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Abstract: It is important to estimate the exact depth from 2D images, and many studies have been
conducted for a long period of time to solve depth estimation problems. Recently, as research on
estimating depth from monocular camera images based on deep learning is progressing, research for
estimating accurate depths using various techniques is being conducted. However, depth estimation
from 2D images has been a problem in predicting the boundary between objects. In this paper, we
aim to predict sophisticated depths by emphasizing the precise boundaries between objects. We
propose a depth estimation network with encoder–decoder structures using the Laplacian pyramid
and local planar guidance method. In the process of upsampling the learned features using the
encoder, the purpose of this step is to obtain a clearer depth map by guiding a more sophisticated
boundary of an object using the Laplacian pyramid and local planar guidance techniques. We train
and test our models with KITTI and NYU Depth V2 datasets. The proposed network constructs a
DNN using only convolution and uses the ConvNext networks as a backbone. A trained model
shows the performance of the absolute relative error (Abs_rel) 0.054 and root mean square error
(RMSE) 2.252 based on the KITTI dataset and absolute relative error (Abs_rel) 0.102 and root mean
square error 0.355 based on the NYU Depth V2 dataset. On the state-of-the-art monocular depth
estimation, our network performance shows the fifth-best performance based on the KITTI Eigen
split and the eighth-best performance based on the NYU Depth V2.

Keywords: monocular depth estimation; deep learning; computer vision; autonomous vehicle

1. Introduction

In the field of computer vision, depth estimation research is classically studied with
various methods to obtain 3D information, and it is an important issue in fields such as
visual Slam, 3D modeling, and autonomous driving.

The sensor-based depth estimation method estimates depth by using Lidar and RGB-D
cameras using light sensors. Recently, many research studies using lidar, which can grasp
3D information, have been conducted, forming the core of autonomous driving recognition
technology. Lidar can measure distance with high accuracy by emitting light pulses to an
object and detecting the reflected light via a sensor around the light source. However, in
Lidar-based depth estimations, the higher the resolution, the lower the sharpness, and the
higher the cost; moreover, the difference in the depth’s result depends on the internal and
external parameters of each sensor.

As for the depth estimation method using the sensor, the left camera-based depth
estimation has been classically studied based on the feature extraction of the camera
input image via stereo matching the hand-crafted feature method. A stereo matching
the estimated depth is performed by calculating the parallax between two images using
an arbitrary point P in 3D space and epipolar geometry based on the p and p’ points
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projected on each left and right image. The stereo-matching method is greatly affected by
the camera’s characteristics, and there is a problem in that the depth measured by lighting
and phase changes is different.

Since the development of deep learning, many studies have been conducted to solve
the problem of depth estimations based on monocular cameras using techniques such as
image segmentation and image regeneration. Deep-learning-based monocular camera
depth estimation studies started to leap forward using the model [1] that applies CNN
structure and end-to-end depth estimations at the pixel level using a deep neural network.
Most recent state-of-the-art techniques employ an encoder that extracts feature points of
an input image based on a deep convolutional neural network and a decoder that extracts
depth information. Using a classification network that extracts the feature points of input
images such as Resnet [2], Densenet [3], and ResNext [4], the backbone extracts dense
features from the input three-channel RGB image and extracts the final depth map via the
upsampling process based on the feature points extracted from the decoder. However,
recently proposed depth estimation networks with good performance are fabricated based
on a large transformer model with increased model depth. Therefore, the structure of the
model becomes very large and difficult to use in real-time. In this study, we aim to construct
a lightweight and high-performing model based on CNN without increasing the size of the
model but by changing the decoder structure.

The contributions of this study are listed below:

• In this paper, we propose a lightweight supervised depth estimation network. The
proposed network is based on generally used encoder–decoder depth estimation
networks with the Laplacian image pyramid technique that emphasizes the boundaries
between objects and the local planar guidance layer that guides the explicit relationship
between features and final output. Figure 1 shows the accuracy of the depth prediction
of the proposed network.
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Figure 1. Example of an estimated depth map from the proposed network. From left to right: input
image, our estimated depth map, and ground truth.

• The proposed model was constructed via experiments by changing the backbone
of the encoder and changing the structure of the decoder. The ConvNext [5]-Small
model pre-trained on ImageNet-1K is used as a backbone network, and our model is
composed entirely of 53 million parameters.

• The proposed model is not only lightweight but also shows high performance. It
shows an absolute relative error of 0.054 on the KITTI Eigen split [6] and a root mean
square error of 0.355 on the NYU Depth V2 dataset [7].
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2. Related Works

Deep-learning-based monocular camera depth estimation methods can be divided
into supervised-learning-based depth estimation methods using point cloud data acquired
from Lidar and RGB-D sensors and unsupervised learning depth estimation methods using
stereo-matching techniques based on epipolar geometry.

The supervised-learning-based depth estimation method estimates the final depth by
calculating the difference between the input image and the ground truth image via a loss
function using an image projected by point cloud data extracted from Lidar and RGB-D
cameras. However, there are limitations in collecting depth ground truth data, and point
cloud data collected using Lidar have a sparse value; various interpolation techniques are
applied to overcome these problems. In the above process, additional work is required,
and the data value acquired for each Lidar sensor is different, so additional parameter
adjustments are required. In order to overcome this problem, an unsupervised depth
estimation method has been proposed.

The unsupervised depth estimation method is based on the stereo matching technique
that simulates the human visual system as an input, the left image is the input, and the
reconstruction loss is calculated based on the left disparity and right disparity obtained
by learning the CNN network. The right image depth is estimated by regenerating and
left image. The above method has the advantage of not requiring point cloud ground truth
data because it estimates the depth based on epipolar geometry.

However, the above method also has a disadvantage in that a complex network
structure and various types of loss functions must be used, and solving the scale ambiguity
problem is difficult.

2.1. Supervised Depth Estimation

Supervised depth estimation is a method of extracting 3D depth information from
2D images using point cloud ground truth data acquired from 3D Lidar and RGB-D
cameras. Eigen et al. [1] proposed a learning and depth map restoration method for
depth information by constructing a multi-scale deep neural network with an encoder–
decoder structure within a single network. Laina et al. [8] proposed a single architecture
structure of the end-to-end method using a full convolution network of ResNet-based
encoder–decoder structure and Huber loss. Fu et al. [9] approached the depth estimation
problem as an ordinal regression problem and adopted a network structure that connects
the discretization technique and multi-scale method in parallel using a spacing-increasing
discretization strategy. Alhashim et al. [10] improved the accuracy and quality of depth
maps by using transfer learning.

The depth map generated via the deep learning network is trained based on the
difference between the actual image and the generated depth map via loss functions such
as route mean square error and silog error. The datasets used for learning and evaluation
include the KITTI dataset, which consists of a Lidar-based outdoor dataset, and the NYU
dataset, which consists of an indoor dataset based on RGB-D sensors.

Although there have been many advances in monocular camera-based depth estima-
tion techniques with the introduction of deep neural networks, location information and
spatial information are lost in the learning process, and it is difficult to estimate the exact
boundary between objects in the upsampled process.

In order to solve this problem, the fully connected layer used in the existing classifi-
cation network is changed to a fully convolutional layer or U-Net [11] that connects the
heat map extracted in the upsampling process by extracting features from each convolution
layer of the backbone network and the ASPP [12] technique, which extended the field of
view of the input feature more widely by applying dilated convolution.

BTS [13] provides an extended field of view in the encoding process by using the ASPP
module in the existing encoder–decoder structure network and proposes a local planar
guidance layer technique to guide the direct and explicit relationship between features and
depth maps by applying the ray plane intersection formula to find the intersection of the
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camera ray and the 3D plane. Equation (1) is the ray plane intersection formula, where
n = (n1, n2, n3, n4) the estimated plane coefficients, and (ui, vi) is the k × k patch-wise
normalized coordinates of pixel i.

c̃i =
n4

n1ui + n2vi + n3
(1)

In the decoding process, the feature map that passed through the local planar guidance
layer is shown in Figure 2, and it is reconstructed into four single vectors, experienced
normalization, and sigmoid functions finally formed a map with the same size as the
original image. By using the local planar guidance layer, it is possible to reduce the amount
of computation and, at the same time, use four parameters to effectively restore the existing
resolution.
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Figure 2. Local planar guidance.

Lapdepth [14] applied the Laplacian image pyramid technique in the decoding process
to improve performances and extract a clearer depth map. The ASPP module is applied to
the encoding process to provide a wide field of view, and by linking the Laplacian residual
RGB image to the extracted multi-scale feature map, it provides guidance to the location
information and spatial information lost in the encoding process; the boundaries of the
objects can be clearly distinguished. In addition, at each decoding step, the depth map is
extracted and connected to the next decoding stage in the upsampling process to connect
low-resolution depth information and high-resolution depth information. By combining
local information at low resolutions and global information at high resolutions, a clear
depth map can be extracted.

This paper proposes an effective and high-performance decoder by transforming the
Laplacian image pyramid and local planar guidance layer. BTS [13] and Lapdepth [14] are
our main competitive models.
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2.2. Unsupervised Depth Estimation

The depth estimation method based on unsupervised learning obtains the final depth
via the disparity between the left image and the right image based on the stereo-matching
technique that simulates the human visual system. Zhou et al. [15] first proposed an un-
supervised learning-based depth estimation technique for estimating video-based motion
and depth estimations. Godard et al. [16] used the loss that regenerates the left image from
the right image by calculating the reconstruction loss based on the left disparity and the
right disparity obtained by passing the left input image via the CNN network and the loss
that regenerates the right image from the left image.

Finally, a method for estimating the depth was proposed by applying the image
regeneration method proposed by generative adversarial networks. Godard et al. [17]
proposed an accurate and simple depth estimation network structure using the auto-mask
technique based on the difference between the two images. Almalioglu et al. [18] proposed
a network structure for estimating depth estimation and visual odometry using generative
adversarial networks, and Wang et al. [19] proposed a network structure with improved
performances via a recurrent neural network structure using continuous images.

2.3. ConvNext

ConvNext [5] is based on the vision transformer structure and ResNet50 model, which
has recently shown state-of-the-art performances in various deep learning fields. It shows
excellent performance as a model composed only of a convolutional neural network by
changing the convolution method, activation function, and training method. The(1:1:3:1)
ratio block configuration used in the former model was adopted, the block was changed
to (3,3,9,3), and the grouped convolution proposed in ResNext [4] was used. The memory
efficiency and accuracy improved by changing the bottleneck structure. Similar to the
7 × 7 size window used in the transformer, the existing 3 × 3 kernel was replaced with a
7 × 7 kernel, showing high accuracy. In addition, the performance improved by applying
layer normalization instead of batch normalization and the pre-activation technique that
proceeds from normalization -> activation function -> convolution in the configuration
of convolution -> normalization -> activation function. Because the transformer model
has little inductive bias, it has better performance than general convolution when learning
using a large dataset. However, the ConvNext [5] model outperformed the transformer
even on large datasets such as the ImageNet-22K model using only the inductive bias of
the convolution. In this paper, the proposed network uses the ConvNext [5]-Small and Tiny
models as the backbone and constructs the convolution layer using the layer structure of
ConvNext [5].

3. Proposed Method

In this paper, as shown in Figure 3, we propose a modification of the local planar
guidance layer method proposed by the existing monocular camera depth estimation
network BTS [13] and a monocular camera depth estimation network via a modification of
the Laplacian image pyramid method. The purpose of this study is to design a lightweight
model that extracts accurate and clear depth maps using network designs that apply the
latest deep learning techniques and various depth estimation techniques to an encoder–
decoder-based monocular camera depth estimation network. In order to make a lighter
and simpler model, the network was constructed using only convolution without adopting
the transformer structure, which has been widely used in various deep learning methods
recently. The network was composed of only CNN and was constructed by changing the
detailed parameters and decoder structure.
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3.1. Network Structure Details

In this paper, the network is constructed with an encoder–decoder structure and
the ConvNext-Small model, which shows CNN-based state-of-the-art performance in the
image classification field. Figure 3 shows the proposed network based on the Lapdepth
structure. The encoder is divided into a total of 4 layers, and the skip-connection technique
that extracts a feature map for each layer and connects it with each layer of the decoder
is applied. The feature map, which is finally reduced to 1/16 resolution compared to the
input image via the encoder, goes through the ASPP module that searches a wider receptive
field with a small amount of computation. The feature map extracted through the ASPP
module is upsampled through two processes in the decoding process. One feature map is
upscaled to the original size via the local planar guidance layer and then down-sampled to
1/8 of the original size. Another feature map is up-sampled with the convolution process,
and then the map is extracted from the 3rd layer of the encoder to compose one feature
map. The feature map is downsampled through the configured feature map, and the local
planar guidance layer is downsampled to 1/8 of the size of the original image inspired by
the Laplacian pyramid technique; it is then downsampled to 1/16 of the size of the original
image and then again at 1/8 of the size. It is concatenated with the image obtained via the
difference with the image upsampled.

The new feature map generated by this process again passes through the local planar
guidance layer and the upconvolution layer to generate the feature map and consists of a
network that proceeds through a total of three iterative operations.

In the last decoding layer, the process of concatenating the feature points extracted for
each layer is omitted, and the image is obtained by the difference from the image that is
downscaled by 1/2 from the original image and then upscaled again. The up-convolved
feature map and feature map passing through the local planar guidance layer was added,
and then a dense depth map was extracted from the final convolution layer.

All convolution blocks were constructed using the pre-activation technique shown in
Figure 4. The pre-activation technique was applied in the order of activation
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function -> normalization -> convolution in the convolution block composed of convo-
lution -> normalization -> activation function used in the existing convolution block. The
convolution block of the bottleneck structure is a technique that combines the feature map’s
output from the convolution block and the input feature map for identity mapping when
the feature map passes through the convolution block.
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Figure 4. Typical convolution block (a) and pre-activation convolution block with layer normalization
with 7 × 7 convolution (b).

However, since additional functions are added via the activation function in each
layer of the convolution block, an additional function is added between the input feature
map and the output feature map. When the pre-activation technique is applied, only
the convolutional feature map is output when passing through the convolution block
because the feature map passes through the activation function before passing through the
convolution block, and there is an improvement in performance in the resulting effect.

The layer that extracts the last depth map consists of two 7 × 7 convolution -> one
1 × 1 convolution -> a sigmoid function for extracting the final depth map using a small
number of activation functions, and by arranging a 7 × 7 kernel-sized convolution, it is
configured to search a wider area.

GELU was used as the activation function in all layers except for the last layer from
which the depth map was extracted, and the network was constructed by applying the layer
normalization technique. In order to attain a wider receptive field, all up-convolution layers
except the ASPP Module and channel reduction layer are configured with 7 × 7 kernel
size convolution.

Algorithm 1 describes the details of the proposed decoder structure using a pseudo
code. The variable ei denotes a feature map extracted for each layer of the encoder that
is skip-connected in the decoding process. Di is a depth map generated by passing local
planar guidance.
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Algorithm 1 The proposed decoder architecture.

1. Input: Encoded feature at each encoder layer ei
2. Output: Estimated depth map D f inal
3. Laplacian pyramid image: pi
4. Decoder start
5. f = ASPP (e4)
6. for (i = 4; i ≥ 1; i = i − 1)
a. Di = Local planar guidance ( f )
b. f = Upconvolution ( f )
7. if i > 1 then
a. f = concatenation (Di , pi, ei−1, f )
8. if i == 1 then
a. f = concatenation (Di , pi, f )
9. end
10. D f inal = convolution7x7(convolution7x7(convolution1x1(Sigmoid( f ))

))
× dmax

11. return D f inal
12. Decoder end

3.2. Training Loss

The loss function used in the experiment was the scale-invariant logarithmic (SILog) loss
presented by Eigen et al [1]. The scale invariant error is defined by the following equation.

di = logyi − logýi (2)

As in the equation in (2the pixel (N) containing valid depth information among the
ground truth images in the equation below is obtained by calculating the difference by
applying the log to the predicted depth map (yi) and the ground truth (y′i).

D(yi,
´

yi) =
1
N ∑

i
d2

i −
λ

N2

(
∑

i
di

)2

(3)

Moreover, λ = 0.85, and the calculated D is finally calculated as a value defined as α =
10, and a loss calculation is performed via the root calculation.

L = α
√

D(yi, ýi) (4)

4. Experiments and Evaluation

In this paper, experiments and evaluations were conducted for indoor and outdoor
scenes using the KITTI Eigen split and NYU Depth V2 datasets.

4.1. KITTI Datasets

The KITTI dataset was acquired using Lidar, GPS, IMU, and a camera in outdoor
scenes. It consists of a total of 61 outdoor scenes in four categories: ‘city,’ ‘residential,’ ‘road,’
and ‘campuses,’ and consists of a total of 24,185 RBG image data and depth ground truth
data. It contains left and right stereo images with a resolution of 368 × 1244: 23,488 images
from a total of 32 scenes were used for learning, and 697 images from 29 scenes were used
for evaluation and testing.

4.2. NYU Depth V2 Dataset

The NYU Depth V2 [10] dataset consisted of a total of 464 internal scenes and was
collected using a Kinect sensor. The dataset used for training consists of 24,231 images of
a total of 249 scenes, and the dataset used for testing consists of 654 images of a total of
215 scenes used for testing. The resolution is 480 × 640 and contains RGB images and a
depth map corresponding to each RGB image.
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4.3. Experiment Environment and Details

For backbone networks, the ConvNext-small model used in this paper had weights pre-
trained with ImageNet-1K, and AdamW was used as the optimizer. A total of 50 epochs
were set. The batch size was set to 16, and the initial learning rate was set and finally
decreased. The experiment was conducted with Pytorch version 1.10.1 in a Python 3.8 envi-
ronment, and all experimental environments were performed using a device equipped with
4 NVIDIA Geforce GTX 1080ti. Detailed equipment information is shown in Table 1. Using
accurate performance comparisons with Lapdepth and BTS methods used as the baseline,
the ResNext-101 model was used as backbones in the network to make comparisons via
training and performance evaluation. In the NYU Depth V2 dataset, RGB cameras and
RGB-D sensors have different frame rates, so they cannot be set at the same time. The data
set preprocessing method of [1] was followed. The depth image taken at the closest time
based on each RGB image was used as the ground truth, and the one-to-many mapped RGB
image was removed. The part where the depth value was missing from the selected depth
map was processed as a mask. In addition, areas such as light reflection, doorways, and
windows were filled with maximum or minimum depth information; the maximum depth
value was set to 10 m, and the minimum depth value was set to 0.001. During training,
a random crop method was applied to an existing 640 × 480 image with a resolution of
416 × 544, and for evaluation, the center crop method was applied within a range: width
within (43, 608) and height within (45, 472). For the KITTI dataset, a random crop technique
was applied with a resolution of 352 × 704 during training used in [20] was applied.

Table 1. Experiment with PC specifications.

CPU Intel I9 7920X
RAM 128 GB

OS Ububtu 18.04LTS
GPU NVIDIA GeForce GTX 1080ti × 4

For each dataset, random color brightness, contrast adjustment, and horizontal flipping
techniques were applied with a probability of 50% during training, and random rotations
of [−1, 1] and [−2.5, 2.5] were used to prevent overfitting.

4.4. Evaluation

Performance evaluations were conducted using Abs_Rel, RMSE, Sq Rel, and Threshold
performance evaluation indicators are shown in Equations (5)–(8) below. Two datasets,
KITTI Eigen split and NYU Depth V2 were used.

Abs Rel =
1
|T| ∑̂

d∈T

∣∣∣d̃− d
∣∣∣

d
(5)

RMSE =

√√√√ 1
| T | ∑̂

d∈T

||d̃− d ||2
d

(6)

Sq Rel =
1
| T | ∑̂

d∈T

||d̃− d ||2
d

(7)

Threshold = % o f d̃i s.t.max

(
d̃i
di

,
di

d̃i

)
= δ < thr, (8)

We proceeded using the same evaluation method on the NYU Depth V2 dataset as
BTS [13] and Lapdepth [14], and the proposed network shows better performance, as shown
in Table 2. As can be seen from the evaluation result in Table 2, the proposed network,
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which is applied by modifying the technique proposed by the two existing networks, shows
better performance on the overall evaluation index.

Table 2. Performance comparison using NYU Depth V2 dataset with BTS and Lapdepth.

Method
Lower Is Better Higher Is Better

RMSE Abs_Rel Sq_Rel δ1 δ2 δ3

BTS [13] 0.392 0.110 0.066 0.885 0.978 0.995
Lapdepth [14] 0.384 0.105 - 0.895 0.983 0.996

Ours 0.355 0.102 0.053 0.904 0.985 0.998

Figure 5, comparing the depth maps extracted from the proposed networks with state-
of-the-art methods. As can be seen in Figure 5, for outdoor environments, the proposed
network accurately estimates the depth even for small objects on the road or a bicycle right
next to a tree, and it can accurately distinguish a boundary between objects. Moreover,
when comparing with the depth map extracted from the NeWCRFs model located at the top
of the state-of-the-art techniques, a more sophisticated depth map is extracted compared to
other networks. However, the KITTI dataset depth ground truth does not have a depth
value for the upper part outside the lidar detection range. Therefore, in the learning process,
the upper part of the image does not train well, so as can be seen in the other network
results, our network also has limitations in that the depth of the upper part cannot be
accurately measured in the inference process.
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For a more accurate comparison, in Figure 6, color was applied to the depth map,
and a detailed comparison with BTS and Lapdepth was performed via magnification. As
shown in Figure 6, it can be confirmed that the proposed network accurately grasps the
boundary between objects, such as people overlapping with the surrounding environment
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and traffic signs overlapping with surroundings, compared to BTS and Lapdepth, and it
also more precisely grasps the shape of an object.
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In Figure 7, as shown in the third and fourth pictures, the proposed network predicted
depths more accurately in the curved part, such as the inside of the bathtub, between the
trash can and the object on the bathtub, and distinguishing the boundary between a wall
and a mirror on the same plane and predicting the depth accurately.
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As shown in Table 3, The proposed model shows high performances and lower per-
formances in total parameters not only in the convolution-based network but also in com-
parison with the transformer-based networks such as Adabins [21] and DPT-Hybrid [22].
Compared to Lapdepth, the number of parameters of the proposed network is about 71%,
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but the performance improved by 8.1%. Compared to BTS, the number of parameters of the
proposed network increased by 12%, but the performance improved by 11%. Although the
performance of the proposed model is not a state-of-the-art result compared with the model
that uses a transformer backbone pre-trained with ImageNet-22k dataset, the proposed
model has much better performances compared to the size of the model.

Table 4 shows the comparison results with the latest State-of-the-art Network after
evaluation using the KITTI Eigen split Dataset. When ConvNext-Small was used as a
backbone, the top 5 scores were recorded based on State-of-the-art papers.

Table 5 shows the results of the comparison with the latest state-of-the-art network
after evaluations using the NYU Depth V2 dataset. When ConvNext-Small was used as a
backbone, the top six scores were recorded based on the state-of-the-art paper.

Table 3. Performance comparison results and network parameters using NYU Depth V2 dataset.

Method Parms
Lower Is Better Higher Is Better

RMSE Abs_Rel Sq_Rel δ1 δ2 δ3

BTS [13] 47 M 0.392 0.110 0.066 0.885 0.978 0.995
Lapdepth [14] 74 M 0.384 0.105 - 0.895 0.983 0.996
Adabins [21] 78 M 0.364 0.103 - 0.899 0.984 0.997

DPT-Hybrid [22] 123 M 0.357 0.110 - 0.904 0.988 0.994
NeWCRFs [23] 270 M 0.334 0.095 0.045 0.922 0.992 0.998

Ours 53 M 0.355 0.102 0.053 0.904 0.985 0.998

Table 4. Performance comparison using the KITTI Eigen split with the state-of-the-art networks.

Method Cap Lower Is Better Higher Is Better

Abs_Rel RMSE Sq_Rel δ1 δ2 δ3

DORN [9] 0–80 m 0.072 2.727 - 0.932 0.984 0.994
DPT-Hybrid [22] 0–80 m 0.062 2.573 - 0.959 0.995 0.999

BTS [13] 0–80 m 0.060 2.798 0.241 0.955 0.993 0.998
Lapdepth [14] 0–80 m 0.059 2.446 0.212 0.962 0.994 0.999
Adabins [21] 0–80 m 0.058 2.360 0.190 0.964 0.995 0.999

GLPDepth [24] 0–80 m 0.057 2.297 - 0.967 0.996 0.999
Ours 0–80 m 0.054 2.252 0.179 0.969 0.996 0.999

MonoDelsnet [25] 0–80 m 0.053 2.101 0.161 0.969 0.996 0.999
DepthFormer [26] 0–80 m 0.052 2.143 0.158 0.975 0.997 0.999

NeWCRFs [23] 0–80 m 0.052 2.129 0.155 0.974 0.997 0.999
BinsFormer [27] 0–80 m 0.052 2.098 0.151 0.974 0.997 0.999

Table 5. Performance comparison using the NYU Depth v2 Dataset with state-of-the-art networks.

Method
Lower Is Better Higher Is Better

RMSE Abs_Rel Sq_Rel δ1 δ2 δ3

BTS [13] 0.392 0.110 0.066 0.885 0.978 0.995
Lapdepth [14] 0.384 0.105 - 0.895 0.983 0.996
Adabins [21] 0.364 0.103 - 0.899 0.984 0.997

DPT-Hybrid [22] 0.357 0.110 - 0.904 0.988 0.994
P3Depth [28] 0.356 0.104 - 0.898 0.981 0.996

Ours 0.355 0.102 0.053 0.904 0.984 0.998
LocalBins [29] 0.351 0.098 - 0.91 0.986 0.997
GLPDepth [24] 0.345 0.100 - 0.915 0.988 0.997
Depthformer

[26] 0.339 0.096 - 0.921 0.989 0.998

NeWCRFs [23] 0.334 0.095 0.045 0.922 0.992 0.998
Binsformer [27] 0.330 0.094 - 0.925 0.989 0.997
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As shown in Tables 5 and 6, the proposed CNN-based model shows good performance
compared to state-of-the-art networks and reaches the latest transformer-based models.

Table 6. KITTI Eigen split performance comparison with BTS and Lapdepth using the same back-
bone network.

Method Backbone Parms
Lower Is Better

RMSE Abs_Rel

BTS [13] ResNext-101 113 M 2.798 0.060
Lapdepth [14] ResNext-101 74 M 2.446 0.059

Ours
ResNext-101 84 M 2.389 0.057
ConvNext-

Small 53 M 2.252 0.054

As shown in Table 6, a Performance comparison with BTS and Lapdepth was per-
formed using the same backbone network ResNext-101 for the accurate performance
evaluation of the proposed network. For the Same backbone networks, our network shows
higher performance than the others. When ConvNext-small was used as a backbone
network, Performance improved by more than 10% compared to Lapdepth and BTS.

4.5. Ablation Study

Figure 8 shows the change in the design of the decoder via a change in the synthesis
method of the depth map extracted for each decoder layer in the process of designing the
final layer of the decoder. Table 7 shows a comparison of the results of the KITTI Eigen
split validation dataset with different decoder structures. The method then (a) summates
the depth map extracted from all layers in the decoding process, and the other method
involves (b) concatenating the depth map extracted from all LPG layers in the last layer.
Method (C) is proposed in this.
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Table 7. KITTI Eigen split validation results according to decoder structure. (a) Sum of all depth
maps extracted from each layer. (b) Concatenation of all depth maps extracted from each layer.
(c) Concatenate D1 with the final layer (proposed).

Method
Lower Is Better

RMSE Abs_Rel

(a) 2.337 0.057
(b) 2.322 0.056

(c) (proposed) 2.252 0.054
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As a result of the experiment, a sharper depth map was extracted by method (a),
which summed all the depth maps extracted from each layer. However, in the process of
adding images, substantial depth information is lost, and the performance deteriorates.
When comparing the (b) method in which all depth maps extracted from each layer are
concatenated at the last stage and (c) the method of concatenating only the D1 depth map
in the last stage, the proposed (c) decoder structure has better performance.

Table 8 shows the performance evaluation results according to the backbone network
change in the KITTI Eigen split. The proposed network is a model constructed using only
convolution without using attention and a transformer, and in order to reduce the com-
plexity and lightweight properties of the model, performance evaluations were performed
using ConvNext-Tiny and ConvNext-Small models as backbone networks. Based on the
KITTI Eigen split dataset, when ConvNext-Tiny and ConvNext-Small models were used as
backbone networks, respectively, absolute relative errors at 0.057 and 0.054 were obtained.
When the ConvNext-Small model was used as a backbone network, the highest perfor-
mance was shown, and it can be confirmed that there is not much performance difference
compared to the SOTA networks using other very large pretrained transformer models. In
addition, the number of parameters based on the KITTI Eigen split dataset ConvNext-small
Backbone is 53 M, and the number of parameters based on the ConvNext-Tiny model is
31 M, making it a very lightweight model compared to the existing transformer-based
depth estimation network.

Table 8. KITTI Eigen split evaluation result, with different backbone networks (except for the
backbone network, other environments are the same).

Backbone Parms
Lower Is Better Higher Is Better

RMSE Abs_Rel Sq_Rel δ1 δ2 δ3

ResNext-101 84 M 2.389 0.057 0.198 0.963 0.994 0.999
ConvNext-Tiny 31 M 2.337 0.057 0.191 0.965 0.995 0.999

ConvNext-Small 53 M 2.252 0.054 0.179 0.969 0.996 0.999

Table 9 shows the evaluation result of different Laplacian Pyramid methods. The
Laplacian-based decoder proposed by Lapdepth [7]. In our network, it changed to filtering
from the upsampled image to the original image, and the same effect as the low pass
filter is applied to improve the performance. Table 10 is the KITTI Eigen split Evalua-
tion result according to the upconvolution block change. Experiments were conducted
using the original convolution block, pre-activation with 3 × 3 convolution, and pre-
activation with 7 × 7 convolution, and the performance is best when the pre-activation
with 7 × 7 convolution structure is adopted.

Table 9. KITTI Eigen split evaluation results with different Laplacian Pyramid methods (except the
Laplacian Pyramid, other environments are the same).

Method
Lower Is Better Higher Is Better

RMSE Abs_Rel Sq_Rel δ1 δ2 δ3

Laplacian
Pyramid 2.301 0.055 0.182 0.967 0.996 0.999

Inversed
Laplacian
Pyramid(proposed)

2.252 0.054 0.179 0.969 0.996 0.999
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Table 10. KITTI Eigen split Evaluation Result, With Different upconvolution blocks (Except upconvo-
lution block, other environments are same).

Method
Lower Is Better Higher Is Better

RMSE Abs_Rel Sq_Rel δ1 δ2 δ3

Original 2.341 0.058 0.190 0.964 0.995 0.999
Pre-activation (3 × 3) 2.292 0.055 0.183 0.968 0.996 0.999
Pre-activation (7 × 7) 2.252 0.054 0.179 0.969 0.996 0.999

5. Conclusions

In this paper, we proposed a supervised monocular depth estimation network using
various deep-learning techniques. We propose a simple and lightweight network that
shows the performance of the state-of-the-art methods via the fusion and transformation
of the local planar guidance layer and the Laplacian image pyramid technique using
only convolution.

Via experiments using various deep learning techniques, such as large kernel sizes
and pre-activation, the performance of the decoder-based depth estimation networks is
beyond the performance shown by the existing CNN-based depth estimation networks.

Moreover, as can be seen from the generated depth map, a higher level of depth is
predicted by accurately grasping the boundary of objects, and it shows good performance
in both close and far predictions.

The next study will aim to make the model lighter and use TensorRT to configure a
more accurate network that can guarantee real-time performance within an embedded
board such as NVIDIA Xavier.
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