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Abstract: Global precipitation is becoming increasingly intense due to the extreme climate. Therefore,
creating new technology to manage water resources is crucial. To create a sustainable urban and
ecological environment, a water level and water quality control system implementing artificial
intelligence is presented in this research. The proposed smart monitoring system consists of four
sensors (two different liquid level sensors, a turbidity and pH sensor, and a water oxygen sensor), a
control module (an MCU, a motor, a pump, and a drain), and a power and communication system (a
solar panel, a battery, and a wireless communication module). The system focuses on low-cost Internet
of Things (IoT) devices along with low power consumption and high precision. This proposal collects
rainfall from the preceding 10 years in the application region as well as the region’s meteorological
bureau’s weekly weather report and uses artificial intelligence to compute the appropriate water
level. More importantly, the adoption of dynamic adjustment systems can reserve and modify
water resources in the application region more efficiently. Compared to existing technologies, the
measurement approach utilized in this study not only achieves cost savings exceeding 60% but also
enhances water level measurement accuracy by over 15% through the successful implementation
of water level calibration decisions utilizing multiple distinct sensors. Of greater significance, the
dynamic adjustment systems proposed in this research offer the potential for conserving water
resources by more than 15% in an effective manner. As a result, the adoption of this technology may
efficiently reserve and distribute water resources for smart cities as well as reduce substantial losses
caused by anomalous water resources, such as floods, droughts, and ecological concerns.

Keywords: Internet of Things (IoT); machine intelligence; smart city; water level monitoring;
water quality monitoring; self-adapting software engineering

1. Introduction

In recent years, the global average temperature has risen by 1.1 ◦C, and the impacts of
climate change are pervasive. A warning report issued by the United Nations indicates that
for every 1 ◦C increase in temperature, the intensity of extreme rainfall events is projected
to increase by 7%. However, due to geographical factors, some regions struggle with
inadequate water retention, exacerbating the challenges posed by alternating floods and
droughts. Meanwhile, population growth and industrial expansion have heightened the
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demand for water resources, underscoring the critical need for effective management of
limited resources [1].

Statistics show that only 0.03% of freshwater resources on Earth are available for
human use [2–4]. Storing freshwater is crucial, and efforts have been made to establish
reservoirs, dams, and other storage facilities in areas naturally conducive to water stor-
age [5]. Yet, due to the uneven distribution of water resources [6], some countries are prone
to floods while others face severe droughts which also lead to food crises [7,8]. Globally, at
least 80 countries experience arid or semi-arid conditions, and around 40% of the global
population is affected by concurrent drought [9–11].

Climate change not only exacerbates the frequency of extreme weather events but also
magnifies the challenges of water resource management. Intense rainfall during the rainy
season leads to widespread flooding, while drought periods cause reservoir levels to drop
as well as water scarcity, adversely affecting agriculture and livelihoods [12,13]. Therefore,
water resources are crucial for human survival and ecological health, sustaining fertile
soil, promoting plant growth, and playing a critical role in environmental purification, fire
prevention, and energy production. Masud, M.B et al. explored the relationship between
water footprint and crop yields [14], and the issue of water management becoming a
major global challenge is addressed in other reports as well [15]. Thus, effective water
resource management is vital for economic development and social well-being. However,
contaminated water sources pose significant health and environmental risks, emphasizing
the importance of protecting and conserving water resources. This is the reason why, in
recent papers, many researchers use machine learning to train past statistics into models
suitable for future predictions [16–18].

Against the backdrop of escalating global climate change, the development of inno-
vative water resource management technologies becomes crucial. Therefore, this paper
proposes an automated real-time monitoring system for multiple ponds using Internet of
Things (IoT) technology [19,20]. This system integrates IoT techniques, achieving low-cost,
low-energy, and high-precision operation through various sensors, control modules, and
power communication systems [21,22]. Farmanullah Jan et al. proposed a system including
turbidity, pH, temperature, and conductivity sensors and data transferal via an ESP8266
Wi-Fi module [23], which could build a small but robust water quality monitoring system
to sense water quality data and transmit the data wirelessly. The research refers to the
architecture mentioned above and uses artificial intelligence to analyze historical rainfall
data and weather forecasts. The system can dynamically adjust water levels, reducing costs,
enhancing measurement accuracy, and offering a promising solution for effective water
resource preservation.

2. Methodology

The proposed water monitoring IoT system is a cutting-edge monitoring solution,
equipped with a turbidity, oxygen, and water level sensor system. This monitoring system
is specifically designed for use with ecological wetlands. Through precise calculations using
multi-step measuring methods, the proposed system minimizes the impact of extreme
readings and enhances overall accuracy. The data obtained by the sensors are connected to
the cloud database through ESP-32’s Wi-Fi function and are presented as clear line graphs
as Figure 1. Additionally, the system features warning notifications, allowing users to
intuitively understand water quality and assisting users in the data-driven analysis of
eco-friendly purification effectiveness, promoting environmental education.
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2.1. Field and Data Measuring System

The field and data measuring system was set up in different ponds. The system
comprised three core components, delineated as follows:

(1) Aquatic environment monitoring sensors: These sensors encompass a range of devices
designed to measure water quality parameters such as pH, turbidity, temperature, and
dissolved oxygen, as well as water level indicators. They were strategically positioned
within each pond to facilitate real-time monitoring of the prevailing aquatic conditions;

(2) ESP-32 node for data reception and transmission: The ESP-32 module played a
pivotal role in the system’s functionality. Its primary responsibility was to serve as
a node that receives sensor data. Data transmission occurred through a physical
wired connection to ensure data integrity and reliability. The ESP-32 acted as a data
intermediary, forwarding the collected information to the central control unit for
processing and management;

(3) Mega 2560 control unit and pump mechanism: At the heart of the system lied the Mega
2560 control unit, which controlled the pump mechanisms. Through a sophisticated
control algorithm, the Mega 2560 assessed the incoming sensor data and made real-
time decisions regarding pump activation and water management strategies. This
centralized control unit ensured optimal water quality and level maintenance in
each pond.

In the context of each pond, these sensors collaborated to provide continuous monitor-
ing of water quality and level parameters. The collected data were transmitted through
physical connections to the ESP-32, which acted as a pivotal data hub. Furthermore, the
ESP-32 employed Wi-Fi connectivity to relay this information to cloud-based servers, en-
suring that the system remained updated with the latest data trends and enabling remote
monitoring and management capabilities.

2.1.1. Aquatic Environment Monitoring Sensors

This study used various sensors for water quality detection, with basic testing items
including pH, turbidity, hardness, etc. The proposed system selected more critical items for
irrigation or drinking water, namely turbidity and DO oxygen content detection [24,25].
These pH sensors were designed to measure the acidity or alkalinity of a solution by
quantifying the concentration of hydrogen ions (H+) present in it. By measuring the voltage,
the sensor was able to transfer the voltage value into a pH value by the following formula:

pH =
AnalogValue × 5 × 3.5

1024 × 6
(1)
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The importance of pH measurement lies in its widespread use across fields such as
biology, agriculture, and wastewater treatment, where precise control and monitoring of
pH levels are critical for optimal performance and outcomes. The sensor proposed in this
paper is shown as Figure 2a.
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Turbidity refers to the degree of light scattering in water and is related to the presence
of fine organic matter, microorganisms, or plankton in the water [26–28]. High turbidity
impedes light penetration, affecting the photosynthesis of aquatic plants. By measuring
the voltage, the sensor was able to transfer the voltage value into a pH value by the
following formula:

V =
AnalogValue

1024
× 5000 (mV) (2)

Turbidity(NTU) = −1120.4V2 + 5742.3V − 4352 (3)

Incorporated within the sensor was a dual-tube setup. The transmission of light
through a specific volume of water is contingent upon the water’s degree of contamina-
tion. Greater water impurities result in diminished light transmission. Turbidimeters can
measure water’s transparency and scattering rate to obtain turbidity values, measured in
Nephelometric Turbidity Units as shown Figure 2b.

Oxygen in water mainly comes from atmospheric dissolution and photosynthesis by
aquatic plants [29,30]. By measuring the voltage, the sensor was able to transfer the voltage
value into a pH value by the following formula:

DO
(mg

L

)
= 5717.4V − 583.33 (4)

If water is contaminated with organic matter, microorganisms consume dissolved oxy-
gen while breaking down these organic substances, possibly causing respiratory difficulties
for aquatic life and even threatening survival as shown in Figure 2c.

In the water quality module, after the raw data were successfully collected by different
sensors through the ESP-32, the data were uploaded to a data cloud and stored in case of
need. Furthermore, if the water quality is below the standard value, the user receives a
system notice through the application. If not, the cycle keeps running. The water quality
details refer to Taiwanese class III surface water quality standard values in Table 1.

Table 1. Class III surface water quality standard values.

pH Value Turbidity Oxygen

6.0~9.0 3.1~40 NTU Above 4.5 mg/L

There are various sensors available in the market for detecting water level heights,
including those implementing ultrasonic [31], magnetic, conductivity, and capacitive meth-
ods. The choice of sensor type is contingent upon the specific environment and type of
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liquid. In this study, the system was required to be installed outdoors without disrupting
the original natural environment, necessitating waterproof and dustproof features. Our de-
sign objective was to exploit a low-power, low-cost monitoring system, taking into account
the installation environment. Therefore, we opted for a low-cost capacitive soil moisture
sensor to be used as a liquid surface sensor as shown in Figure 3a. This capacitive soil
sensor operates at a voltage between 3.3V and 5V, making it suitable for microcontrollers,
fulfilling our design criteria. The principle behind capacitive sensors involves two metal
plates and measuring the change in capacitance between the plates when they come into
contact with a liquid surface. After observing the highest level and the lowest water level
in the wet and dry seasons, we separated the water level into four parts to detect accurate
water levels as shown in Figure 3b.
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The non-contact liquid level sensor shown in Figure 3c is an advanced detection device,
specifically designed to monitor the presence of liquid in a container without directly
contacting the liquid. As such, this sensor offers significant advantages, especially when
dealing with liquids that have corrosive properties or other specific chemical characteristics.
Because of its non-contact nature, the sensor does not need to be submerged in liquids,
which prevents damage or wear resulting from prolonged exposure to corrosive liquids,
such as strong acids, alkalis, or other erosive materials. Compared to traditional sensors
that require direct contact with liquids, the non-contact liquid level sensor is not influenced
by the pH, impurities, or floating particles in the water. This ensures the accuracy and
reliability of its detection results, making it suitable for various application environments.
Additionally, this type of sensor is usually designed with an adjustable knob, allowing
users to tailor its detection sensitivity based on specific application needs. It can also detect
liquid levels through non-metallic materials, including acrylic, ceramic, and glass. The
non-contact liquid level sensor offers an efficient, reliable, and highly adaptable method for
monitoring liquids in various containers.

In the water level module, this paper proposed an interval water level that represented
four conditions as shown in Table 2. It delineated the region-level conditions as indicated
by the sensor values. In instances where equilibrium was required among the water bodies,
priority was given to draining water from bodies with higher water levels to those with
lower levels. The water level data were uploaded to the cloud through the Mega 2560 board
for subsequent data analysis. And the MCU judged whether the water level was too high
or too low. If the water was too high, the bump was ordered to turn on to transport the
water to other ponds to soothe the flood and vice versa.

In this study, we utilized rainfall data from various monthly observations at a rainfall
monitoring station (Figure 4). The local rainfall season can be divided into a wet season and
a dry season based on monthly rainfall over the past ten years. For the modeling part, the
sensor heights were set at 20%, 30%, 70%, and 80% of the pool depth to adapt to different
rainfall thresholds during different periods. The peak values during the wet season were
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set between the region’s levels 3 to 5, while peak values during the dry season were set
between the region’s levels 2 to 4.

Table 2. The dry and wet conditions of each numbered sensor.

Region’s Level Status Description

5 Fully
4 Sufficient
3 Normal
2 Less
1 Lack
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The capacitive soil moisture sensor’s value can be affected by environmental factors
such as temperature and humidity [32]. To prevent these environmental influences from
rendering pre-set thresholds ineffective, it is necessary to periodically calibrate the sensor.
However, regularly adjusting the manually using the following formula can be cumbersome
for users in managing the system:

Threshold Valu =
∑n

i=n−15 Sensor Response (Dry)i + ∑n
i=n−15 Sensor Response (Wet)i

30
(5)

This study employed machine learning algorithms to continuously update the sensor’s
thresholds in real time. The machine learning algorithm utilized statistical analysis of the
sensor readings from both above and below the liquid level for the first 15 readings from
each sensor. After dynamically regressing the data, it calculated the optimal threshold
value for that specific sensor and the original value, and the linear regressions are shown in
Figure 5.

Based on the changes in rainfall and reservoir water levels in the past 68 months, this
study was able to generate a relationship between future rainfall and water levels through
linear regression. Linear regression is commonly used to predict and estimate related
values. C. Gnaneswar Raju et al. compare linear regression and logistic regression for
ground water level detection [33]. Figure 6 shows the linear regression graph of rainfall and
reservoir water storage. The dotted line is the relationship line of the correlation coefficient,
and each point is a relationship point between the water storage percentage of the month
and the rainfall of the month. When the monthly rainfall exceeded 500 mm, the percentage
reached 100%. In addition, the increase or decrease in the percentage of water storage had
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indirect effects through surface runoff, infiltration, etc. Therefore, changes in water levels
and rainfall could only be roughly estimated.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 5. The sensor response and its linear regression. 

Based on the changes in rainfall and reservoir water levels in the past 68 months, this 
study was able to generate a relationship between future rainfall and water levels through 
linear regression. Linear regression is commonly used to predict and estimate related val-
ues. C. Gnaneswar Raju et al. compare linear regression and logistic regression for ground 
water level detection [33]. Figure 6 shows the linear regression graph of rainfall and res-
ervoir water storage. The dotted line is the relationship line of the correlation coefficient, 
and each point is a relationship point between the water storage percentage of the month 
and the rainfall of the month. When the monthly rainfall exceeded 500 mm, the percentage 
reached 100%. In addition, the increase or decrease in the percentage of water storage had 
indirect effects through surface runoff, infiltration, etc. Therefore, changes in water levels 
and rainfall could only be roughly estimated. 

 
Figure 6. The linear regression graph of rainfall and reservoir water storage. 

  

760

810

860

910

960

1010

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Se
ns

or
 R

es
po

ns
e

Times

Wet Dry EMA

Figure 5. The sensor response and its linear regression.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 5. The sensor response and its linear regression. 

Based on the changes in rainfall and reservoir water levels in the past 68 months, this 
study was able to generate a relationship between future rainfall and water levels through 
linear regression. Linear regression is commonly used to predict and estimate related val-
ues. C. Gnaneswar Raju et al. compare linear regression and logistic regression for ground 
water level detection [33]. Figure 6 shows the linear regression graph of rainfall and res-
ervoir water storage. The dotted line is the relationship line of the correlation coefficient, 
and each point is a relationship point between the water storage percentage of the month 
and the rainfall of the month. When the monthly rainfall exceeded 500 mm, the percentage 
reached 100%. In addition, the increase or decrease in the percentage of water storage had 
indirect effects through surface runoff, infiltration, etc. Therefore, changes in water levels 
and rainfall could only be roughly estimated. 

 
Figure 6. The linear regression graph of rainfall and reservoir water storage. 

  

760

810

860

910

960

1010

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Se
ns

or
 R

es
po

ns
e

Times

Wet Dry EMA

Figure 6. The linear regression graph of rainfall and reservoir water storage.

2.1.2. ESP-32 Node for Data Reception and Transmission

Since the ponds were widely spread around Taoyuan city, setting many sensors and
wires linked to the observatory was considered a useless and expensive way to monitor
the ponds. Instead, using a remote method to receive the information from each pond was
deemed an excellent approach. The ESP-32 is a 32-bit system-on-chip that combines Wi-Fi
and Bluetooth with external flash memory. It includes dual cores and supports Arduino
open architecture and can be widely used in various IoT applications. Its most powerful
functions are its network functions and module functions. Additionally, the ESP-32, as a
low-cost MCU, could be widely spread as a node for each pond. With wireless connection,
it was able to upload the water quality data from each pond to the cloud precisely.
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2.1.3. Mega 2560 Control Unit and Pump Mechanism

In addition to segregating water quality monitoring data from water level monitor-
ing and control systems, this comprehensive system implemented a highly sophisticated
approach to optimizing pond management and ensuring the well-being of aquatic envi-
ronments. The Mega 2560, acting as the central hub for data aggregation, orchestrated the
seamless collection of water-level data from individual pond-level sensor systems. This cen-
tralized processing hub formed the nerve center of the entire network, providing real-time
insights into water level conditions across various ponds. Expanding on its capabilities, the
system deployed a bidirectional water flow control system between interconnected ponds.

The innovative design consisted of two pumps, enabling a dynamic response to
changing water level dynamics. When the Mega 2560 detected the need for water level
adjustments, it initiated a rapid and precise signaling process. These signals activated the
water flow control system, a critical component of the system’s intelligent infrastructure.
This dynamic system recalibrated water levels to establish and maintain equilibrium,
ensuring that each pond operated optimally within predetermined parameters. Meanwhile,
water level information was uploaded to the cloud via the ESP8266 Wi-Fi development
board integrated within the Mega 2560.

Due to the necessity of monitoring water level sensors in different ponds and subse-
quently controlling the operation of pumps between each pond, multiple I/O pins were
required for receiving and transmitting water level information and pump control signals,
as illustrated in Table 1. It was determined that the ESP-32 alone could not adequately
handle the volume of data associated with the entire system. Therefore, the water quality
nodes employed the ESP-32 for data collection and transmission, while the water level
system consolidated all signals and control pins within the Mega 2560. The Arduino Mega
2560 is a microcontroller development board with 54 digital pins and 16 analog pins for use;
its working voltage is 7~12 volts, and the USB interface provides power or uses a power
stabilizer and an external battery power supply. The use of the C language development
environment is convenient and easy to elaborate upon, and the highly variable characteris-
tics can be widely used in various fields, as shown in Table 3. After comparison with other
boards, the Mega 2560 board was selected for main development while the ESP-32 was
selected for and could be widely spread in many ponds with low-cost expenses [34].

Table 3. MCU Comparison.

Type Arduino UNO Arduino Mega 2560 ESP-32

Microcontroller Chip ATmega328 ATmega2560 Tensilica 32-bit
Operating Voltage 5 V 5 V 3.3 V

Input Voltage 7–12 V 7–12 V 7–12 V
Digital I/O 14 54 28

Analog Input 6 16 8

2.2. Data Storage

Data collection was a crucial stage in this system. To ensure more accuracy during data
gathering, we utilized multi-measurement methods, i.e., using multiple identical sensors
dispersed in the same target area, averaging the results, and ultimately transmitting the
data to the ESP-32 microcontroller to upload it to the cloud through Wi-Fi. The upload
time interval was adjustable, and the proposed system was set to upload the data every
5 min. Water quality and water level data collection, coupled with ecological surveys, are
fundamental components of environmental monitoring and management. Accurate and
comprehensive data are critical for assessing the health of aquatic ecosystems and ensuring
the safety of water resources for both human consumption and ecosystem sustainability.
Concurrently, monitoring water levels provides essential insights into hydrological patterns,
seasonal variations, and potential flood risk assessment. Related storage data can be widely
used and are essential in making evidence-based decisions and maintaining the health of
aquatic ecosystems in the long run.
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2.3. User Interface

Through the utilization of successfully collected data, Thingspeak offers an intuitive
and interactive interface, empowering users to visualize data in diverse formats, such as
charts, graphs, and heatmaps [35–37]. This visual representation simplifies data interpreta-
tion and facilitates the identification of trends, anomalies, and critical insights. In addition,
Thingspeak provides a robust Application Programming Interface (API) that simplifies
data retrieval and integration with external applications, making it an ideal choice for users
seeking to harness the data for further analysis or integration into custom applications. In
essence, this data transmission and visualization process not only enhanced the accessi-
bility of our collected data but also significantly improved the overall user-friendliness
and applicability of the system. It transformed data into actionable insights, ultimately
contributing to decisions and various applications, ranging from environmental monitoring
to industrial automation.

The detailed workflow is shown in Figure 7. Our system was mainly divided into
two parts: the water quality monitoring module and the water level monitoring module.
In the water quality module, after the raw data were successfully collected by different
sensors through the ESP-32, the data were uploaded to the data cloud and stored in case of
need. Furthermore, if the water quality was below the standard value the system set up,
the user received a system notice through an application. If not, the cycle kept running.
In the water level module, when the water hit the numbered sensor, the system performs
two actions according to the following: First, the data were analyzed through the Mega
2560 board and it was judged whether the water level was too high or not. If the water was
too high, the bump which transports the water to other ponds turned on automatically to
soothe the flood. Second, the relative water level was uploaded synchronously to the cloud
for subsequent data analysis.
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3. Application Field and Result

In this study, the water level control system was developed based on actual measure-
ments taken from a pond located in Taoyuan City, Taiwan, as shown in Figure 8. The
application field consists of a total of four distinct bodies of water, as indicated in the
diagram. Each of these bodies of water possesses the capability for mutual regulation, and
their water quality must be maintained within recommended parameters.
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3.1. Water Level Model Making

Due to the potential interference that the system may encounter in its practical field im-
plementation, this article establishes a scaled-down proportional model based on the actual
field conditions to validate the system’s operation and functionality. After the completion
of the prototype, the system will be deployed in the field for real-world application. A
scaled-down acrylic model (70 cm × 70 cm × 34 cm) was fabricated to simulate real-world
water level control scenarios in natural environments. The model comprised four adjacent
water pools of varying sizes. Soil moisture sensors were installed at four equidistant heights
in each pool, defining four water level standards from bottom to top. The microcontroller
and motor were positioned directly below the pool model, as depicted in Figure 9.
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Figure 9. Model design of the real scenario. Model design of the real scenario and 1 to 4 in the figure
represent waters No. 1 to No. 4 respectively.

3.1.1. Water Level Simulation Model and Sensors’ Waterproof Measures

The main structure of the model consists of an acrylic tank with a 5 mm thickness. The
design uses polycarbonate sheets in a multi-layered assembly to create differentiated depths
in individual water pools. This approach offers a complex and versatile environment that
allows for greater variability in testing conditions. To prevent water from leaking through
the pipes to the lower level containing the electrical circuits, causing short circuits, multiple
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layers of elastic cement paint are applied as shown in Figure 10. This specific type of paint
is chosen over standard waterproof paints due to its superior adhesive properties and
enhanced water resistance. It serves as a robust barrier, effectively preventing water or
moisture intrusion. Furthermore, for additional waterproofing assurance, acid silicone
fills crucial points, namely at the base of the sensors, at the connection points between
the higher and lower layers, and inside the connecting pipes. This acid silicone adds an
extra layer of security, making the entire assembly doubly safeguarded against water leaks.
By adopting such a comprehensive approach to design and waterproofing, the model
ensures not only functional effectiveness but also the critical safety of the lower layer’s
electronic circuits.
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The intricacy of the pool model extends to its sensory components as well. Each pool
in the model is equipped with four soil moisture sensors designed to be submerged under-
water for long durations. This submersion makes the waterproofing of these sensors and
their connecting wires an imperative aspect of the design. For the electronic components at
one end of these sensors, electronic sealant is used as a primary protective layer. This serves
as the first line of defense against water ingress and is particularly useful for safeguarding
the sensitive electronic parts from moisture and potential short circuits. However, the task
of waterproofing and wire management presents a challenge due to the disparity in width
between the sensors and the connecting wires. To resolve this, this study employs a tiered
approach, making use of both insulating tape and heat-shrink tubing. The tubing and
tape are applied in multiple layers and varying sizes, from largest to smallest. This allows
the heat-shrink tubing to conform more closely to the shape and size of both the sensors
and the connecting wires, thereby ensuring a more secure and watertight fit. This study
provides a comprehensive waterproofing solution, adding yet another layer of reliability
and effectiveness to the overall model design.

3.1.2. System Configuration

The arrangement of circuitry on the baseboard is designed to align with the positions
of the pools above, simplifying the placement of relays and motors as Figure 11. Due to the
large number of components, clear organization of the wiring is crucial. To address this, this
study implements several measures. Wires from the upper layer are bundled together using
heat-shrink tubing. This creates a single, manageable wire bundle, making it simpler to
trace individual wires and reducing the risk of tangling or misplacement. For the physical
interconnection between the upper and lower layers, multi-pin connectors with locking
mechanisms are utilized. This design choice facilitates easy detachment and reattachment
of the two layers, thus offering a streamlined approach to both regular maintenance and
any future adjustments. This study not only simplifies the task of wiring management
but also introduces an element of modularity. This makes ongoing maintenance and
potential upgrades more efficient, without sacrificing the integrity or functionality of the
overall system.
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3.2. Water Quality Model Making

The model is designed for remote real-time monitoring. The ESP-32 module is used
for Wi-Fi connectivity to receive cloud water quality data, keeping users updated about
the status on site. Furthermore, the system is programmed to trigger alerts based on
pre-set parameters, reminding users to take timely action if any water quality issues are
detected, making it convenient for remote water quality monitoring with straightforward
data presentation.

The sensors located in the ponds are housed in a small monitoring house made of wood
as shown in Figure 12. The cabin is painted with multiple layers of outdoor wood protection
paint to withstand environmental conditions. The small house incorporates magnetically
attached doors, allowing easy access to the internal components for maintenance purposes.
For heat management, the cabin features a spacious, movable eave and ventilation holes
strategically placed in the roof section. This design facilitates effective heat dissipation and
ensures that the electronic devices within remain at optimal temperatures. The electronic
components of the sensors submerged in the water are encapsulated in electronic sealant.
This provides an additional layer of waterproofing, making the devices well-suited for
prolonged underwater operation without the risk of water infiltration.

Each pond is equipped with one pH sensor, one water turbidity sensor, one water
dissolved oxygen sensor, an ESP-32, four soil moisture sensors, and four liquid level sensors.
For extension, ponds between ponds can be equipped with pumps, and a Mega 2560 board
is installed regardless of the number of nodes. System expansion and details are shown in
Table 4; the installation time of a node is approximately one hour.

Furthermore, compared with the another system [38] shown in Table 5, ours not only
has more functions, such as water turbidity and water level sensors and an adjustment
system, but also reduces the cost by 52.27%; moreover, the functions can be customized to
correspond to the requirements, which can be added if necessary.
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Table 4. List of costs required for proposed system in one pond.

Items Amount Each Price Total Price

pH Sensor 1 $40 $40
Turbidity Sensor 1 $15 $15

Dissolved Oxygen
Sensor 1 $20 $20

Soil Moisture Sensor 4 $4 $16
Liquid Level Sensor 4 $6 $24

ESP-32 1 $6 $6
Mega 2560 1 $12 $12

Pump 2 $7 $14

$147

Table 5. The comparison of function and cost with another system.

Function [38] Ours

pH Monitoring # #
Dissolved Oxygen Monitoring # #

Temperature Monitoring # #
Turbidity Monitoring X #

Water Level Monitoring X #
Water Level Control X #

Price $308 $147
# means the function can work X means the function can not work.

3.3. Configuration and Algorithm

After the system which can monitor the conditions of sewage and clean water pools
in real time has been successfully installed in actual fields, we can obtain data from these
MCUs and draw line graphs from the data, which demonstrate the water turbidity and
water oxygen of different two ponds as shown in Figure 13. The horizontal axis shows the
time, while the vertical axis shows the data on water quality and water level. Each point is
spaced at thirty-second intervals adjustable by the user.
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4. Conclusions

This study is dedicated to the fusion of environmental protection and ecological
education, creating a highly integrated intelligent water resource management solution.
Our study initially uses a scaled-down model to demonstrate a smart city’s water level
monitoring system and automatically adjusts water levels using big data technology. It
aims to optimize water resource use and conservation under the impact of climate change.
Secondly, our study collaborates with local ecological farms for hands-on implementation,
installing real-time water quality monitoring systems that provide not only visualized
real-time data but also promote best practices in smart water management. Lastly, through
ESP-32 technology, all collected data are uploaded to cloud storage for remote viewing and
further big data analysis. This allows the system to be scalable and sets a foundation for
future integration of other monitoring points. This comprehensive plan offers a forward-
thinking integrated water resource management solution on both local and global levels;
moreover, the impact on environmental protection and ecological education could also be
shown worldwide.
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