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Abstract: In the context of Kalman filters, the predicted error covariance matrix Pk+1 and mea-
surement noise covariance matrix R are used to represent the uncertainty of state variables and
measurement noise, respectively. However, in real-world situations, these matrices may vary with
time due to measurement faults. To address this issue in CubeSat attitude estimation, an adaptive
extended Kalman filter has been proposed that can dynamically estimate the predicted error covari-
ance matrix and measurement noise covariance matrix using an expectation-maximization approach.
Simulation experiments have shown that this algorithm outperforms existing methods in terms of
attitude estimation accuracy, particularly in sunlit and shadowed phases of the orbit, with the same
filtering parameters and initial conditions.

Keywords: attitude estimation; expectation maximization; cubesat; extended Kalman filtering;
attitude kinematics

1. Introduction

Cube satellites (CubeSats) are being developed because they are capable of carry-
ing out missions such as Earth observation, astronomical physics, etc., in place of large
satellites [1,2]. Additionally, CubeSats, which are predominant in low Earth orbit (LEO),
have been considered to be key enablers in global coverage and connectivity [3]. Further-
more, they use commercial off the shelf (COTS) components, which reduces development
and production costs. A CubeSat is a standard cubic satellite with a side of 10 cm and a
mass of approximately 1 kg. Large CubeSats can be built using several cubic units, for
instance, two-, three- and six-unit CubeSats. CubeSats have increased access to space by
providing low launch cost since they are a carried as secondary payloads in the launch
vehicle. Although they are relatively cheap to produce and launch, they have limitations in
size, weight, and power (SWaP), limiting the size and performance of the subsystems [4].

The attitude determination and control system (ADCS) is one of the satellite sub-
systems, and its key function is centered around steering the spacecraft to its intended
orientation. The ADCS can further be divided into two subsystems: attitude determination
and attitude control subsystems. The former uses sensors to compute the rotation of a
rigid body about its center of mass (attitude), while the latter uses actuators to reorient
the rigid body to the desired rotation. The desired orientation could be nadir pointing to
help ground stations to telecommand or sun pointing to maximize power generation. It
is evident in Figure 1 that the attitude determination system (ADS) serves as a reference
for control.
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Figure 1. Attitude determination and control system.

The ADS sensors are broadly categorized into reference and inertial sensors. The
reference sensors provide directional measurements of the satellite regarding another
celestial object in space, for instance, horizon sensors, sun sensors, etc. [4]. Inertial sensors
are used to determine the rate of attitude change of an object about an inertial frame
of reference [5]. These sensors typically include gyroscopes, which are used to measure
angular velocity. Since the ADS uses COTS components, the sensors are usually categorized
by high noise levels, which affect the systems’ accuracy. The accuracy of CubeSat attitude
estimation can also be influenced by the accumulated attitude error over time, which is
caused by drifts of the inertial sensors used.

The attitude determination or estimation algorithms are used to process sensor mea-
surements to compute the attitude. The computed attitude can take several parameteri-
zations; for instance, it may be described using Euler angles, quaternions, axis angle or
directional cosine matrix (DCM) [6–8]. However, minimal parameterizations such as Euler
angles, Rodriguez parameters and modified Rodriguez parameters (MRPs) are frequently
avoided in filter designs for global attitude because they can fall victim to singularities,
but they are commonly used to define local error attitudes [9]. The most popular attitude
parameterization technique is the quaternion since it encounters no singularity problem.

The attitude determination algorithms or single frame methods use measurement vec-
tors provided by reference sensors to calculate an object’s orientation instantaneously. These
deterministic algorithms include triaxial attitude determination (TRIAD), Davenport’s
q method, quaternion estimator (QUEST) and single value decomposition (SVD) [10,11].
These deterministic methods have been well defined in [12]; therefore, we will not go into
detail here. Attitude estimation algorithms make use of vector measurements, inertial
measurements and previous attitude information to provide the current optimal attitude
estimate. The estimation process can be divided into filtering of sensor measurements
and computation of attitude from sensor observations [13]. As stated in [13,14], the filter-
ing process can be accomplished through various methods, such as particle filtering and
derivatives of the Kalman filter.

It is common to couple a magnetometer and a sun sensor to measure attitude in
small satellites such as CubeSat because each sensor cannot provide three-axis attitude
knowledge independently [15–19]. When one vector is available, the satellite is free to
rotate about that vector; thus, at least two vectors are used [15]. When the satellite is in
orbit, it passes through regions where the sunlight is blocked by the Earth, referred to as
the eclipse phase. For low Earth orbit satellites, they spend about 35 min of their orbital
time in this phase [20]. During this region, only one vector is available for computing the
satellite’s attitude, resulting in high attitude error. The high attitude error affects attitude
control accuracy, and this may result in loss of communication during overpasses. It is
possible to use additional auxiliary sensors during this phase, but due to the CubeSat’s
limited mass and volume, only minimal components are used.

In an attempt to make the attitude estimation process accurate during both the sun and
eclipse phases, several methods have been employed. The authors in [21] propose the use
of magnetic field derivatives as the second vector in the QUEST-aided multiplicative EKF
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architecture to increase the accuracy of attitude estimation during the eclipse phase. Using
only magnetometer measurements, the proposed method can estimate rough attitude and
angular rate even during eclipse phases; therefore, it can also be used in case of gyroscope
failure. In [22], it was found that the SVD-aided EKF outperformed the traditional EKF
during the eclipse phase. This improved performance was due to the capability of the
SVD-aided EKF to adapt the measurement error covariance matrix (R) when the ADS lost
sensor measurements. During the eclipse phase, when the satellite was in shadow and the
reference sensors might not have been providing reliable measurements, the SVD-aided
EKF utilized an adaptation rule to update the R matrix. This adaptation allowed the filter to
effectively account for the loss of sensor measurements and to adjust the covariance matrix
accordingly, leading to improved attitude estimation accuracy. This adaptive behavior of the
SVD-aided EKF during the eclipse phase was found to be a significant advantage over the
traditional EKF, which did not incorporate such an adaptation. As a result, the SVD-aided
EKF demonstrated superior performance in terms of attitude estimation accuracy during
this challenging phase of the satellite’s orbit, as shown in the research findings by [22]. In
contrast, the research revealed that the SVD-aided EKF may exhibit poor performance over
a longer period (e.g., over 1000 s) compared to the traditional EKF, particularly during
extended eclipse phases. For instance, in the case of low Earth orbit (LEO) CubeSats, the
eclipse phase typically lasts for approximately 35 min (2100 s), as shown in [20]. As a result,
the SVD-aided EKF may not be well suited for attitude estimation during such prolonged
eclipse phases. Another paper [23] proposes a prediction approach for estimating satellite
attitude during the eclipse phase and an adaptive scheme that utilizes the SVD-aided
EKF to determine the sun phase. However, the study identified that the accuracy of the
prediction algorithm was compromised due to the prolonged duration of the eclipse period.

The SVD-aided EKF was developed as an attempt to enhance the performance of the
traditional EKF by incorporating measurement noise covariance matrix adaptation. How-
ever, it has been observed that the SVD-aided EKF may face limitations in prolonged eclipse
phases. In response, further research has been conducted to develop improved approaches
that can make the EKF more adaptable to anomalies such as measurement faults during
extended eclipse periods. In [24], the authors present a technique for computing satellite
attitude estimation using an EKF with singular value decomposition (SVD) assistance. The
algorithm also incorporates simultaneous adjustments of the process and measurement
covariance utilizing data obtained from magnetometers and sun sensors. When the process
noise increases or the spacecraft is in eclipse, SVD-aided adaptive EKF performs better
than SVD-aided EKF. The authors in [25] propose a hierarchical and efficient framework
for satellite attitude determination that aims to compensate for observation errors in raw
attitude data. It includes a simplified adaptive Kalman filtering module, a neural-network-
based system error compensation module, and a weighted attitude smoothing module. The
performance of the proposed framework, trained with full matrix elements, was found to
be comparable to the optimal accuracy when compared with conventional algorithms. An-
other study in [26] introduces a novel algorithm called adaptive iterated extended Kalman
filter (AIEKF) for relative position and attitude estimation, considering model uncertainty
in a nonlinear stochastic discrete-time system with unknown disturbance. The AIEKF
algorithm employs Gauss–Newton iterative optimization steps for maximum a posteri-
ori (MAP) estimation and incorporates a switch-mode combination technique to achieve
adaptability. The mean-square estimation error (MSE) of the state estimate is derived, and
it is proven that the AIEKF outperforms the traditional extended Kalman filter (EKF) or
iterated extended Kalman filter (IEKF) in terms of MSE.

The structure of the paper is as follows: The attitude estimation and static algorithms
are presented in Section 2 in detail. Section 3 provides an introduction to the mathematical
models utilized for the presented CubeSat. The proposed filter adaptation method is
presented in Section 4. In Section 5, the simulation results of the adaptive EKF algorithm
for a hypothetical CubeSat are presented. In Section 6, a brief conclusion is given.
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2. Attitude Estimation Algorithms

In this section, we look at the singular value decomposition, extended Kalman filter
and their hybrid, as they have been proven to be robust algorithms.

2.1. The SVD Algorithm

The SVD algorithm is a deterministic technique for computing the attitude matrix
that minimizes Wahba’s problem [11,27]. An alternative way to simplify the Wahba’s loss
function is to use a matrix B given as:

B =
N

∑
k=1

wkbkrTk = USVT , (1)

where wk is the non-negative weight, rk is a set of reference vectors in the reference frame,
and bk is a set of measured vectors in the satellite body frame. The optimal attitude matrix
is calculated using U and V matrices, such that

Aopt = Udiag
[
1 1 det(U)det(V)

]
VT. (2)

To examine the rotation angle error, the error covariance matrix is defined as

Psvd = Udiag
[
(s2 + s3)

−1 (s3 + s1)
−1 (s1 + s2)

−1], (3)

where s1 = S11, s2 = S22 and s3 = det U det VS33.

2.2. The Extended Kalman Filter

The extended Kalman filter (EKF) is appropriate for nonlinear state equations; there-
fore, it can be used as an alternative attitude estimator [28]. Nonlinear discrete time systems
can be defined as follows:

xk = f (xk−1, wk, k), (4)

zk = h(xk+1, k) (5)

where state vector x is involved in the system and measurement differential functions
denoted by f and h, respectively, y is the expected measurement, and w and v are the
process and measurement noises with known covariance, respectively. The EKF consists of
two steps: prediction and measurement update, that is,

Prediction step

xk+1 = Fkxk−1, (6)

Pk+1 = FkPk−1FT
k + Qk. (7)

Measurement Update

Kk =
Pk+1HT

k

HkPk+1HT
k + Rk

, (8)

x̂k = xk+1 + Kk(zk − zk) (9)

Pk = Pk+1 −KkHkPk+1. (10)

The differential function h is deduced from the relationship between reference vectors
r and the satellite measured vectors, b given by

b = Ar, (11)

where A is the attitude matrix in quaternion form. The measured vector b is the expected
measurement given a set of references vector; therefore, it is similar to zk from (5).
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2.3. SVD-Aided EKF Algorithm

The SVD-aided EKF reduces the computational cost of the EKF by using rough attitude
estimates from the SVD algorithm instead of non-linear measurements [24]. The estimation
covariance obtained from the SVD is used as the measurement noise covariance matrix in
the filter, which inherently makes it adaptive to noise increments in measurements. In the
SVD-aided EKF, the discrete time system is defined as

xk+1 = f [xk, k] + wk (12)

zk = Gxk+1 + vk. (13)

3. System Model
3.1. System Kinematics

The change in attitude of a satellite is modeled using the kinematics equation, which
describes rotational motion despite the cause. The kinematic equation of a satellite using
quaternions attitude representation is given by

q̇ =


q̇0
q̇1
q̇2
q̇3

 =
1
2


−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0


p

q
r

 (14)

where p, q and r are the components of the angular velocity ! provided by the gyroscope [29],
and q0 is the scalar component of the quaternion. The kinematic equation is useful when
defining the state transition matrix in the extended Kalman filter. In this research, quater-
nions are employed for attitude computation due to their mathematical advantages, such
as singularity avoidance and efficient numerical representation. However, for graphical
presentation and visualization, Euler angles are used, as they are more commonly used in
aerospace engineering and provide a more intuitive representation of attitude. This choice
allows for a clear and easy-to-understand presentation of the results in a familiar format.
The computed quaternion is converted to Euler angles using

φ = (2(q0q1 + q2q3), 1− 2(q2
1 + q2

2)),
θ = (2(q0q2 − q3q1)),

ψ = (2(q0q3 + q1q2), 1− 2(q2
2 + q2

3)).
(15)

3.2. Environment Models
3.2.1. International Geomagnetic Reference Field (IGRF)

The IGRF denotes the main geomagnetic field generated by internal sources, primarily
inside the core of the Earth [30]. The absence of electric currents on the surface allows for
computation of the Earth’s geomagnetic field as the negative gradient of a scalar potential,
such that the magnetic field can be expressed as B = −δV. The potential function is
represented by a finite series expansion in terms of Gauss coefficients, gm

n and hm
n [31]:

B(r, β, α) = V(r, β, α, t) =a
N

∑
n=1

n

∑
m=1

( a
r

)n+1

[gm
n (t) cos mα + hm

n (t) sin mα]Pm
n (cos β).

(16)

Here, r, β, α, t are the radial distance from the Earth’s center, geocentric co-latitude,
longitude and time, respectively. The variable a is the Earth’s radius. More information
about the spherical harmonic coefficients can be found in [30]. The latest version in the
series, IGRF-13, extends up to thirteen harmonic degrees.
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3.2.2. PSA Sun Position Algorithm

This paper utilizes the PSA algorithm to calculate the solar vector in the inertial frame
due to its small computational footprint and high accuracy. It has been established that
when applied over a period ranging from 2020 to 2050, the maximum error in angular
deviation from the actual solar vector is only 35 arc-sec, with the algorithm maintaining
its computational structure and simplicity [32]. The PSA algorithm’s inputs consist of the
location’s latitude and longitude, along with the time specified in universal time (UT1),
encompassing year, month, day, hours, minutes, and seconds. The sun vector is given by

S =

sin ϑz sin γ
sin ϑz cos γ

cos ϑz

 (17)

where ϑ and γ are the zenith and azimuth angles. More information on how these angles
are obtained can be found in [32].

3.3. Measurement Model

In this model, we assume that only zero-mean Gaussian white noise can corrupt the
sensor measurements. The measurement model for the vector observations can be given as

bi = Ari + µi, (18)

where b is the sun and magnetic field vector observations in the body frame, r can either be
B or S modeled in the reference frame, µ is the Gaussian white noise, and A is the attitude
matrix expressed in quaternions.

For gyroscopes, the inherent sensor bias introduces errors throughout the attitude
determination process; therefore, these errors are also included in the state vector estimate.
The gyroscope mathematical model presented in this paper is

ω̂b = ωb + b + v, (19)

where gyroscope noise and bias of a satellite are represented by b and v, respectively, while
the true angular velocity of the satellite relative to the inertial frame is denoted by ωb.

3.4. Coordinate Systems

Several reference frames are used to describe the satellite’s attitude. This paper
employs three reference frames, each of which is defined by its fixed element or direction,
as well as by the location of its center or origin, that is, satellite body coordinate frame,
orbit referenced coordinate frame and Earth centered inertial (ECI) coordinate frame. These
coordinate frames have been well explained in [14].

4. Adaptive EKF

During extended eclipse phases, it was noted that the traditional extended Kalman
filter (EKF) exhibited superior performance compared to other methods such as the sin-
gular value decomposition (SVD)-aided EKF. However, if the accuracy of the process and
measurement noise covariance matrices is compromised, the EKF may produce substantial
estimation errors, despite outperforming other algorithms in prolonged eclipses. As a
result, there is a great need for developing an adaptive EKF that is compatible with in-
accurate covariance matrices. Firstly, we discuss how each covariance matrix affects the
performance of the extended Kalman filter (EKF). The process noise covariance matrix Qk
can cause inaccurate prediction of the error covariance matrix Pk+1 in (7), which directly
affects the computation of the Kalman gain K as shown in (8). Finally, the optimal estimate
xk and the estimated error covariance matrix are derived from the incorrect Pk+1 and K as
seen in (9) and (10), respectively. Additionally, it is clear that an imprecise measurement
noise covariance matrix Rk can lead to an imprecise Kalman gain, resulting in inadequate
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state estimation. It is apparent that P and R directly affect the state estimate as compared
to Q. In this paper, a P and R adaptive filter is proposed for attitude estimation. The filter
performance will be compared to the SVD-aided EKF in the sun and eclipse phases, which
performs better than the conventional EKF in attitude estimation.

4.1. Expectation Maximization

There is usually inadequate information for training Bayesian networks; for example,
it is difficult to accurately determine noise covariance matrices in a Kalman filter [33].
Such latent parameters can explicitly be estimated using the expectation maximization
(EM) algorithm, which is an iterative algorithm used in unsupervised learning. The EM
algorithm is an approach used to find the maximum likelihood (ML) estimates of the latent
variables in a statistical method. It is used to find the maximum likelihood estimate of the
parameters, given the observed data. The algorithm consists of two steps: the expectation
step, where the expectation of the log-likelihood function is calculated, given the current
estimates of the parameters, and the maximization step (M-step), where the parameters
are updated to maximize the expected log-likelihood [34]. The algorithm iterates between
these two steps until convergence, at which point the parameters are considered to be the
maximum likelihood estimates. The goal of this paper is to use the joint log-likelihood
function to estimate inaccurate noise covariance matrices Pk and Rk based on the available
measurements z1:k (i.e., measurements taken from time 1 to k) and the unknown state
vector xk, that is,

Lσk (xk, zk) = log pσk (xk, zk), (20)

where σk = [Pk, Rk]. The joint log-likelihood function contains the natural logarithm
function log and the probability density function p, which depends on the parameter σ. To
obtain an approximate maximum likelihood (ML) solution for the parameter σk, we employ
the expectation maximization (EM) algorithm, which maximizes the joint log-likelihood
function, such that

σ̂k = arg max Lσk (xk, zk)

, arg max log pσk (xk, zk),
(21)

where σ̂k is the ML estimate of σk. It is impossible to solve the complete data log-likelihood
function Lσk (xk, zk) due to the unavailable xk. The EM algorithm addresses the problem
by approximating the joint likelihood function in (21) as its minimum variance estimate
Q(σk, σi

k), such that [35,36]

Q(σk, σi
k) ,Eσki [Lσk (xk, zk)|zk]

=
∫

Lσk (xk, zk)pσk (xk|zk)dxk,
(22)

where σi
k is an approximation of σ̂k at the ith step.

The EM algorithm takes advantage of this property to generate a series of values σk,
where k = 1, 2, . . . , with the aim of successively improving the accuracy of the maximum
likelihood (ML) estimate. The algorithm is summarized in Algorithm 1. During the E-step,
the complete data log-likelihood’s expectation is evaluated, which relies on the current
estimates σi

k and measurements z1:k. Following this, the M-step maximizes the computed
Q(σk, σi

k) utilizing an arithmetic technique.
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Algorithm 1 The expectation maximization algorithm

1: Initialization: σk
2: E-step:

Compute Q(σk, σi
k)

3: Maximization:
Calculate, σk+1 = arg max Q(σk, σi

k)
4: If convergence has not been reached, proceed to update the variable k by incrementing

it by 1, and return to step 2.

4.1.1. E Step

The EM algorithm approximates the joint likelihood function as its minimum variance
estimate as shown in (22). To determine the minimum variance estimate, we compute the
joint log likelihood log pσk(xk, z1:k) and the second posterior PDF pσk (xk|zk). Firstly, the
joint log likelihood in (20) is written as the product of the conditional likelihood, such that

pσk (xk, z1:k) = pσk (zk|xk, z1:k)pσk (xk|z1:k)p(z1:k)

= pσk (zk|xk)pσk (xk|z1:k)p(z1:k)
(23)

where pσk (zk|xk, z1:k) = pσk (zk|xk), since the expected measurement zk is only dependent
on state xk as shown in (5). The probability distribution p(z1:k) of the sensor measurements
is typically not dependent on the current state error and measurement noise covariance
matrix σk. This is because the measurements are generally assumed to be independent of
both the state error covariance matrix and the measurement noise covariance matrix, which
together determine the joint distribution of the state estimates and the measurements [36].
In the EKF model, the predicted PDF pσk (xk|z1:k) is approximated as Gaussian, that is,

pσk (xk|z1:k) = N(xk; xk+1, Pk−1). (24)

The symbol N(.; µ, ∑) represents the Gaussian probability density function (PDF) with
mean vector µ and covariance matrix ∑, and xk+1 is obtained using Equation (6). At this
stage, Pk−1 is considered inaccurate because of Qk. The likelihood PDF of the measurement
model in (7) is given by

pσk (zk|xk) = N(zk; h(xk+1, k), Rk). (25)

The joint log-likelihood function can be computed using (23)–(25). The logarithm of
the normal distribution N(zk; h(xk+1, k), Rk) is:

log N(zk; h(xk+1, k), Rk) = −0.5 log |Rk| − 0.5[zk − h(xk+1, k)]TR−1[zk − h(xk+1, k)]. (26)

The logarithm of the normal distribution N(xk; xk+1, Pk−1) is:

log N(xk; xk+1, Pk−1) = −0.5 log |Pk+1| − 0.5(xk − xk+1)
TP−1

k+1(xk − xk+1). (27)

Putting everything together:

log pσk (xk, z1:k) =− 0.5|Rk| − 0.5[zk − h(xk+1, k)]TR−1[zk − h(xk+1, k)]

− 0.5|Pk+1| − 0.5(xk − xk+1)
TP−1

k+1(xk − xk+1) + dσk ,
(28)

where |.| is the determinant operation of a matrix. After determining the joint likelihood
in (28), the posterior PDF is computed. At the i + 1th step, the state vector xi

k estimate and
corresponding state estimation error covariance matrix Pi

k have been calculated. From here,
the nonlinear measurement function is linearized using the intermediate state estimate xi

k,
that is,

h(xk, k) = h(x̂i
k, k) + Hi

k(xk+1 − x̂i
k), (29)
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where Hi
k is the Jacobian matrix of the measurement function at xi

k. The second posterior
PDF pσi

k
(xk|z1:k) is approximated as Gaussian by using a measurement update of the EKF,

such that
pσi

k
(xk|z1:k) = N(xk; xi+1

k , Pi+1
k ) (30)

where Pi+1
k and xi+1

k are obtained using Pi
k and xi

k, respectively, given as:

Ki+1
k = Pi

k+1(H
i
k)

T[Hi
kPi

k+1(H
i
k)

T + Ri
k]
−1 (31)

xi+1
k = xk+1 + Ki+1

k [zk − (h(x̂i
k, k) + Hi

k(xk+1 − x̂i
k))] (32)

Pi+1
k = Pi

k+1 −Ki+1
k Hi

kPi
k+1 (33)

To obtain the minimum variance estimate, Equations (28) and (30) are substituted into
Equation (22). The resulting expression is

Q(σk, σi
k) = −0.5|Rk| − 0.5tr(AkR−1

k )

− 0.5|Pk+1| − 0.5tr(BkP−1
k+1) + dσk

(34)

where tr is the trace of a matrix. Matrices Ak and Bk are given by

Ak =
∫
[zk − h(xk+1)][zk − h(xk+1)]

TN(xk; xi+1
k , Pi+1

k )dxk (35)

Bk =
∫
(xk − xk+1)(xk − xk+1)

TN(xk; xi+1
k , Pi+1

k )dxk. (36)

Ak represents the squared Mahalanobis distance between the prediction and the
observation, and Bk can be seen as an intermediate step in the calculation of the expected
value. The measurement is further linearized at xi+1

k such that

h(xk, k) = h(x̂i+1
k , k) + Hi+1

k (xk+1 − x̂i+1
k ), (37)

Equation (37) is substituted in (35); thus, Ak is computed as

Ak = [zk − h(x̂i+1
k , k)][zk − h(x̂i+1

k , k))]T + Hi+1
k Pi+1

k (Hi+1
k )T. (38)

From there, Bk can be computed as

Bk = Pi+1
k + (x̂i+1

k − xk+1)(x̂
i+1
k − xk+1)

T (39)

4.1.2. M Step

The M-step entails maximizing Q(σk, σi
k) regarding σk, such that

σi+1
k ≈ arg maxQ(σk, σi

k). (40)

At the maximum point, σi+1
k satisfies

δQ(σk, σi
k)

δσk
|
σk=σi+1

k
= 0. (41)

Since σk = [Pk−1, Rk], (41) becomes a partial derivative problem, that is, δQ(σk ,σi
k)

δPk−1
and

δQ(σk ,σi
k)

δRk
. The partial derivative can be calculated by exploiting (34) as

δQ(σk, σi
k)

δPk−1
= −0.5P−1

k−1 + 0.5P−1
k−1BkP−1

k−1 (42)
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δQ(σk, σi
k)

δRk
= −0.5Rk −−1 +0.5R−1

k BkR−1
k (43)

where Ak and Bk are given by (35) and (36), respectively. Substituting (42) and (43)
in (41) yields

− 0.5(Pi+1
k−1)

−1 + (Pi+1
k−1)

−1Bk(P
i+1
k−1)

−1 = 0 (44)

− 0.5(Ri+1
k )−1 + (Ri+1

k )−1Ak(R
i+1
k )−1 = 0; (45)

therefore, the error and measurement noise covariance matrices are defined as Pi+1
k−1 = Bk

and Ri+1
k = Ak, respectively.

4.2. P and R Adaptive EKF

The proposed adaptive extended Kalman filter (EKF) algorithm in Algorithm 2 in-
volves two primary steps: the time update and the iterated measurement update. In the
time update, the predicted state vector xk+1 and the nominal predicted state error covari-
ance matrix Pk+1 are calculated using Equations (6) and (7), respectively. The algorithm
requires several inputs, including the initial state vector xk−1, state error covariance matrix
Pk−1, measurement covariance matrix Rk, process noise covariance matrix Qk, and the
number of iterated measurements N. The prediction step only computes the state vector
and error covariance matrix, considering the system model kinematics and the previous
state error covariance matrix. The nominal predicted error covariance matrix Pk+1 serves
as an appropriate initial value for P0

k+1, as it includes the information on the state transition
matrix F, process noise covariance matrix Q, and the previous estimation error covariance
matrix Pk−1. The for loop estimates the optimal state vector xk, predicted error covariance
matrix Pk, and measurement noise covariance matrix Rk in an adaptive manner.

Algorithm 2 P and R adaptive EKF for attitude estimation.

Inputs: xk−1, Pk−1, R̃k, Qk, Bb, Sb, ω, N, t
Prediction Step:

1. xk+1 = Fkxk−1 + Bω
2. Pk+1 = FkPk−1FT

k + Qk

Measurement update

3. Initialize at i = 0, P(0)
k+1 = Pk+1,

R0
k = R̃k, x0

k+1 = xk+1

for i = 0 : N − 1
4. Compute the Jacobian matrix of h(xk+1, k) to find Hi

k

5. Ki
k =

Pi
k+1HiT

k
Hi

kPi
k+1(H

i
k)

T+Ri
k

6.
[
Bb Sb

]
7. xi

k = xk+1 + Ki
k(zk − h(x)−Hi

kxk+1)

8. Pi
k = Pk+1 −Ki

kHi
kPk+1

9. Compute Jacobian matrix Hi=1
k with updated states estimates xi

k
10. Ak = [zk − h(x)][zk −Hi

kxk+1]
T + Hi+1

k Pi
k(H

i+1
k )T

11. Bk = Pi
k + (xi

k − xk+1)(xi
k − xk+1)

T

12. Pi+1
k = Bk, Ri+1

k = Ak

end for
13. P̂k = Pi+1

k , R̂k = Ri+1
k

outputs: xk, P̂k, R̂k

5. Results and Analysis

In the simulations, a CubeSat in a low Earth orbit is considered, with a princi-
pal moment of inertia of J = diag

[
0.0071 0.0035 0.0035

]
kg.m2. The spacecraft is as-
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sumed to be tumbling, and its initial state is arbitrarily chosen as x0 = [0.03 rad −
0.001 rad 0.002 rad 0.08 rad/s − 0.02 rad/s 0.03 rad/s]T. The orbit parameters,
satellite kinematics, and sensor and environmental models are used to validate the pro-
posed algorithm for attitude estimation. In this study, the sun sensor, magnetometer, and
gyroscope are used as attitude sensors. The local magnetic vector is computed using the
international geomagnetic reference field model, while a sun position algorithm is used
to extract the local reference sun vector. The orbit used in this paper is circular with an
inclination of 0◦ at an altitude of 600 km. The simulation epoch is 2021.01.01, UTC 00:00
with a time-step of 1 s.

The first part of this section is devoted to analyzing the performance of SVD-EKF and
proposed AEKF using the Big O notation, the second part analyzes the algorithms during
sun phase on the orbit. The third part analyzes the performance of the two algorithms
during the eclipse phase. The simultaneous P and R adaptive extended Kalman filter
is referred to as AEKF in this study. The evaluation of the estimation accuracy for the
measurement noise covariance matrix and predicted error covariance matrix was carried
out using the SRNFN and ASRNFN metrics, which were chosen as the error measures. These
metrics provide information about the magnitude of the errors in the estimated matrices
by measuring the difference between the estimated and reference values, and they are
defined as

SRNFN =

(
1
n2 Pk+1 − Pr,k+1

2
) 1

4
, (46)

ASRNFN =
1
T

T

∑
k=1

(
1
n2 Pk+1 − Pr,k+1

2
) 1

4
. (47)

The predicted error covariance at time k is represented by Pk+1, while Pr,k+1 refers to
the reference value of the predicted error covariance matrix at that same time. Similarly,
the formulas used for calculating SRNFN and ASRNFN for the predicted error covariance
matrix are also applied to the measurement noise covariance matrix. The SRNFN is a metric
that measures the similarity between two matrices. The SRNFN is widely used in the field
of computer vision and image processing as a measure of the similarity between two
images [37]. The Averaged Square Root of Normalized Frobenius Norm (ASRNFN) is an
extension of the SRNFN, which is used to measure the similarity between multiple matrices.
The ASRNFN is calculated as the average of the SRNFN between each pair of matrices [38].

5.1. Complexity of Algorithms

The big O notation is a mathematical notation used to analyze and describe the perfor-
mance or complexity of algorithms. It provides a framework to express how the runtime
or resource usage of an algorithm grows as the input size increases. The notation is repre-
sented asO(f(n)), where “O” stands for order of magnitude and “f(n)” represents a function
that describes the algorithm’s growth rate. The function “f(n)” typically represents the
number of operations or resource usage as a function of the input size “n”. The purpose of
the big O notation is to provide a simplified approximation of the algorithm’s complexity,
ignoring constant factors and lower-order terms. By analyzing the big O complexity of algo-
rithms, researchers and developers can make informed decisions about algorithm selection,
understand the trade-offs between runtime and resources, and identify areas for optimiza-
tion. It provides a standardized framework for reasoning about algorithmic efficiency and
assists in designing more efficient algorithms to effectively solve computational problems.

• SVD-aided EKF
The operations of predicting the state and error covariance matrix involve matrix
multiplication, which has a time complexity of O(n3), where n is the size of the
matrices involved (in this case, 7 × 7 matrices). The computation of B involves
multiplication and addition operations with matrices and vectors. Assuming that the
input vectors have dimensions 3 × 1, the complexity of this section is O(32) or O(1).
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The SVD operation performed on the matrix B has a complexity of O(min(m2n, mn2)),
where m and n are the dimensions of matrix B. Since B has dimensions 3x3, the
complexity is O(33) or O(1). In conclusion, the overall complexity of the SVD-aided
EKF can be approximated as O(n3).

• Proposed adaptive filter
The prediction part of the algorithm is similar to that of the SVD-aided EKF, and
therefore, the complexity is O(n3). The loop iterates N−1 times. The operations
such as calculating gain involve matrix multiplication, which has a time complexity
of O(N × n3), where n is the size of the matrices involved (in this case, 6 × 7 and
7 × 7 matrices). The remaining operations in the loop, such as matrix additions and
subtractions, have a constant time complexity, O(1). Overall, the time complexity is
given by O(N × O(n3)) = O(n3).

Although both the SVD-aided extended Kalman filter (EKF) and the proposed adaptive
EKF algorithms have similar complexities in terms of their big O notation, the complexity
analysis only provides an approximation of the computational requirements. The actual
runtime performance of the algorithms may differ based on various factors, such as the
specific implementation details and the size of the input data.

5.2. Sun Phase

Firstly, we compare the performance of the SVD-EKF and the proposed AEKF during
sun phases. During the sun phase or normal operation mode, the filter depends on the
sun sensor and magnetometer measurements for measurement update. The proposed
algorithm is affected by the number of iterated measurements N: the more that is iterated,
the more accurate the state estimates; however, this means an increased computational
time. For these simulations, N = 5. Table 1 shows the root mean square error of the
attitude angles for both filters considered in this study. It is evident that both filters perform
reasonably well under the sun mode, as all sensor measurements are available.

Table 1. Comparison of the root mean square errors of the SVD-EKF and proposed algorithm during
the sun phase.

RMSE SVD-EKF AEKF

φ (◦) 0.2146 0.0042

θ (◦) 0.2220 0.0015

ψ (◦) 0.2472 0.0024

ωφ (◦/s) 3.6076 × 10−6 4.4296 × 10−8

ωθ (
◦/s) 7.7722 × 10−6 8.8530 × 10−8

ωψ (◦/s) 8.8545 × 10−6 1.7761 × 10−8

Table 2 shows the single-step run time for the two algorithms. It shows that the
proposed algorithm has more computational time as compared to the SVD-EKF. Even
though the computational load is higher by only a small margin, the accuracy of the
proposed algorithm is significant. To demonstrate the efficacy of the proposed algorithm,
we calculated the SRNFN and ASRNFN values of the predicted error and measurement noise
covariance matrices, which are useful in analyzing the convergence of these matrices. An
analysis of the results presented in Figure 2 and Table 3 indicate that the proposed algorithm
outperforms the SVD-EKF algorithm, as evidenced by its lower SRNFN and ASRNFN values.
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Table 2. Single-step run execution of the proposed algorithm and SVD-EKF.

Filters SVD-EKF AEKF

Time (s) 7.94 × 10−4 8.46 × 10−4
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Figure 2. SRNFNP and SRNFNR of the two filters during sun phase.

Table 3. Evaluation of the proposed algorithm and SVD-Aided EKF in sunlit phase using ASRNFNP

and ASRNFNR.

Filters SVD-EKF AEKF

ASRNFNP 13.0078 11.6005

ASRNFNR 47.1554 4.8422

5.3. Eclipse Phase

According to the study in [20], satellites in low Earth orbit are in the eclipse phase
for approximately 28 min. During this phase, the attitude-determination system depends
solely on magnetometer measurements. Table 4 displays the root mean square error of
the SVD-EKF method and AEKF. While the proposed algorithm’s error increased slightly,
it still performs significantly better than the SVD-aided EKF. Table 4 confirms that the
gyroscope bias increased during the eclipse phase, as compared to the values in Table 1.
This increase in bias is likely due to the temperature changes that occur during the eclipse
phase. Although modern gyroscopes are designed to minimize temperature-related errors
and often include temperature-compensation features, the effects of temperature changes
cannot be eliminated. Therefore, it is crucial to consider the potential impact of temperature
changes on gyroscope bias when designing and implementing attitude-determination
systems for satellites.

The inferior estimation accuracy of the SVD-EKF algorithm during the eclipse phase
is likely due to the sensitivity of the SVD algorithm, which requires at least two vector
measurements to compute attitude. Despite relying solely on magnetometer measurements,
the proposed algorithm performs reasonably well. Furthermore, Figure 3 and Table 5 show
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that the proposed algorithm has a smaller SRNFN and ASRNFN than the SVD-EKF even in the
eclipse phase. The noise during the eclipse phase affects the measurements used to estimate
the measurement noise and state covariance matrices; therefore, the resulting matrices are
less accurate or less precise.

Table 4. Comparison of the root mean square errors of the SVD-EKF and proposed algorithm during
eclipse phase.

RMSE SVD-EKF AEKF

φ (◦) 1.7126 0.1094

θ (◦) 12.6611 0.1388

ψ (◦) 6.9083 0.3137

ωφ (◦/s) 7.9837 × 10−5 1.3449 × 10−7

ωθ (
◦/s) 1.3499 × 10−5 6.8046 × 10−8

ωψ (◦/s) 1.9008 × 10−4 1.8077 × 10−8

Table 5. Evaluation of the proposed algorithm and SVD-aided EKF in eclipse phase using ASRNFNP

and ASRNFNR.

Filters SVD-EKF AEKF

ASRNFNP 19.5559 13.6083

ASRNFNR 53.2372 3.4397
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Figure 3. SRNFNP and SRNFNR of the two filters during eclipse phase.

6. Conclusions

This paper presents the design and numerical analysis of an error and measurement
noise covariance matrix-adaptive extended Kalman filter algorithm based on the expecta-
tion maximization method. A novel attitude-estimation algorithm was created utilizing
an adaptive filter approach. The performance of this newly developed algorithm, as well
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as a state-of-the-art existing algorithm, was evaluated through application on CubeSat
attitude estimation in both the eclipse and sun phases of the orbit. During both phases,
the proposed adaptive EKF outperforms the existing algorithm, being the SVD-EKF. The
SVD algorithm requires a minimum of two vector measurements and associated reference
models to function optimally. However, during the eclipse phase, only magnetometer
measurements are available, which causes the performance of the SVD-aided algorithm
to deteriorate. Based on the simulation findings outlined in the paper, the proposed algo-
rithm demonstrated significantly improved accuracy in attitude estimation compared to
SVD-aided EKF algorithms. However, it was also observed that the proposed algorithm
has marginally higher computational complexity.

To ensure the accuracy and reliability of the proposed algorithm in various conditions
and applications, it is necessary to conduct rigorous validation and verification through
both simulations and real-world tests. This will help to confirm the effectiveness of the
algorithm and to identify any potential limitations or areas for improvement. Furthermore,
the proposed algorithm can be optimized to improve its performance and to reduce compu-
tational complexity. This could involve refining the algorithm’s underlying mathematical
models and algorithms, as well as optimizing its implementation and hardware require-
ments. By doing so, the algorithm could potentially be made more efficient and practical
for use in a wider range of systems and applications.

Given the promising outcomes achieved by the proposed algorithm, future research
will primarily focus on optimizing the algorithm to significantly decrease its overall com-
plexity. This optimization endeavor will involve a comprehensive exploration of various
techniques and methodologies aimed at streamlining the algorithm’s computational de-
mands while maintaining its accuracy and performance. To accomplish this, each com-
ponent of the algorithm will be meticulously examined to identify potential areas for
improvement. Strategies such as algorithmic modifications, efficient data structures, and
parallel computing techniques will be employed to alleviate the computational burden.
The objective of these efforts is to strike a balance between complexity reduction and algo-
rithmic efficiency, enabling the algorithm to be more practical and applicable in real-world
scenarios with limited resources.
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