mean value µi and covariance matrix Σi. The Radon Transform (RT) [41]
of f (r) enables measuring the alignment of the point set with a given line Fq represented
by parameters q = [θ, ρ]>. The RT is defined as

R[ f ](q) =
∫
Fq

f (r) dr =
np

∑
i=1

wi

∫
Fq

n(r− µi, Σi) dr . (2)

In our case, the integral of line Fq can be solved through the parametric equation of
points r(t) lying on line

r(t) = t1 u1 + t2 u2 = Ut, (3)

where t1 = ρ is a fixed constant, t2 is the varying parameter associated to the points
on the line, u1 = û(θ) = [cos θ, sin θ]> is the unitary vector orthogonal to the line, and
u2 = û(θ + π/2) = [− sin θ, cos θ]> corresponds to the line direction. Since r is a linear
transformation, the integral of each Gaussian kernel has an elegant closed-form expression

R[ fi](θ, ρ) = n
(

ρ− µ̃i,1, σ̃2
i,1

)
, (4)

where µ̃i,1 = u>1 µi and σ̃2
i,1 = u>1 Σiu1.

The ARS is a function applied to RT to detect patterns of points collinear to a given
direction measured by θ. Given a superadditive concentration function κ(·), the ARS is
defined as

S [ f ](θ) =
∫ +∞

−∞
κ(R[ f ](θ, ρ)) dρ. (5)

A standard concentration function is κ(x) = x2, which is implicitly used in the
remaining. Thus, the square of a sum of Gaussian kernels κ(R[ f ]) in Equation (1) consists
of double products of Gaussians that can be integrated. The equation of the ARS of a GMM
has the form

S [ f ](θ) =
np

∑
i=1

np

∑
j=1

wi wj ψij(θ) . (6)

The ARS kernel functions ψij(θ) are equal to the Gaussian-like function

ψij(θ) = n
(

u>1 (θ)(µi−µj), u>1 (θ)(Σi+Σj)u1(θ)
)

. (7)
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The ARS S [ f ](θ) is π-periodic and can be expanded into Fourier series. The Fourier
series of ARS kernel ψij is

ψij(θ) = a(ij)0 +
+∞

∑
k=1

(
a(ij)k cos(2kθ) + b(ij)k sin(2kθ)

)
. (8)

In the isotropic case, the Fourier coefficients a(ij)k and b(ij)k have closed-form equations [2]

a(ij)k = 2 Ik(λij) e−λij (−1)k cos(2kθij), (9)

b(ij)k = 2 Ik(λij) e−λij (−1)k sin(2kθij), (10)

where Ik() is the modified Bessel function of the first kind, λij = ‖µi − µj‖2/(8σ2) and
θij = ∠(µj − µi). In the anisotropic case, the coefficients are numerically evaluated from
samples. The Fourier expansion allows compact representation of the whole ARS in the
form of a weighted sum of Fourier coefficients as the one in Equation (6). The advantages
of this formulation emerge in the rotation estimation method presented in Section 3.2.

The main property of ARS lies in its invariance to translation t and angular shift. If
translation t and rotation R with angle δ are applied to a point set represented by density
function f (r), then the spectrum of the transformed point set satisfies the equation

S [ f (R(δ) r + t)](θ) = S [ f (r)](θ + δ) . (11)

Thus, the spectrum of a transformed point cloud is a shifted copy of the spectrum
of the original point cloud, where the shift corresponds to the rotation angle δ. Rotation
can be estimated using a proper metric and procedure for comparing spectra. In the next
section, we show how this important property can be exploited to achieve this goal.

3.2. Registration Algorithm

ARS can be effectively applied to the estimation of the rigid transformation between
two point clouds that represent the same scene from different viewpoints. Rotation is
generally the more difficult part of the registration problem, and ARS translation-invariance
allows decoupling of rotation estimation from translation estimation. As previously stated,
when there is a rotation with angle δ between a source and a target point set represented
by density functions, respectively, fS(r) and fT(r), spectrum S [ fS] is the shifted copy
of S [ fT ]. The shift angle can be computed by searching the maximum of the following
correlation function,

C[ fS, fT ](δ) =
1
π

∫ π

0
S [ fS](θ + δ) S [ fT ](θ) dθ ., (12)

between the source and destination spectra. Since each ARS can be represented as a Fourier
series, the correlation function is elegantly expressed in the form of convolution. The global
maximum δ∗ of C[ fS, fT ] can be efficiently found through a branch-and-bound procedure
on the angular domain. More details can be found in [2,3]. It can be observed that, since
ARS is π-periodic, the real rotation angle is either δ or δ + π. The assessment of translation
enables disambiguation between the two candidate values of rotation.

To complete global registration, a branch-and-bound procedure inspired by [42] has
been chosen. The objective function to be maximized is the number of overlapping point
pairs between destination and the translated source point clouds. A point pair is overlap-
ping if the distance in it is less than tolerance ε. Given a closed box B ⊂ R2, the lower
and upper bounds of the number of matching pairs are estimated. The lower bound is
computed by counting the number of source points with a corresponding destination point
belonging to the box B centered on the source point. The upper bound excludes from this
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counting the points clearly without matching. The translation is estimated as the center of
the optimal box Bopt which has the largest number of inliers.

4. Cud-ARS
4.1. Parallelization Setup and Enhancement

The ARS computational complexity is dominated by the evaluation of a spectrum
kernel for each possible pair of points, as it is clear from Equation (6). Since ψij(θ) = ψji(θ),
the final spectrum does not depend on the processing order of the points with indices i and
j. Conventionally, the point with an index (say, i) in the external loop is called source point,
and the one with an index (say, j) in the nested loop is the destination point. The simple
idea behind the GPU enhancement of isotropic ARS is to execute the largest number of
computations in parallel.

In order to maximize computational throughput across the GPU kernels and to dis-
tribute computation in an efficient manner by doing so, a virtual grid-like structure to
compute ARS spectra has been introduced. The goal has been to keep the number of
threads a power of 2, starting from a minimum of 32. To preserve the square shape of
the grid, its last cells still perform computation on padding data as part of ARS spectra
computation pipeline, even though the padding data are not related to real pairs of points.

Parameter max_chunk_size corresponds to the maximum number of points taken as
input into one Cud-ARS processing CUDA grid. If the size of the input source or destination
data is greater than max_chunk_size, the Cud-ARS coefficient update is iterated until all
the source-to-destination point comparisons are processed. This step is necessary as the
internal memory of modern GPUs is rather large, but still finite. An additional check
is performed to avoid Cud-ARS coefficient computation steps with small data chunks.
When chunks of data slightly surpass the maximum size allowed, but they still fit the GPU
memory, they are processed in one step to avoid the additional iteration that would slow
down the whole pipeline (especially as less CPU-GPU transfers with high throughput are
more efficient than multiple transfers with less data).

Cud-ARS is implemented as a three-step procedure. First, an indexed table of ARS
coefficients is computed. The tidth element of this table corresponds to the evaluation of
ARS on points with indices i, j, with i, j computed as explained in the getI J f romTID()
method presented in Algorithm 1.

Algorithm 1 Obtain I and J from TID
nId← n− 1; //indices vary between 0 and n−1
tid_tmp← tid
while tid_tmp >= 0 do

tid_tmp −= (nId− i);
i← i + 1;

end while
return i← i− 1;
nId← n− 1; //indices vary between 0 and n−1
tid_tmp← tid
while i > 0 do

tid_tmp −= (nId− i);
i← i− 1;

end while
return j← tid + 1;

The tid indexing has been introduced in order to avoid excessive memory usage for
storing useless computation outputs. As a matter of fact, the ARS coefficient matrix stores
only the evaluation of ARS between points corresponding to non-null elements of the
strictly triangular cost/matching matrix of the two datasets. Outputs i and j of Algorithm 1
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correspond to the couple of point indices from source and, respectively, destination sets to
be processed.

The most significant and computationally expensive step of this first part of the
algorithm is the ARS kernel computation, which is on its own composed of two steps: an
evaluation of the PNEBI (Product of Negative Exponential and Bessel functions on the first
kind) which is defined as

PNEBI(k, x) = 2.0 ∗ exp(−x) ∗ besseli(k, x), (13)

where besseli(k, x) is the modified Bessel function of the first kind of order k. The evaluation
of besseli(k, x) is based on recurrence. Hence, it is convenient to evaluate all coefficients for
k = 0, . . . , arsOrder and to store them into vector pnebis. Said vector is used to update the
coefficient matrix, as illustrated in the discussion of Algorithm 2.

Algorithm 2 ARS Coefficient Downward Update
coeffs = coeffsMat = matrix.empty()

f actor ← weight = 1.0
(numPts2)∗

√
(4∗π∗sigma2)

rowIdx ← tid = TODO

f irstIdx = rowIdx ∗ ncols + 0
coeffs[ f irstIdx] += 0.5 ∗ f actor ∗ pnebis0

delta← meansj −meansi
phi← atan2(delta.y, delta.x)
cth2← cos(2.0 ∗ phi)
sth2← sin(2.0 ∗ phi)
sgn← −1.0
cth← cth2
sth← sth2

for k = 1 : f ourierOrder do
evenIdx ← rowIdx ∗ ncols + 2k
oddIdx ← rowIdx ∗ ncols + (2k + 1)
coeffs[evenIdx] += f actor ∗ pnebis[k] ∗ sgn ∗ cth
coeffs[oddIdx] += f actor ∗ pnebis[k] ∗ sgn ∗ sth

sgn← −sgn
ctmp← cth2 ∗ cth− sth2 ∗ sth
stmp← sth2 ∗ cth + cth2 ∗ sth
cth← ctmp
sth← stmp

end for

It can be noted that a large part of the computational load is due to the estimation
of such 20÷ 30-sized vector for each pair of points to be evaluated with ARS. The afore-
mentioned Algorithm 2 runs on the GPU in a for-stride loop guarded by the following
instructions:

index = blockIdx.x ∗ blockDim.x + threadIdx.x

stride = blockDim.x ∗ gridDim.x

tot = gridDim.x ∗ blockDim.x

f or(tid = index; tid < tot; tid += stride)

, (14)
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where index runs through a single block, while stride is supposedly the total number of
threads in the grid. The goal is to fit as many coefficient computations as possible into one
single grid.

Then, ARS computation for rotation estimation proceeds by summing the coefficients
across each Fourier order, i.e., summing them along each (virtual) column of the coefficient
matrix. However, due to the large number of rows to be summed for each column, it has
appeared more profitable to subdivide this summing procedure into two steps: first, a
partial column-wise sum of the coefficient matrix entries in chunks of consecutive rows
(each having a fixed number of rows part_sum_numrows) is been computed; then, the sum
of these partial sums is computed (still column-wise).

One last important consideration to be made is on how to approach large input datasets.
The considerable amount of data needed for each thread of the kernels’ computation quickly
fills the central memory of the GPUs, which for general purpose personal PCs rarely goes
over 25 GB. Going even further into the exploitation of the separability of ARS coefficient
parallel computation, the natural way for presented Cud-ARS to solve problems with input
point sets with a size over ∼5000 points is subdivision of the datasets in chunks, and then
the processing of each of the chunks separately. The 4096 value reported in Table 1 has
been chosen as the appropriate maximum chunk size by empirical testing. The value of
256 representing the number of threads in each block has been selected in a similar fashion.
Since kernel parallelization parameters vary depending on the input dataset chunk size,
when the number of input points is greater than chunk_max_size, an iterative procedure
resembling the subdivision into partial sums and total sums explained for computing ARS
coefficients of each Fourier order is deployed. First, the parallelization parameters are
updated according to input data chunk size. Then, the computation of ARS coefficients
is summed for each combination of data chunks among source and destination point sets.
Finally, it has to be noted that even during this process, the strictly triangular indexing
for the ARS coefficient matrices is kept even when the need arises to evaluate ARS across
multiple different chunk combinations, coming from source and destination point sets.

Table 1. Parameter configuration.

Description Symbol Value

ARS Fourier order n f 32
ARS stdev σmin 1.0 (mpeg7), 0.05 (maps)
ARS tolerance on B&B ∆θ 0.5◦

Coeff Matrix Rows nrows num_pts∗(num_pts−1)
2

Coeff Matrix Cols ncols 2n f + 2
Prlz Grid Size grid_sz nrows
Number of Blocks blks b gridTotalSize

pp.blockSz c+ 1
Number of Threads threads 256
Coeff Matrix Tot Size c f f s_mat_tot_sz grid_sz ∗ ncols
Max Chunk Size max_chunk_size 4096

4.2. Full Registration and Mapping

While the precise estimation of rotation between two point clouds is an important
task/primitive for plenty of robotics applications, it is even more important to integrate it
in a more complete pipeline.

The generally accurate rotation estimation of ARS is used as the initial guess for
the full pose estimation, paired with the translation estimation procedure presented in
Section 3.2. The registration algorithm has been used to build maps by accumulating point
clouds aligned with scan-to-scan matching. This solution, although simple, allows the
appreciation of the effectiveness of the proposed pose estimation algorithm. Results are
discussed in the next section.
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5. Experiments

In order to evaluate Cud-ARS, multiple and diverse sets of experiments have been
conducted. The first goal has been to assess whether Cud-ARS is able to obtain the
same accuracy performances as ARS and other state-of-the-art methods on commonly
used datasets (see Section 5.1). Second, the proposed methods for scan-matching based
registration have been tested on real-world robotic simulations, assessing their ability in
reconstructing the trajectory and their usability in building an occupancy grid map of the
robot’s movements (see Section 5.2). An implementation of Cud-ARS is available in a
public repository (available online at: https://github.com/ErnestF22/cudars/, accessed
on 16 October 2023).

5.1. Cud-ARS Rotation Estimation

Cud-ARS evaluation has been performed on three datasets (namely mpeg7, map and
scan) used also in previous works. These datasets contain a good range of the characteristics
that can be found in robotic tasks with heterogeneous sensors and setup.

The Mpeg7 datasets [43] are composed of images of more than 1000 different shapes
that are sampled as point clouds. Three major transformations have been applied for testing
the robustness of Cud-ARS:

• Noise tests. This transformation adds Gaussian noise with a given standard deviation
σ to the points coordinates. The value of σ is varied in the interval of 0÷ 50, with the
maximum dimension of a point set varying from 300 to 900.

• Occlusion tests. An occluded version of a point set is constructed by removing all
points lying inside a randomly generated circle. The center of the circle is a randomly
chosen point of the dataset, while the radius is proportional to the size of the point set.
In particular, if the points are contained in a bounding box of size bx× by, the radius
is equal to β

√
bxby, where 0 ≤ β ≤ 1 is the occlusion rate. Occlusion rate β is varied

up to 50%.
• Rand tests. This transformation adds γ nin random points to an input point set of nin

points, where γ is the random point rate. The random points are uniformly distributed
on a circle centered on the point set’s mean point, and with a radius double the size of
bounding box. The maximum value of the random point rate γ used in the tests is 300,
i.e., random points are at most three times the number of shape points.

The different transformations applied to assess the robustness of the rotation estima-
tion are further explained in [2]. The map dataset is composed of occupancy grid maps
obtained using the Cartographer [44] ROS tool on laser scans acquired at the University
of Parma (available online: https://www.ce.unipr.it/~rizzini/papers/datasets/VLP-16
_Unipr_DepartmentHall_dataset_20171102/, accessed on 16 October 2023), and on a public
Deutsche Museum dataset (available online: https://google-cartographer-ros.readthedocs.
io/en/latest/data.html, accessed on 16 October 2023). The scan dataset is made of laser
scans traditionally used within the SLAM community, named after the place of acquisi-
tion: fr-log, fr079, intel-lab and mit-csail (URL to the scan dataset can be found in the Data
Availability section). Each of these datasets contains about 5000 scans.

As expected, experiments on all these common robotic datasets show the same results
for pose estimation as isotropic ARS, but with a substantial improvement in terms of speed.
In these tests, Cud-ARS is compared against two previous versions of ARS (CPU Isotropic
and Anisoptropic), and the Hough Spectrum [23] from Censi et al.

Results are shown in Figures 1–3. The speed-up of the newly introduced Cud-ARS is
easily noticeable across all experiments. The same can be said for the limited growth in
execution time when other algorithms heavily slow down instead. It can be observed that
the one algorithm performing similarly to Cud-ARS is Hough Spectrum (HS). While HS
slightly outperforms Cud-ARS on some tests, we can still see that their speed is always very
similar, and that they are constantly much faster than their counterparts. Cud-ARS achieves
the same accuracy and precision as the original Isotropic ARS. This happens because,
despite performing most of the computation in parallel on the GPU, Cud-ARS computes

https://github.com/ErnestF22/cudars/
https://www.ce.unipr.it/~rizzini/papers/datasets/VLP-16_Unipr_DepartmentHall_dataset_20171102/
https://www.ce.unipr.it/~rizzini/papers/datasets/VLP-16_Unipr_DepartmentHall_dataset_20171102/
https://google-cartographer-ros.readthedocs.io/en/latest/data.html
https://google-cartographer-ros.readthedocs.io/en/latest/data.html
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the same exact spectrum values in a more efficient way. Furthermore, the variance in terms
of mean execution time is much higher for previous versions of ARS, which means that the
newly introduced Cud-ARS can see a great increase in the number of potential applications.
As a matter of fact, its performance is reasonably constant when dealing with diverse types
of datasets (for example, in terms of the number of input points) whose elaboration may
have previously required an excessive amount of time for online processing.
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Figure 1. MPEG7 dataset execution time results.
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5.2. Registration and Mapping

In general, ARS registration has been able to keep track of the trajectories, even if
working more similarly to a scan matcher rather than a classic registration method. To attest
this, the proposed registration pipeline has been tested using a dataset acquired by a Pioneer
3DX robot in the main hallway of the Department of Engineering and Architecture at the
University of Parma, which consists of a more than 100 m long corridor with branches and
tables. The measurements included in the dataset are the robot odometry, the laser scans
collected by Sick LMS100, and the point clouds collected by multilayer LIDAR Velodyne
VLP16. In particular, we use two sequences called uniprdia_0 and uniprdia_1.

The proposed ARS registration algorithm has been compared with Cartographer [44]
and Hector SLAM (briefly Hector) [45]. At each iteration, the estimation given by ARS is
based only on the alignment of the current laser scan with the previous one, without any
initial guess. Conversely, Hector and Cartographer are full mapping systems that align
and merge each new scan with the current map. Moreover, Hector uses the initial guess
provided by the robot odometry and Cartographer also integrates the 3D measurements
from the LIDAR. The goal of this tests is to display the robustness of ARS estimation, albeit
based on scan-to-scan comparison.

Figures 4 and 5 display the occupancy grid maps, as well as the estimated trajectories
obtained with the three methods. The occupancy grid maps are obtained through online
collection and merging of the aligned laser scans using Octomap [46], without removing
inconsistencies, for a fair comparison of the three approaches. Even though it uses less
data, ARS is able to estimate locally accurate trajectories. As it can be seen, though, in
dataset uniprdia_0, after the robot performs a U-turn, the algorithm loses track of the real
orientation. The loss in orientation might be due to a non sufficient rate of consecutive scan
matching during the turn, or, even more trivially, to a simple badly acquired scan. More
accurate results have been obtained on dataset uniprdia_1, where our method has been able
to keep track of a more complex trajectory. It is well known that the absence of any kind
of memory of previous states and maps while performing registration can lead to effects
like this. However, these tests still show the stability of ARS’ scan-to-scan rotation and
translation estimation, even if the need for adding a more complex mapping pipeline to the
ARS project still appears necessary.

Table 2 reports the Average Translational Error (ATE) and Average Rotational Er-
ror (ARE) for Hector and ARS with respect to the trajectory of Cartographer (used as
groundtruth) in the two sequences. As expected, ARS errors are larger, but significantly
limited for a scan matching algorithm.



Sensors 2023, 23, 8628 12 of 16

(a) Cartographer (b) ARS

(c) Hector

-50

-40

-30

-20

-10

 0

 10

 20

 30

-120 -100 -80 -60 -40 -20  0  20  40

[m
]

[m]

ARS
Hector

Cartographer

(d) Trajectories
Figure 4. Occupancy grid maps and estimated trajectories of dataset uniprdia_0 obtained using
Cartographer, Hector SLAM and ARS-based registration. The occupancy grid maps are computed
using Octomap that overlaps online raw laser scan data. Error propagation after the U-turn is visible.
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Figure 5. Occupancy grid maps and estimated trajectories of dataset uniprdia_1 obtained using
Cartographer, Hector SLAM and ARS-based registration. The occupancy grid maps are computed
using Octomap that overlaps online raw laser scan data. Here, a more complex trajectory is kept
track of with limited error.
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Table 2. Average Translational Error (ATE) and Average Rotational Error (ARE) obtained by Hector
and ARS on the given sequences of datasets uniprdia_0 and uniprdia_1.

Dataset
Length Hector ARS

(m) ATE (%) ARE (10−2◦ /m) ATE (%) ARE (10−2◦ /m)

uniprdia_0 262.28 3.87 7.18 19.78 31.66
uniprdia_1 180.34 3.14 6.66 11.06 32.58

Another set of experiments has been conducted on the scan dataset. The goal of these
experiments has been the one of assessing the ability to correctly estimate rigid transforma-
tions between subsequent scans in each dataset. Pose estimation tests have been separated
into rotation and translation estimation, respectively. For rotation, the results obtained
with the six methods are compared against the ground truth information contained in the
datasets, as explained in [3]. Translation has been estimated after rotating the point clouds
by an angle estimated through Isotropic ARS. The results are reported in Figure 6. ARS
methods achieve an error on par with or lower than the other rotation estimation methods,
while just a bit over the 1 cm scan resolution parameter when estimating translations. It
has to be noted that several failed estimations are due to non-overlapping scans.
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Figure 6. Registration accuracy in estimation of rotation (top) and of translation (bottom) on scan
datasets fr079, fr-clinic, intel-lab and mit-csail (from left to right). For each set of tests, negative (failed)
estimation percentage, average rotation error, standard deviation and translation mean error ((◦) and
(m), respectively) are reported.



Sensors 2023, 23, 8628 14 of 16

5.3. Discussion

The rotation estimation results presented in Sections 5.1 and 5.2 show that the proposed
method is constantly able to estimate rotation between pairs of point clouds with a < 1 [deg]
accuracy. These results have been verified on multiple standard datasets, comprising
images, occupancy grid maps, and planar laser scans. Cud-ARS achieves a speed up in
the execution time of up to two orders of magnitude (i.e., up to 100×), rendering it at least
on par with the grid-based HS in most tests. The scan-based mapping tests also assess the
potential application of the proposed method to mapping tasks, even if one case shows that
the incomplete representation provided by a pair of scans may lead the algorithm to losing
track of the real robot orientation. However, this set of experiments has been designed to
show the adequacy of the parallel rotation estimation and of the B&B-based translation
algorithm as building blocks of a real-world mapping system.

6. Conclusions

This work has presented Cud-ARS, an algorithm able to perform fast and globally
optimal registration on 2D point clouds. Cud-ARS is designed as a parallel algorithm for
efficient computation of the Radon Spectrum. The original ARS has been reformulated in
order to efficiently run on Nvidia GPUs. The ARS-based pipeline has been improved in its
capability to perform full registration due to a B&B-based translation estimation method.
Experiments conducted to compare and evaluate the presented method against state-of-
the-art algorithms show the large improvements in computational speed of Cud-ARS, as
well as the high accuracy of the method. The code is available on a public repository.
The registration accuracy has been tested against more complex state-of-the-art mapping
frameworks, and despite its current lack in place recognition capabilities, shows good
potential even in real-world applications. Future work will include a more stable mapping
pipeline, with online updates that will be performed on the GPU, in order to exploit the
computational advantages even further.
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