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Abstract: The flour milling industry—a vital component of global food production—is undergoing a
transformative phase driven by the integration of smart devices and advanced technologies. This
transition promises improved efficiency, quality and sustainability in flour production. The accurate
estimation of protein, moisture and ash content in wheat grains and flour is of paramount importance
due to their direct impact on product quality and compliance with industry standards. This paper
explores the application of Near-Infrared (NIR) spectroscopy as a non-destructive, efficient and
cost-effective method for measuring the aforementioned essential parameters in wheat and flour
by investigating the effectiveness of a low-cost handle NIR spectrometer. Furthermore, a novel
approach using Fuzzy Cognitive Maps (FCMs) is proposed to estimate the protein, moisture and ash
content in grain seeds and flour, marking the first known application of FCMs in this context. Our
study includes an experimental setup that assesses different types of wheat seeds and flour samples
and evaluates three NIR pre-processing techniques to enhance the parameter estimation accuracy.
The results indicate that low-cost NIR equipment can contribute to the estimation of the studied
parameters.

Keywords: nondestructive instrumentation; near-infrared spectrometry; parameter estimation;
optimization algorithm; fuzzy-cognitive-maps

1. Introduction

The milling flour industry—a cornerstone of global food production—is currently
navigating a transformative journey driven through the integration of smart devices and
advanced technologies. While these innovations hold great promise for enhancing effi-
ciency, quality and sustainability in flour production, they also bring forth a unique set of
challenges. As mills increasingly adopt smart devices, ranging from Internet of Things (IoT)
sensors and automated machinery to data analytics and Artificial Intelligence (AI)-driven
systems, they must confront issues such as cybersecurity threats, data management com-
plexities, workforce upskilling and the need to strike a delicate balance between tradition
and modernity. This convergence of age-old techniques and cutting-edge technology poses
both exciting opportunities and formidable obstacles that require thoughtful consideration
and strategic solutions [1,2].

In the flour milling industry, the accurate estimation of the protein and moisture
content in wheat grains and flour holds paramount importance [3]. Wheat is a fundamental
staple crop that serves as the primary source of nutrition for a substantial portion of the
global population. It is a versatile grain used in various food products, ranging from bread
and pasta to cereals and snacks. The quality of these end products is directly influenced by
the protein and moisture content present in the wheat grains [4].

Protein content is a critical factor as it directly impacts the functional and nutritional
properties of wheat-based products. Proteins, particularly gluten, play a pivotal role in
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determining the dough’s elasticity and strength during the baking processes. This directly
affects the final product’s texture, volume and overall quality. Furthermore, the protein
content also influences the nutritional value of the products, as proteins are a primary
source of amino acids, which are essential for human health. Moisture content, on the
other hand, is a key indicator of wheat grain quality and storability. Proper moisture
levels are crucial to prevent the growth of molds, bacteria and other microorganisms that
can lead to spoilage and contamination. Additionally, the moisture content affects the
weight of the grains, which is a crucial factor in pricing and trading commodities. Incorrect
moisture levels can lead to economic losses due to decreased product value, increased
energy consumption during processing and potential storage issues [5].

The accurate estimation of the protein and moisture content is not only important
for maintaining product quality, but also for complying with industry standards and
regulations. Variability in these parameters can occur due to factors such as different
wheat varieties, growing conditions, harvesting methods and storage conditions. Therefore,
modern wheat mill industries employ advanced techniques and technologies to precisely
measure the protein and moisture content. These may include Near-Infrared (NIR) spec-
troscopy, moisture meters and laboratory analyses.

NIR spectroscopy is a technology that uses the near-infrared region of the electromag-
netic spectrum (780–2500 nm) to measure the chemical composition of materials [6]. It
has been used for many years in the food industry, including the wheat milling industry,
to estimate the protein and moisture content of wheat. NIR spectroscopy had become a
reliable and accurate method for estimating the protein and moisture content of wheat
and flour [7]. It is a non-destructive method; this makes it a valuable tool for the wheat
milling industry as it allows the protein and moisture content of wheat to be measured
without affecting its quality, while at the same time, there is no need to destroy any samples.
Furthermore, it is a fast and efficient method. A single sample can be measured in a matter
of seconds, making it ideal for in-line measurements. This means that the protein and
moisture content of wheat can be measured as it is being processed, which can help to
improve the efficiency of the milling process.

However, establishing state-of-the-art NIR technologies in mills requires significant
investment [8]. The initial cost of implementing NIR technologies is a concern for some
mill operators; however, the market has responded with low-cost NIR solutions that
make this advanced technology more accessible. Affordable and compact NIR devices,
such as handheld and portable analyzers, have emerged as feasible solutions for smaller
mills or those with budget constraints. These low-cost NIRs offer the advantage of quick
measurements, reduced dependence on lab testing and ultimately contribute to optimizing
the production processes and ensuring consistent product quality [8,9].

In the context of utilizing NIR spectroscopy as a method for quantifying protein,
moisture and ash levels in cereals, various computational models have been developed,
with regression methods being the most prevalent choice in the literature. These regression
models serve to calibrate the systems capable of providing precise parameter estimates.
Within this framework, diverse regression models have been explored to establish potential
correlations between protein and moisture concentrations in cereals and flours and the
percentage of electromagnetic radiation absorption at specific wavelengths. In essence,
regression models facilitate the quantification of the relationship between two parame-
ters [10]. Among the models applied are Single Linear Regression (SLR) [11], Least Squares
Support Vector Machine Regression (LSSVR) [12], Partial Least Squares (PLS) [13] and
Neural Networks (NN) [14]. Particularly noteworthy, the LSSVR model has demonstrated
its effectiveness in calibrating and estimating protein levels in cereals and flours, exhibiting
robustness and achieving a correlation coefficient exceeding 98% [15]. In the context of em-
ploying the LSSVR model to calibrate systems for protein concentration estimation in food
products, it was observed that specific wavelengths in the near-infrared spectrum—namely
1178, 1382, 1498, 1670, 1768, 1888, 1970, 2064, 2146, 2278, 2302, 2444 and 2490 nm—were
sensitive to this parameter [15].
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In this study, we investigate the potential of a compact, portable NIR scanner for
assessing the protein, moisture and ash content in grain seeds and flour by installing an
experimental setup in a mill flour industry. To facilitate this examination, we propose a
novel estimation model based on the application of fuzzy cognitive maps theory (FCMs).
One of the key advantages of FCMs is their ability to capture and model complex, uncertain
and interdependent relationships in various domains, making them valuable for decision
support and systems analysis. To the best of our knowledge, this is the first effort of utilizing
FCMs in such applications. We establish an experimental setup for evaluating various types
of wheat seeds and flour. Three different NIR pre-processing techniques are examined in
a set of wheat and flour samples to investigate their effectiveness in the estimation of the
required parameters. The findings suggest that the integration of a miniature NIR scanner
coupled with parameter estimation models based on FCMs and employing computational
intelligence techniques offers a cost-effective and viable alternative to achieve accurate
results. Finally, the proposed FCM models are compared to the well-established partial
least squares regression (PLS) method to evaluate its effectiveness in regard to the studied
problem. The results indicate that the proposed FCM-based models can improve the
accuracy of the parameters estimation.

This paper is structured as follows: The Section 2 provides a concise overview of the
NIR spectrometer employed in the experiments, delves into the theoretical underpinnings
of the equipment effectiveness investigation and outlines the structure of the proposed
estimation models, which are based on FCMs. In the Section 3, a brief description of
the NIR spectra samples is presented. Section 4 presents the experimental results and
summarizes the key findings and contributions of this study. Finally, the Appendix A
section contains additional investigation results, while Appendix B presents a set of NIR
spectra, as measured from a set of indicative wheat samples.

2. Materials and Methods
2.1. Low-Cost NIR Spectrometers

The NeoSpectra scanner, designed by Si-Ware, represents a significant advancement
in the field of NIR spectroscopy technology. Its compact and portable design makes it a
versatile tool for various industries, including agriculture, food processing and pharma-
ceuticals. One of its standout features is its ability to provide rapid and accurate analysis
of material composition in real-time, without the need for sample preparation or complex
calibration processes. The scanner’s user-friendly interface and wireless connectivity allow
for easy integration into existing workflows, thus enhancing efficiency and quality control.
While its affordability and accessibility have broadened the reach of NIR technology, its
performance and reliability remain noteworthy, making the NeoSpectra scanner an asset for
businesses aiming to streamline their analytical processes and ensure product consistency.
The NeoSpectra scanner enables Fourier-Transform Infrared (FT-IR) spectroscopy [16],
which operates on the principle of molecular interaction with infrared (IR) light. In this
technique, an IR light source emits a broad spectrum of IR radiation, which is directed
through a sample. Molecules within the sample absorb specific frequencies of IR light, caus-
ing them to vibrate and undergo changes in their molecular energy states. The transmitted
or reflected light is then collected and subjected to an interferometer, which modulates
the IR beam. The resulting interferogram is transformed using the Fast Fourier Transform
(FFT) algorithm, producing an IR spectrum that represents the intensity of the absorbed
IR light as a function of frequency. Therefore, in the present study, the specific equipment
is investigated in a controllable environment. The experimental setup to capture the NIR
spectrums of the studied wheat and flour samples is presented in Figure 1.
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Figure 1. Capturing the spectral profiles of wheat samples within the experimental setup.

2.2. Investigation on the Effectiveness of Low-Cost Spectrometer NeoSpectra Scanner

Estimation models play a pivotal role in data analysis and decision-making across
various fields. These models are designed to predict or estimate unknown values based on
the available data and mathematical algorithms. They are invaluable tools in fields such as
the food industry, enabling us to make informed decisions and draw meaningful conclu-
sions from data. Estimation models can range from simple linear regressions to complex
machine learning algorithms, depending on the complexity of the problem at hand. Many
estimation models in the literature are based on NIR spectrum analysis. NIR spectroscopy
involves measuring the interaction of NIR light with a sample, resulting in a spectrum
that contains valuable information about the sample’s chemical composition. Estimation
models for NIR spectrums are tailored to extract specific parameters or properties from
these spectra, such as the moisture content, protein levels or chemical compositions. A
typical NIR spectrum is a complex and rich source of information that arises from the
interaction of NIR light with matter. Its complexity is a result of the multitude of molecular
vibrations, rotations and other interactions that occur within a sample when exposed to
NIR radiation. However, only a part of the NIR spectrum includes useful information
about the parameters to be estimated. Therefore, the study initially investigates the NIR
wavelengths correlated with the parameters to be estimated. In this specific context, the
research focuses on five parameters: (i) the protein content of wheat seeds; (ii) the moisture
content of wheat seeds; (iii) the protein content of flour samples; (iv) the moisture content
of flour samples; (v) the ash content of flour samples. Figure 2 illustrates the assessment
of the NIR spectral wavelengths’ effectiveness in estimating these parameters. For each
parameter, an estimation model is designed.

The process of Figure 2 is employed to identify specific wavelengths within the
spectra obtained from the experimental procedure, including pre-processed spectra. This
identification aims to pinpoint the wavelengths that exhibit the strongest correlations with
the variables that the system under design seeks to estimate. Unlike many correlation
models that rely on linear regression, our approach in this study assumes the existence of
a polynomial relationship between the desired parameters and the pre-processed spectra.
This assumed relationship is depicted in Figure 3.
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Where λ expresses the wavelength of the NIR spectrum, while a, b and c are coefficients
of the second order polynomial and F(λ) defines the value of the parameter to be examined.

Regarding the investigation into the individual correlations of wavelengths, this
research entails assessing their relationships both with the spectra obtained and with
the application of the aforementioned preprocessing techniques. The primary focus is
on optimizing the correlation coefficient, which serves as the objective function. This
optimization aims to align the model for estimating the desired parameter with the data
generated by the existing industrial equipment.

Hence, the optimization challenge at hand involves determining the coefficients (a,
b and c) depicted in Figure 2 to maximize the correlation coefficient (R). Following this
rationale, it is anticipated that wavelengths devoid of any pertinent information about the
desired parameter will yield a low maximum correlation coefficient, whereas wavelengths
containing relevant information will exhibit a high degree of correlation. The correlation
coefficient is formally defined by the following equation (Equation (1)):

Rx,y =
∑n

i=1[ (x i − x) (y i − y)]√
∑n

i=1

[
(x i − x)2 (y i − y)2

] (1)

where x and y represent the two sets of variables for which the degree of correlation between
them is examined.

This study aims to identify the NIR wavelengths that are most significantly influenced
by the values of the parameters under investigation. Utilizing the findings of this investiga-
tion, we will select the top five wavelengths with the highest correlation coefficients. These
selected wavelengths will serve as the foundation for designing an estimation model based
on the principles of FCMs theory.
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2.3. NIR Spectrums Pre-Processing

One of the challenges of NIR spectroscopy is the sensitivity that it presents to the
environmental conditions. The existence of light noise significantly affects the accuracy
of the measurements [17]; it arises from various sources, including electronic fluctuations,
environmental factors and imperfections in the measurement setup. Noise can undermine
the quality of NIR spectra, leading to inaccurate interpretations and reduced reliability
of analytical results. Effective noise management is crucial for extracting meaningful
information from the spectra. Different techniques have been employed in order to mitigate
noise and enhance measurement clarity. In the present study, three different pre-processing
techniques are enabled: (i) the multiplicative scatter correction; (ii) the first derivatives;
(iii) the Savitzky–Golay filters.

2.3.1. Multiplicative Scatter Correction

The established theoretical framework for the study of light behavior states that when
light undergoes diffusion after reflection, it induces scattering, which has a multiplicative
effect on spectra. Consequently, these spectra become contingent on both scattering and the
chemical composition of the reflective material. Given the substantial impact of scattering
on spectral behavior, it becomes imperative to apply a method capable of disentangling its
influence from the spectra [18]. As such, in line with the literature [19], the most prevalent
technique for spectral correction is the Multiplicative Scatter Correction (MSC). In this
method, each spectrum within a dataset is adjusted through rotation and shifting to align
as closely as possible with the mean spectrum—a process facilitated by the least squares
method. The MSC transformation is mathematically described by the following equation:

xik,new =

∣∣xik,old − ai
∣∣

bi
(2)

where xik,old represents the initial intensity value of NIR light reflection for sample i at
wavelength k before the MSC transformation. After this transformation, xik,new represents
the updated value. Here, ai signifies the estimated impact of specular reflection on the
acquired spectrum, and (1/bi) denotes the estimated influence of scattering on the spectrum.
It is important to note that these constants, ai and bi, are determined through the application
of least squares regression. This statistical method correlates each spectrum with the mean
spectrum derived from all the spectra considered in the transformation. Equation (2)
stems from the spectrum model for sample i, which conforms to Equation (3) for each
wavelength k:

xik = ai + bix + eik (3)

where eik, is the model error corresponding to the phenomena that distort the useful infor-
mation of the spectrum and which cannot be modeled using any additional or multiplicative
term. Figure 4 depicts the transformation of a NIR signal using the MSC.

2.3.2. First Derivatives

The first derivative indicates the slope of a curve at any given point of it. Its use
in NIR signals is important as it removes the baseline from the spectra. The use of first
derivatives in a system for calculating chemometric parameters contributes decisively to the
removal of unwanted effects in the background, as well as to the removal of noise, resulting
in improved spectra for analysis [20,21]. A good approach for calculating derivatives in
discrete signals is considered to be the calculation of the difference between two consecutive
points and their distance. Therefore, the first derivatives, within the framework of their use
in the system under design, are calculated from the following equation:

xi =
xn − xn−1

h
(4)
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where x is the value of a given spectrum for the wavelengths n and n – 1, and h is the
distance between the two wavelengths. In Figure 5, an example of a spectrum is depicted,
as well as the calculation of its first derivatives.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 27 
 

 

 
Figure 4. A preprocessed NIR signal after the application of MSC transformation. The spectra have 
been corrected. The background spectrum (reference signal) has been subtracted in order to isolate 
the true sample signals. 

2.3.2. First Derivatives 
The first derivative indicates the slope of a curve at any given point of it. Its use in 

NIR signals is important as it removes the baseline from the spectra. The use of first de-
rivatives in a system for calculating chemometric parameters contributes decisively to the 
removal of unwanted effects in the background, as well as to the removal of noise, result-
ing in improved spectra for analysis [20,21]. A good approach for calculating derivatives 
in discrete signals is considered to be the calculation of the difference between two con-
secutive points and their distance. Therefore, the first derivatives, within the framework 
of their use in the system under design, are calculated from the following equation: 𝑥 = 𝑥 − 𝑥ℎ  (4) 

where x is the value of a given spectrum for the wavelengths n and n − 1, and h is the 
distance between the two wavelengths. In Figure 5, an example of a spectrum is depicted, 
as well as the calculation of its first derivatives. 

Figure 4. A preprocessed NIR signal after the application of MSC transformation. The spectra have
been corrected. The background spectrum (reference signal) has been subtracted in order to isolate
the true sample signals.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 27 
 

 

 
Figure 5. NIR spectrum of a wheat sample, captured using the NeoSpectra scanner, and its first 
derivatives’ signal: (a) the reflectance factor of the NIR spectrum; (b) the slope of the reflectance 
factor of the NIR spectrum. The spectra have been corrected. The background spectrum (reference 
signal) has been subtracted in order to isolate the true sample signals. 

2.3.3. Smooth Filtering 
Savitzky–Golay filters are a valuable tool in the realm of NIR spectroscopy prepro-

cessing. These filters are used to smooth spectral data while preserving the spectral fea-
tures, making them especially useful for reducing noise and enhancing signal clarity. They 
work by fitting a polynomial to a small window of data points and then estimating the 
value at the center of the window. This process is applied iteratively across the entire 
spectral dataset. In NIR spectroscopy, where precise spectral information is crucial for 
accurate analysis, Savitzky–Golay filters can effectively reduce the noise caused by ran-
dom fluctuations and measurement artifacts. By employing these filters during prepro-
cessing, researchers can enhance the quality of NIR spectra, leading to more accurate and 
reliable analytical results in applications such as chemical analysis, material identification 
and quality control in various industries [22]. The basic equation of the Savitzky–Golay 
filter is presented in Equation (5): 

𝑦 = 12𝑠 + 1 𝑐 𝑦  (5) 

where 𝑐  is the m-th coefficient of the Savitzky–Golay filter, determined based on the de-
gree of the polynomial and the size of the window, 𝑦  is the original data points within 
the window, with m varying between −s and s, and 𝑦  is the smoothed value at the wave-
length k. Figure 6 illustrates an example of the application of the Savitzky–Golay filter to 
a typical NIR signal. 

Figure 5. NIR spectrum of a wheat sample, captured using the NeoSpectra scanner, and its first
derivatives’ signal: (a) the reflectance factor of the NIR spectrum; (b) the slope of the reflectance
factor of the NIR spectrum. The spectra have been corrected. The background spectrum (reference
signal) has been subtracted in order to isolate the true sample signals.



Sensors 2023, 23, 8476 8 of 25

2.3.3. Smooth Filtering

Savitzky–Golay filters are a valuable tool in the realm of NIR spectroscopy preprocess-
ing. These filters are used to smooth spectral data while preserving the spectral features,
making them especially useful for reducing noise and enhancing signal clarity. They work
by fitting a polynomial to a small window of data points and then estimating the value
at the center of the window. This process is applied iteratively across the entire spectral
dataset. In NIR spectroscopy, where precise spectral information is crucial for accurate anal-
ysis, Savitzky–Golay filters can effectively reduce the noise caused by random fluctuations
and measurement artifacts. By employing these filters during preprocessing, researchers
can enhance the quality of NIR spectra, leading to more accurate and reliable analytical
results in applications such as chemical analysis, material identification and quality control
in various industries [22]. The basic equation of the Savitzky–Golay filter is presented in
Equation (5):

ŷk =
1

2s + 1

s

∑
m=−s

cmyk+m (5)

where cm is the m-th coefficient of the Savitzky–Golay filter, determined based on the degree
of the polynomial and the size of the window, yk+m is the original data points within the
window, with m varying between −s and s, and ŷk is the smoothed value at the wavelength
k. Figure 6 illustrates an example of the application of the Savitzky–Golay filter to a typical
NIR signal.
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2.4. Fuzzy Cognitive Maps and Design of the Parameter Estimation Models

In the context of designing the model for estimating the desired parameters in grains
and flours, the theory of FCMs has been applied. This selection is underpinned by the
intrinsic benefits offered by FCMs, including their abstract framework, inherent flexibility
and capacity to adapt to dynamic variations that might arise among interrelated parameters.
FCMs, introduced by Kosko [23], present a structured approach to grappling with intricate
management and control challenges within complex, nonlinear systems characterized by
uncertainties [24]. The guiding principles of FCMs are rooted in symbolically depicting
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and elucidating the multifaceted phenomena governing such intricate systems, effectively
representing logical interconnections between these phenomena [24]. Consequently, FCMs
comprise nodes that encapsulate system characteristics and connections that delineate
the magnitude and the way one characteristic influences another, achieved through the
utilization of weighted interactions. A representative configuration of a typical FCM is
illustrated in Figure 7.
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tiveness of node i to node j (weight). The value of each node is calculated based on the sigmoid
activation function.

The weights in an FCM can be (i) positive, if there is a positive correlation between two
nodes (wij > 0); (ii) negative, if there is a negative correlation between two nodes (wij < 0);
(iii) zero, if there is no correlation between the nodes (wij = 0). Therefore, the correlations
between the different nodes of a typical FCM can be described by the weight matrix, as
presented in Equation (6):

W =



0 w12 0 0 w15 0
0 0 w23 w24 0 0
0 w32 0 0 0 0
0 w42 0 0 w45 w46
0 0 0 0 0 w56
0 0 w63 0 w65 0

 (6)

Based on the weights that are defined between the nodes, the values of these can be
calculated according to Equation (7):

Ai(k + 1) = f (Ai(k) +
n

∑
j=1
j 6=i

wji Aj(k)) (7)

where Ai is the value of node i, Aj is the value of the nodes that are correlated with node
i, while the parameter k denotes the number of iterations that are performed, until the Ai
converges to a value [25,26]. The activation function f defines the range of values in which
the value of node i varies. According to the literature, the most common activation function
is the sigmoid function, as defined in Equation (8):

f (x) =
1

1 + e−λx (8)
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Observing the structure and operation of FCMs, it appears that they are suitable for
the study of the correlation between the desired parameters in grains and flours and the
wavelengths collected using the spectrometer as they have been used in various complex
problems with great success [27]. According to the structure of a typical FCM, the problem
is reduced to find the appropriate weights, so that the proposed model can estimate the
desired parameters with great accuracy. In this context, the research team uses the Particle
Swarm Optimization (PSO) methodology. The structure of the FCM, which is applied
for the estimation of the required parameters (protein, moisture and ash), is presented
in Figure 8.
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Figure 8. FCM framework for estimating wheat and flour parameters. The nodes λi of the FCM define
the reflectance factor of the five wavelengths with the highest correlation to the examined parameter.

Based on the structure of the parameter estimation system, as presented in the above
figure, the problem is reduced to find the weights of the FCM, so that it calculates the
desired parameters—whether it is protein, moisture or ash—minimizing the root mean
square error. In this context, for a given set of spectra for which the parameter values are
known, and based on the research that was conducted in terms of the contribution of the
preprocessing methods to the accuracy of parameter estimation, the parameter estimation is
reduced to a topic of optimization, in which the estimation system is known as calculating
the desired parameters with the minimum error. Therefore, the Root Mean Square Error
(RMSE) is defined as the objective function of the optimization problem (Equation (9)).

RMSE =

√
1
n

n

∑
i=1

(Y i −Y
)2 (9)



Sensors 2023, 23, 8476 11 of 25

3. Experimental Setup and Samples Preparation
Samples Preparation

The data used to investigate the effectiveness of the spectrometer, as well as to design
the parameter estimation model, came from an experimental process that took place in
the industry. Specifically, 25 samples of wheat and 17 samples of flour were examined.
For each sample, 10 different NIR spectrums were collected. The exposure time of each
measurement was set to 5 s. For these samples, the analysis was performed in the industry’s
chemistry laboratory in order to determine the protein, moisture and ash contents (ash
was measured for flour). The histograms of the collected wheat samples are presented in
Figure 9. Figure 10 provides the histograms of the parameters of the flour samples. The
mean value and the variance of the gathered samples, as the standard deviation (SD) and
the standard error (SE), are presented in Table 1. Based on the histograms depicted in
Figures 9 and 10, along with the average and variance values, it is evident that the samples
under examination do not exhibit a uniform distribution. This non-uniformity can be
attributed to the fact that these samples were collected from various stages of the production
line in the milling industry and the fact that a typical mill flour industry processes a specific
kind of seed. Consequently, they represent the diverse types of seeds and flours processed
by the industry. In order to calculate the reference values of the studied wheat and flour
samples, a dedicated high-accuracy NIR analyzer was used. The experienced chemicals of
the mill industry calculate the reference values, based on the analyzer.
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Table 1. Statistical values of the examined parameters in the wheat and flour.

Sample Number of Samples Parameter (%) Average Variance SD SE

Wheat 25
Protein 14.25 1.77 1.33 0.27

Moisture 11.30 0.74 0.86 0.17

Flour 17
Protein 12.50 3.62 1.904 0.462

Moisture 13.00 0.12 0.342 0.082
Ash 0.58 0.002 0.047 0.012
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4. Results Evaluation and Discussion
4.1. Results on the Investigation of Wavelengths’ Effectiveness on Wheat and Flour
Chemical Parameters

The analysis of the effect of each wavelength in the NIR spectrum on its correlation
with the examined parameter was conducted through the investigation of various study
cases. In each study case, a combination of the aforementioned preprocessing methods was
applied, followed by an examination of the correlation exhibited by each wavelength of
the preprocessed spectra with the desired parameters to be estimated. The aforementioned
evaluation was applied to samples of cereals. The results of this assessment are presented
in detail in Appendix A, illustrating both the correlation of each NIR wavelength with the
corresponding parameter (wheat protein and moisture) and the histogram of the correlation
coefficients for each wavelength. It is observed that during the protein examination, where
all three preprocessing methods were applied and the correlation between each wavelength
and the desired parameter was subsequently examined, most wavelengths in the NIR
spectrum displayed a high percentage of correlations compared to the other combinations
of the pre-processing techniques. Regarding the application of the smoothing filter, various
windows were examined. The windows that appeared to contribute to the increased
correlation coefficient between the wavelengths and the desired parameters were those



Sensors 2023, 23, 8476 13 of 25

with lengths of 9 and 13. Consequently, in the preprocessing methods applied to the
NIR spectra for the estimation models of protein in wheats, the study case containing
all three preprocessing methods was selected. In this instance, wavelengths were found
that exhibited correlation values of up to 0.7. Regarding the smoothing filter window, a
window size of 9 was chosen as, according to the figures in Appendix A, wavelengths with
correlation coefficients up to 0.7 were observed. Concerning the selection of wavelengths to
be used as inputs in the FCM, the wavelengths that exhibited the five highest correlations
compared to the others were selected. These wavelengths demonstrated correlations
ranging between 0.6 and 0.7. In contrast, regarding the moisture content, it was concluded
that the application of the smooth filter degrades the correlation between the wavelengths
and the moisture parameter. The results indicate that only the application of the MSC
transformation can achieve the most wavelengths with a correlation coefficient above 0.7.
Finally, from the present study, it is extracted that most of the wavelengths of the NIR
spectrum do not present a correlation with the protein and moisture of the samples when
they are examined separately. However, this fact does not lead to the conclusion that they
cannot contribute to the estimation of the required parameters. The present fact needs
another form of investigation by investigating the different features that are extracted
by the whole spectra. In the design of our estimation models, we employed a specific
strategy tailored to the nature of the targeted variables. For the protein estimation model,
we utilized all three pre-processing techniques to extract the five values that demonstrate
the highest correlations with the wavelengths and protein content. Conversely, for the
moisture estimation model, we exclusively applied the MSC transformation, enabling us
to selectively identify the five wavelengths that exhibit the strongest correlations with
moisture content.

4.2. Optimization Results of the FCMs Estimation Models

In Tables 2 and 3, the weightings of the FCMs for the estimation of the wheat and
the flour parameters, as depicted in Figure 8, are presented. This graph serves as the
foundation for our estimation model for each parameter for the wheat and flour samples.
While the FCM’s structure remains consistent across all of the estimation models, the
weight within the graph undergoes variations. Upon analyzing these weights, it becomes
evident that the wavelengths with the most significant influence on estimating both the
protein and moisture content in cereals are those situated towards the higher end of the
NIR spectrum (with values exceeding 2000 nm). However, it is worth noting that specific
wavelengths scattered throughout the NIR spectrum exhibit sensitivity to the parameters
of interest. As wavelengths approach the visible spectrum, their impact on the parameter
estimation diminishes. Remarkably, the wavelengths displaying the strongest correlation
with the moisture estimation fall within the range of 1728 to 2488 nm. In contrast, the
protein estimation model highlights wavelengths in the range of 1375 to 2440 nm. A notable
trend emerges as most of the wavelengths positively contribute to the estimation of both
parameters, evident by their positive weights. Essentially, this implies that as the NIR light
reflectance value from cereals increases, so does the estimated protein content. In both
models, there is only one wavelength displaying a negative correlation.

As FCMs are being introduced for the first time in the design of parameter estimation
models for cereals and flours, based on NIR spectra, their effectiveness in the parameters
under examination is investigated, by comparing their efficiency with the application of
the PLS method. Therefore, in parallel with the FCMs, the PLS regression method is also
used, on the same spectra. This specific method was selected over other classical methods,
as it has been applied to the same problem with satisfactory results. It presents a robust
methodology for addressing multicollinearity and managing high-dimensional datasets.
Its capacity to efficiently reduce dimensionality not only guards against overfitting but
also simplifies the modeling process. Additionally, PLS’s resilience when confronted with
limited sample sizes.
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Table 2. Values of the FCM estimation model for the wheat parameters.

Weight Protein
Estimator

Selected
Wavelength

Moisture
Estimator

Selected
Wavelength

W1,1 3.11 2440.50 2.43 2487.05
W1,2 3.58 2381.07 0.03 2194.07
W1,3 0.17 2366.66 0.61 1759.74
W1,4 −0.11 1380.79 3.21 1736.30
W1,5 0.18 1375.93 −1.52 1728.63
W2,1 18.00 22.48
W2,2 10.23 5.24
W2,3 12.95 11.17
W2,4 −6.69 −15.38

Table 3. Values of the FCM estimation model for the flour parameters.

Weight Protein
Estimator

Selected
Wavelength

Moisture
Estimator

Selected
Wavelength

(nm)

Ash
Estimator

Selected
Wavelength

(nm)

W1,1 8.00 2055.69 15.46 1933.73 −9.87 1775.71
W1,2 −4.83 2044.94 −14.67 1924.22 0.01 1759.73
W1,3 −7.53 1683.97 −0.16 1457.99 0.03 1751.85
W1,4 4.05 1375.93 0.03 1405.59 −0.41 1491.35
W1,5 −0.71 1371.10 −0.54 1347.49 5.70 1480.06
W2,1 0 0 0
W2,2 0 0 0
W2,3 −0.08 0.05 0.01
W2,4 9.01 12.75 1.97

Moreover, to validate the FCM models, as well as the optimization method of their
weights, the cross-validation technique was used. By repeating the optimization procedure
of each FCM graph for a specified number of iterations, the root mean square error was
calculated for both the training and testing samples. As the number of the dataset is
relatively small, the number of the folds was set to three.

Therefore, Figures 11 and 12 present the protein and moisture results regarding the
wheat samples accordingly, while Figures 13–15 present the results regarding the protein,
moisture and ash parameters. Figures 11a, 12a, 13a, 14a and 15a present the regression curves
of the training and testing datasets using the FCM models, Figures 11b, 12b, 13b, 14b and 15b
depict the k-fold RMSEs using the FCM models, while Figures 11c, 12c, 13c, 14c and 15c
and Figures 11d, 12d, 13d, 14d and 15d present the regression curves and the k-fold RMSEs
using the PLS regression methodology.

Regarding the wheat protein and moisture estimation models, both exhibit a commend-
able performance, boasting correlation coefficients exceeding 0.9. The largest observed
discrepancy is merely 1%, which was found within the same sample for both the protein
and moisture content. Furthermore, it is noteworthy that the protein estimation model
demonstrates a stronger correlation with the moisture model. This conclusion is drawn
from the root mean square errors observed in the k-folds of the training process. While
the protein estimation model yields nearly 0.6, the moisture model displays root mean
square errors ranging over 0.7. Nevertheless, these errors remain relatively minor, sup-
porting the overall reliability of our value estimations. In summary, our study employed a
fuzzy cognitive map to estimate the protein and moisture content in wheats. The results
affirm the effectiveness of our model, showcasing correlation coefficients exceeding 0.9
for both parameters. The maximum deviations between the estimated and actual values
were limited to a mere 1%. Additionally, we observed that certain wavelengths in the NIR
spectrum are particularly sensitive to structural changes in cereals that affect the protein
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and moisture content. While these findings are promising, further validation on a larger
dataset is warranted to affirm their general applicability.
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Figure 11. Analysis of the FCM protein estimation model applied to the wheat dataset: (a) Regression
curves of the FCM model (left curve referring to training dataset and the right to the testing dataset);
(b) RMSEs as calculated using the k-fold cross validation method for the FCM model; (c) Regression
curves of the PLS model (left curve referring to training dataset and the right to the testing dataset);
(d) RMSEs as calculated using the k-fold cross validation method for the PLS model.

On the other hand, the parameter estimation models for flours exhibit a different
behavior. Initially, it is observed that—unlike the grain estimation models—in flours, at
least two out of five wavelengths that significantly affect the desired variables have a
negative correlation with the variables. Additionally, the range of values is smaller, as the
wavelengths with the highest correlations range between 1490 nm and 2055 nm. This may
be due to the value ranges of the grains processed by the factory and the flours produced,
as well as the different textures between the grains and flours, resulting in an influence
on the spectra acquisition. The results of the application of the estimation models for the
parameters of the flours are presented, as well as the root mean square errors for each of the
three parameters. Observing the mean square error that appears in the case of protein, it
seems that specific samples exhibit relatively large errors between the actual and estimated
values. It is estimated that one of the reasons for this anomaly is due to the dust generated
by the flour in the environment where the NIR spectra are taken, resulting in additional
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noise and, therefore, some samples showing significant deviations. Furthermore, larger
errors are observed in the case of the flour samples compared to the grain samples. The
above can be considered as a stimulus for further studies on this specific issue to improve
the ability to approximate the desired parameters for both flours and grains. However, the
results observed in the case of moisture and ash appear to be better, as according to the
regression curves, most of the samples in both the training and the test datasets appear to
be closer to the regression line.
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Figure 12. Analysis of the FCM moisture estimation model applied to the wheat dataset: (a) Regres-
sion curves of the FCM model (left curve referring to training dataset and the right to the testing
dataset); (b) RMSEs as calculated using the k-fold cross validation method for the FCM model;
(c) Regression curves of the PLS model (left curve referring to training dataset and the right to the
testing dataset); (d) RMSEs as calculated using the k-fold cross validation method for the PLS model.
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Comparing the regression curves and the RMSEs between the FCM models and the
corresponding PLS models for each desired parameter, it is observed that, in all cases, the
results of the FCM models are better than those of the PLS. In some cases, such as in the
case of moisture estimation in cereals and flours, there is a significant reduction in errors
when FCM models are used. This is also extracted from Table 4, which for each type of
sample and for each parameter, presents the mean RMSE of the k-fold cross validation
method for both the FCM models and the PLS models.

In all of the FCMs that were designed for the estimation of parameters in cereals and
flours, it is observed that the models based on FCMs are more effective than the estimation
models based on the PLS method. This is due to the fact that the FCMs, through their
robustness, can approach the dynamic behavior of various mechanisms, such as those
studied, at a satisfactory level. However, it should be noted that the number of principal
components in the PLS method was selected to be equal to three, which is a small value.
This value was selected as the number of samples is relatively small. Therefore, based
on the present research, the results that emerge for the inclusion of FCMs in the field
of designing parameter estimation models are quite encouraging. However, in order to
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become established in this field of parameter estimation models, there should be other
studies on the integration of FCMs and their use in the design of parameter estimation
models. In addition, the choice of features that arise from the NIR spectra and are taken into
account in the FCM also plays an important role. Therefore, the choice of other features,
such as the energy of the NIR spectrum, as well as other statistical measures, could lead to
an increase in their effectiveness.
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Therefore, according to the initial analysis of the effectiveness of the proposed models
based on the usage of a low-cost NIR spectrometer, the results indicate that by enabling
computational intelligence algorithms, the usage of low-cost NIRs can provide useful infor-
mation regarding the parameter estimation of protein, moisture and ash in mill industry
applications. However, there is a need to examine the effectiveness of both models and the
low-cost handle NIR in more samples in which the values of the samples’ parameters will
be uniformly distributed. This is a challenge as mill flour industries work on specific kinds
of wheat seeds and flours and it is difficult to create datasets that allocate the protein and
moisture values along a uniform distribution.
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(d) RMSEs as calculated using the k-fold cross validation method for the PLS model.

Table 4. Comparison of root mean square errors between the FCM and the PLS estimation models.

Sample Parameter (%) FCM Model
RMSE

PLS Model
RMSE

Wheat
Protein 0.581 0.65

Moisture 0.412 1.93

Flour
Protein 1.06 2.40

Moisture 0.09 0.38
Ash 0.020 0.055

5. Conclusions

In this study, a cost-effective NIR spectrum was employed to assess its suitability for
application within a milling industry process. The objective was to utilize this equipment to
estimate key parameters, including the protein and moisture content in wheat seeds, as well
as the protein, moisture and ash levels in flour samples. Notably, the approach deviates from
conventional state-of-the-art NIR spectrometry, which typically rely on InGaAs sensors,
as we harnessed a low-cost Fourier-Transform Infrared spectroscopy technology-based
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NIR sensor. To enhance the accuracy of our measurements, a novel calibration model is
introduced, incorporating a training phase based on the PSO optimization algorithm. This
process aimed to fine-tune a specialized FCM model specifically tailored for parameter
estimation. The design of the FCM model was based on the wavelengths extracted from
the captured NIR spectra as these wavelengths displayed heightened correlations with the
parameters under investigation. The evaluation of the low-cost spectrometer, along with
the integration of CMOS technology into NIR spectrometry, demonstrates its capability to
measure chemical parameters effectively. However, further enhancements in the accuracy
can be achieved by employing advanced calibration models that leverage AI techniques.
Moreover, expanding the dataset used for model calibration, including the proposed
FCM model in this paper, is recommended. Nonetheless, it is imperative to conduct
long-term experiments to adequately assess the equipment’s performance over extended
durations. Considering the promising outcomes of this study, our future research will
focus on integrating low-cost NIR sensors into the mill flour industry, exploring alternative
algorithms for calibration, such as reinforcement learning. Moreover, other variables and
features from the gathered NIR spectra will be examined, such as statistical parameters,
to investigate the potential improvement in the FCMs’ accuracy. Finally, the examined
NIR spectrometer will be evaluated and tested on in-line measurements, based on a larger
dataset of wheat and flour samples.
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Appendix A

Appendix A showcases the outcomes of a sensitivity analysis conducted using the em-
ployed spectrometer, demonstrating the correlation between individual wavelengths and
fluctuations in protein and moisture levels within the wheat seeds samples (Figures A1–A8).
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Appendix B

In Appendix B, Figure A9, NIR spectra are presented from four different cereal samples
with varying protein and moisture parameters. The spectra have been corrected. The
background spectrum (reference signal) has been subtracted in order to isolate the true
sample signals.
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