
Citation: Rao, H.; Luo, B.; Wu, D.; Yi,

P.; Chen, F.; Shi, S.; Zou, X.; Chen, Y.;

Zhao, M. Study on the Design and

Performance of a Glove Based on the

FBG Array for Hand Posture Sensing.

Sensors 2023, 23, 8495. https://

doi.org/10.3390/s23208495

Academic Editor: Flavio Esposito

Received: 14 September 2023

Revised: 8 October 2023

Accepted: 13 October 2023

Published: 16 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Study on the Design and Performance of a Glove Based on the
FBG Array for Hand Posture Sensing
Hongcheng Rao, Binbin Luo * , Decao Wu, Pan Yi, Fudan Chen, Shenghui Shi, Xue Zou, Yuliang Chen
and Mingfu Zhao

Chongqing Key Laboratory of Optical Fiber Sensor and Photoelectric Detection, Chongqing University
of Technology, Chongqing 400054, China; 563296885@cqut.edu.cn (H.R.); wudecao@cqut.edu.cn (D.W.);
yipan9710@163.com (P.Y.); 51220710119@cqut.edu.cn (F.C.); shshill@vip.cqut.edu.cn (S.S.);
zouxue@cqut.edu.cn (X.Z.); 15172971650@163.com (Y.C.); zmf@cqut.edu.cn (M.Z.)
* Correspondence: luobinbin@cqut.edu.cn

Abstract: This study introduces a new wearable fiber-optic sensor glove. The glove utilizes a flexible
material, polydimethylsiloxane (PDMS), and a silicone tube to encapsulate fiber Bragg gratings
(FBGs). It is employed to enable the self-perception of hand posture, gesture recognition, and
the prediction of grasping objects. The investigation employs the Support Vector Machine (SVM)
approach for predicting grasping objects. The proposed fiber-optic sensor glove can concurrently
monitor the motion of 14 hand joints comprising 5 metacarpophalangeal joints (MCP), 5 proximal
interphalangeal joints (PIP), and 4 distal interphalangeal joints (DIP). To expand the measurement
range of the sensors, a sinusoidal layout incorporates the FBG array into the glove. The experimental
results indicate that the wearable sensing glove can track finger flexion within a range of 0◦ to 100◦,
with a modest minimum measurement error (Error) of 0.176◦ and a minimum standard deviation
(SD) of 0.685◦. Notably, the glove accurately detects hand gestures in real-time and even forecasts
grasping actions. The fiber-optic smart glove technology proposed herein holds promising potential
for industrial applications, including object grasping, 3D displays via virtual reality, and human–
computer interaction.

Keywords: fiber Bragg gratings; glove; bending; hand posture perception; object prediction

1. Introduction

In advanced mechatronic systems, robots and humans collaborate in industrial sce-
narios. Robots undertake high-risk and high-intensity tasks to improve productivity and
safety, while humans handle intricate tasks, utilizing their intelligence and creativity to
ensure efficient operations and production. In this context, the real-time detection and
display of hand movements have become integral technologies and are extensively used
in underwater exploration, medical treatment, robotic surgical treatment, and rehabilita-
tion. By assessing hand movements in real-time, valuable information on hand posture
and trajectory can be gathered, enabling us to comprehend human movement mecha-
nisms, evaluate patient rehabilitation progress, and operate industrial remote-controlled
robots effectively [1–3]. Despite the advancements in research on human–robot interaction,
achieving natural interaction is still a challenge due to the complexity and variability of
human gestures [4–7]. Fiber grating sensing technology presents a uniquely advantageous
solution as it integrates optical signal transmission and sensing functions into a single
optical fiber [8], reducing the number and size of the electrical devices needed for sensors.
This enhances the compactness, lightweight characteristics, and wide device integration of
fiber gratings. The object monitoring of strain or temperature change in the fiber enables
the highly sensitive measurement of an object’s shape or temperature [9]. Therefore, the
real-time detection and accurate capture of even minor changes in objects permit precise
human–computer interaction [10]. Additionally, fiber gratings possess the capability to
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be multiplexed, enabling the tracking and measurement of numerous locations simul-
taneously by producing various fiber gratings in an optical fiber [11]. As a result, they
exhibit exceptional functioning in multi-user, multi-task HCI environments [12]. Of utmost
importance, traditional non-contact sensors are prone to interference from fluctuations in
ambient temperature and contamination, which can cause a decrease in performance [13].
In contrast, fiber-optic grating sensors have excellent immunity to electromagnetic inter-
ference, which improves the system’s reliability and stability [14]. Moreover, they are not
affected by ambient line-of-sight occlusion.

In the study of fiber-optic gratings in human–computer interaction, many scholars
have attained significant progress and accomplishments. For instance, GUO et al. [15]
engineered a wearable sensor utilizing stretchable fiber Bragg grating (FBG) technology,
which could measure up to 50% of the dynamic strain in tension, bending, and torsion.
Chandan et al. [16] crafted medical rehabilitation sensor gloves that incorporated FBG
technology to achieve an angular resolution of 0.1◦ and a measurement range of 80◦.
Pasqual et al. [17] employed strain measurements to estimate the curvature of the measured
structure, achieving a curvature sensitivity of 1.39 nm/m−1 and a resolution of 7.2 × 10−4.
Cui et al. [18] suggested a reconstruction method for 3D spatial curves with an error of
merely 17.9%. Furthermore, Sun et al. [19] designed a technique to monitor the shape
of the envelope of a close airship, with a shape error of 4.82%. In addition, Li et al. [20]
developed gloves for measuring joint angles with high sensitivity (5.6 pm/◦), which had
the ability to differentiate between different joint movements. In these studies, selecting the
right encapsulation material is fundamental to the gloves’ performance. While inflexible
materials such as polyimide and polyvinyl chloride [21] have been widely used in previous
studies, flexible and malleable materials are better suited to guarantee that the sensors
adapt to different joint motions and deformations [22]. The properties of pliable materials
entailed greater versatility and comfort, facilitating the integration of the sensor within
its application environment to obtain more precise measurements. By contrast, inflexible
encapsulation materials were superior in terms of structural stability and external environ-
mental protection, safeguarding the sensors against external interferences and increments
in damages. Therefore, there existed a compromise between adaptability and inflexibility
when deciding on packaging materials for the satisfaction of angle sensors’ requirements
in regard to steadiness, responsiveness, and real-time capability.

In this work, a wearable hand posture sensor based on FBG arrays is proposed and
experimentally validated. First, the sensor package structure is fabricated by encapsulating
the FBG array in a PDMS and silicone tube, and then is integrated into the wearable glove
through a sinusoidal arrangement. A LabVIEW-based fiber grating demodulator host
system is designed to demodulate and reconstruct the position information of the FBG
wavelength variations. By fusing the angular information of multiple FBG measurement
points and using a regression model, the 3D shape coordinates of each measurement
point in space can be obtained to achieve real-time attitude monitoring. The study also
discusses the sensing range, sensing limits, sensing sensitivity, repeatability, and accuracy
of gesture recognition and object grasping. Compared to previous studies, this work has
innovated the package structure to improve the sensitivity and stability of the sensing
unit. In addition, we have successfully advanced pure measurements on joint motion
as well as motion pattern discrimination for its application in the field of virtual reality.
Finally, our research has important applications in the industrial field by allowing the
prediction of object types through different gesture classifications in cases where the visual
recognition of objects is not possible. We believe that these new innovative findings are
important for the further development of the field. The proposed FBG-based glove has
promising applications in industrial human–computer interaction (HCI) due to its ease of
manufacture, large measurement range, and high repeatability.
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2. Principle and Packaging
2.1. Materials and Instruments

FBGs are written inside single-mode fibers with a core diameter of 8 µm, cladding
diameter of 125 µm, grating length of 10 mm, and 3 dB bandwidth of approximately
0.25 nm. Sylgard Dow Corning PDMS184 is used as the encapsulation material.

An optical fiber grating demodulator (GC-97001C-02-02-A-F, wavelength range:
1525–1565 nm, 1 kHz, accuracy: 2 pm) is used to demodulate the central wavelength
variation of the FBGs. For optical fiber fusion splicing, a fusion splicer for fiber-optic cables
(Fujimura, TYPE-81C, Japan) and a fiber-optic cable cutter (Fujimura, CT-38, Japan) are
necessary. An electric blast dryer (GZX-9000 MBE) from Shanghai Boxun Industrial Co.,
Ltd., Shanghai, China. is used to encapsulate and cure the sensors. We use an inertial
sensor unit (CMP10A) from AWE Intelligent Technology to measure the reference angle
value in real-time, which includes a 3-axis gyroscope, 3-axis accelerometer, and 3-axis
magnetometer and barometer, with an SD of 0.1◦ in the attitude measurement error.

2.2. Principle of FBG

FBG is a device designed to produce refractive index changes using the photosensitive
properties of optical fibers. This passive device operates by exposing the photosensitive
fiber to a UV beam that interferes with the incident light, creating light wave fringes that
result in a refractive index modulation distribution within the fiber. The resonance equation
for the FBG is provided by [22].

λb = 2neffΛ (1)

where λb represents the central wavelength of the FBG, neff denotes the effective refractive
index of the fiber, and Λ signifies the grating period.

The FBG’s functionality is impacted by axial strain and temperature, which cause a
wavelength drift in the fiber grating. In order to determine this drift, one cannot overlook
the influence of the thermal expansion coefficient, elasticity coefficient, and thermo-optic
coefficient of the fiber material. These factors, as described in the literature [22], come
together to affect the properties and functionality of the fiber grating.

∆λb
λb

= (αf + ξ)∆T + (1 − Pe)∆ε (2)

where the wavelength drifts by ∆λb, the center wavelength at the start is λb, the fiber’s
thermal expansion coefficient is αf, the thermo-optic coefficient is ξ, and Pe equals 0.22 at
standard room temperature.

2.3. Simulation and Packaging

The structure of the attitude sensor’s packaging can be observed in Figure 1a. First, a
serial array of three FBGs is eccentrically inserted into a silicone tube. A PDMS precursor
is formulated by combining hardener and PDMS in a ratio of 1:10. The PDMS precursor
is injected directly into the silicone tube using a syringe. Finally, the sensor precursor is
placed in a drying oven at a temperature setting of 100 degrees Celsius and cured for 90 min
to form the FBG serial attitude sensor unit.

On this basis, we utilize the ANSYS(2021R2) simulation software to simulate and
analyze the encapsulated structure. During the simulation, the thickness of the textile
is established at 3 mm (density 601.35 kg/m−3, Young’s modulus 0.42 MPa, Poisson’s
ratio 0.26). The encapsulated structure includes the Material Constant C10 of 0.24324 MPa,
the Material Constant C01 of 0.060811 MPa, and the Incompressibility Parameter D1 of
0.13333 MPa−1. The contact method between the two is set to bound contact, hexahedral
meshing is performed, and the tensile length is set at 9 mm to simulate the strain produced
at the FBG position upon glove stretching. Based on the results of the analysis depicted in
Figure 1b, it is discovered that the sensor strain (both total and axial strain), for both silicone
tubing and PDMS encapsulation, diminishes as the diameter of the silicone tubing increases.
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Nonetheless, it is also noted that thicker sensor structures offer superior physical protec-
tion, enabling them to tolerate the influence of external temperature and pressure more
effectively. After considering both strain and physical protection, we conclude that the best
option is to enclose the 1 mm outer diameter and 0.5 mm inner diameter PDMS filled with
silicone. Figure 1c,d exhibit the overall and axial strains of this encompassed arrangement.
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elastic strain simulation (1 mm), (d) response of axial (Z-axis) elastic strain (1 mm).

As illustrated in Figure 2a, a glove is fitted with five serialized sensing arrays contain-
ing FBG sensors (serial number is the FBGs’ number). The arrays are sewn onto the glove
to monitor the MCP, PIP, and DIP joints of the hand. The thumb is monitored with two FBG
units, while the remaining fingers are monitored with a total of twelve FBG sensors. The
sensors collect data on the center wavelength based on the motion of the joints. To expand
the sensor units’ measurement range, we employ a sinusoidal design (with a curvature of
around 0.1 mm−1 at the bend) for unencumbered joint rotation. It is important to mention
that pre-bending the FBG sensor unit alters its grating period and causes a red-drift of
about 0.1 nm in its Bragg wavelength at a curvature of 0.1 mm−1. With this integration
scheme, the FBG unit fits more securely to the glove than the direct fit and is less likely to
be pulled, twisted, or deformed during use. This enhances the accuracy of hand posture
monitoring, interface consistency, and durability. Furthermore, the stitching points are
situated outside the sensing unit, permitting the sensing unit to adjust according to finger
movements to capture subtle movements more effectively.

When the sensor records the maximum joint rotation angle (100◦), the Bragg wave-
length of each cell drifts by around 700 pm. The impact of temperature causes the Bragg
wavelength of each FBG to drift by the same quantity, and the temperature sensitivity of
the FBGs is only around 6 pm/◦C. As the experiments are performed at room temperature,
the effect of temperature on the joint rotation angle measurements can be disregarded. For
individual fingers, serial arrays are employed, comprising FBGs centered around 1550 nm,
1558 nm, and 1566 nm. These are used to measure MCP, PIP, and DIP joints, respectively.
This choice is made to guarantee that the data acquisition of the other sensing units will
not be affected by damage to the sensing unit or outliers, and that only one FBG would
require replacement.
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reconfiguration system.

The system is illustrated in Figure 2b, comprising five parallel FBG arrays connected
to the five channels of the FBG demodulator. A demodulator system using LabVIEW is
designed, which records data at 1 kHz frequency. When the finger is flexed, the Bragg
wavelength drifts with the rise in the axial strain. The host computer captures the drift
value and converts it into an angular change value using a mathematical model, which is
then transmitted to the hand model. The reconstructed model recognizes the gesture and
retrieves it through the embedded SVM program based on the constraints and real-time
demodulation data for object prediction.

3. Results and Discussions
3.1. Measurement Range and Accuracy Test

The Bragg wavelength drift and angle of the rotation data recorded by the IMU sensor
were analyzed using the following procedure to evaluate the accuracy and repeatability of
the glove’s joint measurements.

1. Mounting the IMU sensor: fasten the IMU sensor onto the hand wearing the FBG
sensor, ensuring it is secure and in a steady position.

2. Hand calibration: the hand is placed flat on a level table, whereby the Bragg wave-
length of each FBG unit is recorded as a distinctive mapping reference at 0◦.

3. Bend the finger joints: bend the finger joints at approximately 1◦/s and gradually
increase the joint angle from 0◦.

4. Data acquisition: commence data acquisition with the self-made data acquisition
software, compare the Bragg wavelength value of each FBG unit acquired in real-
time with the mapped value at 0◦, and calculate the Bragg wavelength drift value at
that point. Real-time angle values are obtained from the regression model and are
reconstructed for the hand pose in real-time.

5. Real-time angle values are acquired via regression modeling and the real-time recon-
struction of the hand posture along with the recognition of the current gesture.

6. Using the recorded values of each joint during object grasping as the training set,
the angular values of each joint are computed in real-time. These computed values
serve as test set inputs, which are then passed to the embedded MATLAB SVM
model in LabVIEW for hyperplane delineation. The model predicts the grasped
object accurately.

The aforementioned steps enable the establishment of a correlation between the Bragg
wavelength fluctuation of the FBG sensor and the joint angle detected by the IMU sensor.
This correlation can be utilized to conduct precision and consistency assessments, which
evaluate the sensor’s ability to measure hand positioning. It is essential to ensure the
stability of the experimental environment and sufficient data sampling for each joint
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angle position during data acquisition and mapping relationship construction to obtain
dependable and precise outcomes.

The results of the calibration are presented in Figure 3a, demonstrating a significant
linear correlation between the amount of the Bragg wavelength drift of the MCP and PIP
joints, as well as the DIP joints of the index finger (IF), and their joint angle variations.
The correlation coefficients stand at 0.995, 0.997, and 0.998 with high clarity, and the
findings highlight the association between the two variables. The MCP and PIP joints
have a measurement range of 0–70◦ and 0–100◦, respectively. These ranges are wider than
those reported in previous studies (60◦ and 80◦ in Ref. [16]), allowing a greater diversity
of movements to be captured. Furthermore, the DIP joint is independently measured
with a range of 0–70◦, which is more suitable for analyzing finger dexterity movements
than traditional kinematic derivation methods. The sensor demonstrates sensitivities of
8.516 pm/◦ for the MCP joint, 7.065 pm/◦ for the PIP joint, and 6.708 pm/◦ for the DIP
joint of the IF, all of which are higher than the sensitivity values reported in reference [20]
(5.6 pm/◦), and the average increase in sensitivity for the same joints is about 1.4 pm/◦.
This demonstrates that the designed sensing glove has higher sensitivity in measuring
and detecting changes in the angle of the finger joints. The residual plots are displayed in
Figure 3b. The regression’s normalized residuals are distributed uniformly on both sides
of the Y = 0 line and within the Y = ± 30 pm range. This pattern suggests that the data
conform to the requirements of linear regression and exhibit a high degree of linearity.
Hence, to ensure computational efficiency for attitude reconstruction, we have opted for a
linear regression model (y = ax + b) to transform wavelength drift values into model angles.
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3.2. Repeatability and Consistency Testing

To assess the repeatability and consistency of the sensing unit measurements, we flex
each joint of the finger in increments of 10◦ and perform five repetitions of flexion-extension
for each angle. We analyze the obtained data by applying a linear regression model and
generating box-and-line plots, as shown in Figure 4a–c, to assess the repeatability of the
measurement, and these box-and-line plots represent the DIP, PIP, and MCP joints of the
IF, respectively. Subsequently, we compare the angle measured by the FBG sensor that we
created with the true angle measured by the IMU. To better understand the variability in
the measured data, the repeated measurements for each angle undergo statistical analysis.
This involves calculating the range, SD, and Error value of the repeated measurements data
for each angle. This helps provide a comprehensive approach to assessing measurement
repeatability and consistency. Table 1 presents a detailed overview of the statistical results.

During the experiment, the angles of the MCP, PIP, and DIP joints are measured,
and the different angles of the same joint are analyzed for multiple measurements. The
detailed results of one experiment for the DIP, PIP, and MCP joints of the IF are presented
in Figure 4a–c, respectively. It is evident from the boxplots that the PIP joint shows the
widest range of angular fluctuation at 90◦ repeated bending, reaching 2.93◦, amongst the
IF joints. Additionally, the MCP joint exhibits an SD of 0.96◦ at 70◦ repeated bending.
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Furthermore, the MCP joint has an error of 0.25◦ at 70◦ repeated bending. Notably, the
measurements do not contain any outliers. Due to its smaller fluctuation amplitude, highly
focused measurements, and low error rate, it can be concluded that the FBG sensing unit
demonstrates good stability and accuracy in angular measurement. Subsequently, the angle
data obtained through the IMU are compared and analyzed against the angle data recorded
by the FBG sensor. The illustrations in Figure 4 depict a detailed comparison between the
angle data obtained from the FBG and IMU measurements from one experiment. The R2

values show a significant correlation between the two sets of data with a range of 0.996 to
0.999. It is worth noting that the gradient between the data is near 1.

Table 1. Repetitive flexion and extension test analysis.

Repeatability
Index

Average
Range (◦)

Average
SD (◦)

Average
Error (◦)

TF-PIP 2.320 0.831 0.264
TF-MCP 3.145 0.941 0.243
IF-DIP 2.076 0.685 0.176
IF-PIP 2.310 0.711 0.184

IF-MCP 2.233 0.720 0.188
MF-DIP 2.480 0.761 0.198
MF-PIP 2.825 0.836 0.217

MF-MCP 2.628 0.848 0.220
RF-DIP 2.585 0.784 0.204
RF-PIP 2.785 0.825 0.215

RF-MCP 2.701 0.841 0.218
LF-DIP 2.533 0.774 0.200
LF-PIP 2.514 0.768 0.198

LF-MCP 2.768 0.814 0.209
Mean value 2.585 0.796 0.210

Thumb finger (TF), middle finger (MF), ring finger (RF), little finger (LF).
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Figure 4. Repeatability test, (a) DIP, (b) PIP, (c) MCP of index finger (inset demonstrates a compar-
ison of the agreement between the angle measurements obtained through FBG and IMU during a
single trial).

For the 14 hand joints, Table 1 shows that the MCP joint of the thumb has the highest
range value at 3.145◦ and the highest SD value at 0.941◦. Additionally, the PIP joint of the
thumb still has the highest Error value at 0.264◦. The complex physiology and movement
of the thumb are the main reason for this distribution of Error. From the experimental
results, it appears that the SD of the MCP joints is larger than that of the PIP joints for each
finger except the thumb, which is consistent with the previous literature [23]. This protocol
exhibits a minimum error of only 0.176◦, which is lower than a similar test protocol [16]
that records a minimum error of 0.49◦. The mean SD of the protocol is 0.796◦, while the
mean range is 2.585◦, indicating that the test results possess excellent reproducibility with
a low value.

In summary, the results indicate a significant agreement between the angle data
obtained from the measurements of FBG sensors and IMU, as well as the high repeatability
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of the FBG sensors in this configuration. This lays a solid foundation for subsequent
analytical studies on gesture recognition and the prediction of object grasping.

The average indicates the average of multiple measurements of the same joint at
different angles.

3.3. Gesture Recognition

To assess the efficacy and dependability of FBG gloves in recognizing gestures, a study
is performed to test the recognition ability of five hand gestures. Initially, we establish a
hand motion capture system utilizing a 3D virtual model capable of precisely recording the
current gesture. The model construction process involves the following steps: firstly, build
the individual parts (comprising joints, linkages, and actuators) based on the dimensions
of the original manipulator; secondly, assemble these parts to match the topology of the
human hand; and lastly, apply rotational constraints on the joints to limit the model’s range
and direction of motion, so as to ensure full compatibility with human kinematics. When
conducting the Colvin gesture recognition experiments (excluding repetitive gestures), the
average of the Bragg wavelength displacement RMS values are recorded for each joint
for each of the five gestures. These results are depicted in Figure 5a, while the calibrated
gestures from the experiments are illustrated in Figure 5b. Subsequently, the Colvin gesture
data are analyzed and the results are presented in Table 2. From the data, it is evident
that the highest SD value arises at the MF-MCP joint, reaching 1.42◦. When compared to
the study in reference [7] that used forearm muscles for gesture recognition, and achieved
a maximum SD of 2.19◦, the current glove design displays more consistent performance
in recognizing gestures. Figure 6 further displays the data obtained when Gesture 1 is
performed. After calculating the average values for each joint, we determine the difference
between each individual value and its mean value. The reduced SD values indicate that
the monitoring angle remains relatively stable while performing the gesture. In summary,
the FBG glove currently designed can acquire real-time gesture information with accuracy
during gesture capture. It also offers reliable gesture recognition performance. Real-time
gesture recognition is detailed in the Supporting Material.
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Table 2. Colvin gesture data analysis.

Stability (SD) Gesture 1 Gesture 2 Gesture 3 Gesture 4 Gesture 5

TF-PIP 0.732 0.685 0.688 0.863 0.690
TF-MCP 0.672 0.807 0.750 0.687 0.832
IF-DIP 0.361 0.347 0.759 0.715 0.379
IF-PIP 0.424 0.340 0.782 0.552 0.555

IF-MCP 0.463 0.453 1.16 0.741 0.789
MF-DIP 0.294 0.898 0.608 0.560 0.550
MF-PIP 0.325 1.07 0.783 0.585 0.615

MF-MCP 0.428 1.42 0.864 0.844 0.744
RF-DIP 0.510 0.720 0.967 0.586 0.473
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Table 2. Cont.

Stability (SD) Gesture 1 Gesture 2 Gesture 3 Gesture 4 Gesture 5

RF-PIP 0.591 1.08 0.699 0.632 0.628
RF-MCP 0.596 0.968 0.923 0.569 0.542
LF-DIP 0.637 0.901 0.692 0.676 0.600
LF-PIP 0.514 0.839 0.847 0.527 0.757

LF-MCP 0.562 1.08 1.02 0.556 0.777
SD is used to indicate the stability of the data collected by each sensor when making a gesture.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 13 
 

 

Table 2. Colvin gesture data analysis. 

Stability (SD) Gesture 1 Gesture 2 Gesture 3 Gesture 4 Gesture 5 
TF-PIP 0.732 0.685 0.688 0.863 0.690 

TF-MCP 0.672 0.807 0.750 0.687 0.832 
IF-DIP 0.361 0.347 0.759 0.715 0.379 
IF-PIP 0.424 0.340 0.782 0.552 0.555 

IF-MCP 0.463 0.453 1.16 0.741 0.789 
MF-DIP 0.294 0.898 0.608 0.560 0.550 
MF-PIP 0.325 1.07 0.783 0.585 0.615 

MF-MCP 0.428 1.42 0.864 0.844 0.744 
RF-DIP 0.510 0.720 0.967 0.586 0.473 
RF-PIP 0.591 1.08 0.699 0.632 0.628 

RF-MCP 0.596 0.968 0.923 0.569 0.542 
LF-DIP 0.637 0.901 0.692 0.676 0.600 
LF-PIP 0.514 0.839 0.847 0.527 0.757 

LF-MCP 0.562 1.08 1.02 0.556 0.777 
SD is used to indicate the stability of the data collected by each sensor when making a gesture. 

 
Figure 6. Stability for static gesture (Gesture 1). 

3.4. Grabbing Object Recognition 
To enhance the practicality of the FBG glove within the realm of engineering, we em-

ploy the integration of MATLAB into LabVIEW to forecast the manipulation of objects. 
We use a combination of the angles of the individual joints recorded while grasping dif-
ferent objects as training data for the SVM network, which uses a radial basis function 
(RBF) for hyperplane segmentation. During the testing phase, the system acquires real-
time angle data from the FBG demodulator, which is linearly transformed to attain angu-
lar information connected with the wavelength offset and utilized for hyperplane deline-
ation. The main components of the system code consist of data pre-processing, SVM net-
work training and testing, and the post-processing of results. Initially, MATLAB performs 

Figure 6. Stability for static gesture (Gesture 1).

3.4. Grabbing Object Recognition

To enhance the practicality of the FBG glove within the realm of engineering, we
employ the integration of MATLAB into LabVIEW to forecast the manipulation of objects.
We use a combination of the angles of the individual joints recorded while grasping different
objects as training data for the SVM network, which uses a radial basis function (RBF)
for hyperplane segmentation. During the testing phase, the system acquires real-time
angle data from the FBG demodulator, which is linearly transformed to attain angular
information connected with the wavelength offset and utilized for hyperplane delineation.
The main components of the system code consist of data pre-processing, SVM network
training and testing, and the post-processing of results. Initially, MATLAB performs data
pre-processing, which involves normalizing the samples and their corresponding labels
in the training and testing sets and mapping them to the range [0, 1] for consistent data
handling. After that, SVM training and prediction take place. Using the standardized
training data, we utilize the RBF kernel function as the kernel function of the SVM model
that is trained according to hyperplane segmentation. This enables us to construct a network
model that can discern the shape of hand gestures. During the testing phase, we apply the
trained SVM model to forecast the real-time multi-joint angle data set, thereby identifying
the shape details of the predicted object via the use of hyperplane division. Finally, we
perform inverse normalization on the results, convert the predictions into real objects, and
showcase them through LabVIEW upscaling. The experiment’s prediction concerning
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object grasping is illustrated in Figure 7. Grasping object predictions are detailed in the
Supporting Material S2.
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4. Conclusions

In this investigation, we propose a hand posture sensor using an FBG array to monitor
hand posture in real-time. PDMS with silicone tubing serves as the encapsulation structure
for the sensors. The eccentric structure enhances sensitivity and extends the measuring
range by arranging the sensors in a sinusoidal shape. In addition, a virtual reality platform
utilizing the FBG glove is created in conjunction with LabVIEW and MATLAB to showcase
the feasibility in real-world applications. The experimental results demonstrate that the FBG
glove proposed here has greater accuracy (Error = 0.176◦), enhanced stability (SD = 0.685◦),
and the ability to measure the movement of fourteen finger joints in real-time, as compared
to the previously suggested FBG glove system. Currently, the primary limitation of the
glove lies in its use of PDMS flexible encapsulation material, which exhibits a strain
hysteresis effect. This phenomenon causes a relatively obvious delay in the response
when subjected to a large strain, thereby potentially impacting the real-time performance
of the glove. Such an effect would be particularly problematic when swift and precise
gesture recognition or motion tracking is required. To overcome this limitation, we are
currently exploring techniques to enhance the materials and optimize algorithms, thereby
improving the performance and minimizing the impact of delayed responses on the system.
These improvements will serve as the foundation for future human–computer interaction
applications and digital twin applications. In conclusion, the proposed FBG posture sensor
possesses the benefits of being simple, repeatable, and having a fast response and stability.
Applying the hand posture sensors to each joint enables us to monitor the abduction and
adduction movements of all joints in real-time, as well as the hand posture and prediction
of the shape of the grasped object.
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