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Abstract: LiDAR placement and field of view selection play a role in detecting the relative position
and pose of vehicles in relocation maps based on high-precision map automatic navigation. When
the LiDAR field of view is obscured or the LiDAR position is misplaced, this can easily lead to loss of
repositioning or low repositioning accuracy. In this paper, a method of LiDAR layout and field of
view selection based on high-precision map normal distribution transformation (NDT) relocation is
proposed to solve the problem of large NDT relocation error and position loss when the occlusion
field of view is too large. To simulate the real placement environment and the LiDAR obstructed by
obstacles, the ROI algorithm is used to cut LiDAR point clouds and to obtain LiDAR point cloud
data of different sizes. The cut point cloud data is first downsampled and then relocated. The
downsampling points for NDT relocation are recorded as valid matching points. The direction
and angle settings of the LiDAR point cloud data are optimized using RMSE values and valid
matching points. The results show that in the urban scene with complex road conditions, there are
more front and rear matching points than left and right matching points within the unit angle. The
more matching points of the NDT relocation algorithm there are, the higher the relocation accuracy.
Increasing the front and rear LiDAR field of view prevents the loss of repositioning. The relocation
accuracy can be improved by increasing the left and right LiDAR field of view.

Keywords: normal distribution transformation; high-precision maps; automatic navigation

1. Introduction

Over the past two decades, relocation has played a crucial role in automotive driving
applications. Relocation is used to obtain the vehicle’s global position and pose based
on the built map. Various relocation methods have been successful in resolving such
problems using global navigation satellite systems (GNSS) [1–3], the inertial measurement
unit (IMU) [4,5], cameras, LiDAR, and other sensing sensors.

The integration of GNSS and IMU is a common solution to these problems [6–8].
However, GNSS is prone to signal interference or loss, in urban buildings, for example.
The current solution is to use mileage information to compensate for GNSS measurements.
However, performance in auto-driving related applications is still generally insufficient.

Cameras are one of the most attractive relocation sensors because of their inherent
high information content, low cost, and small size [9–11]. Visual relocation uses the large
amount of information provided by the camera to estimate the robot position. Because
accurate and reliable positioning is required where the GPS signal is weak, a new visual
measurement framework for land vehicle positioning was proposed by Zhiyong Zheng [12].
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However, for outdoor large-scale relocation, ensuring its robust operation is still very
challenging especially in changing environments and adverse weather conditions. Kaixin
Yang presents a coordinated positioning strategy that is composed of semantic information
and probabilistic data association, which improves the accuracy of SLAM (Simultaneous
Localization and Mapping) in dynamic traffic settings [13]. However, many walls and
windows in a city are made of glass or vinyl and are easily exposed to light during the day.

An increasingly popular solution to the city problem is to stop using GNSS and camera
measurements altogether and rely on LiDAR, which measures 3D scans of the environment.
Compared with cameras and GNSS, LiDAR has better penetrability and anti-interference
characteristics. LiDAR detects objects and surfaces using distance measurements, which
are computed from the time-of-flight of the reflected light pulses [14–16]. Furthermore, the
amount of data acquired by a LiDAR system is less than in the case of a camera. Hence
the LiDAR sensor is used frequently for positioning and object detection. However, most
LiDAR-based localization solutions with prior point-cloud maps assume that the road
scenes are relatively constant, therefore new constructions, road-side vegetation, partial
occlusions by changing objects may severely compromise its robustness. Therefore, an
interesting but open question is whether LiDAR can be used for robust relocalization in
large-scale changing environments.

In large-scale and dynamic urban environments, the normal distribution transfor-
mation (NDT) algorithm based on high-precision maps is one of the main repositioning
algorithms widely used in automotive driving applications [17,18]. In comparison to the
SLAM algorithm, the NDT algorithm is found to be more effective for large point clouds.
The NDT registration algorithm is time-consuming and stable, has little correlation with
the initial value, and can be corrected well when the initial error is large. The open source
Autoware algorithm at Nagoya University mainly uses the NDT algorithm. The Autoware
algorithm uses the NDT matching registration algorithm to obtain its own position and
position information in the LiDAR point cloud map. However, the NDT algorithm is not
robust regarding significant geometric changes to the environment or overly unexpected
or dynamic objects [19,20]. These shortcomings seriously affect the performance of scan
matching based on high-precision maps. The NDT relocation algorithm can handle some
environmental changes, such as the accidental obscuring of objects (LiDAR sensors par-
tially obscured by leaves or other vehicles), which is unavoidable in cities. When there is a
difference between the environment and the map, the positioning accuracy of nondestruc-
tive testing decreases. In practical applications multi-LiDAR is used for positioning. The
position of the LiDAR directly determines the LiDAR field of view. Different views of the
LiDAR field of view have a direct impact on the positioning accuracy of vehicles. Many
studies have not specifically assessed the relationship between point cloud occlusion at
different locations and noninvasive detection performance based on high-precision maps.

2. Algorithm Principle
2.1. Loam

LOAM (lidar odometry and mapping in real time) is a high-precision and real-time
positioning and mapping algorithm based on 3D LiDAR proposed by Ji Zhang et al. [21,22].
The core of the LOAM framework is in two parts, a high frequency odometer and low
frequency mapping, as shown in Figure 1.
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Figure 1. System structure diagram of the LOAM algorithm.

The odometer performs scan-scan matching through a high frequency and low number
of point clouds, estimates the motion relationship between two frames, and outputs the
results to the mapping algorithm; mapping matches and aligns the undistorted point
cloud to the map at a frequency of 1 Hz, using the scan-map matching method [23,24].
Finally, the attitude transformation created by the two algorithms is integrated to obtain
the transformation output of LiDAR, with an attitude to the map of about 10 Hz.

We start with the extraction of feature points from the LiDAR cloud, pk. We select
feature points that are on sharp edges and planar surface patches. Let i be a point in pk,
i ∈ pk and let S be the set of consecutive points of i returned by the LiDAR scanner in the
same scan. This defines a term to evaluate the smoothness of the local surface as

c =
1

|S| ·
∥∥∥XL

(K,i)

∥∥∥
∥∥∥∥∥ ∑

j∈S,j 6=i

(
XL
(K,i) − XL

(K,j)

)∥∥∥∥∥. (1)

In this paper, the curvature of a point is calculated according to the above formula. In
practice, we only need to compare the curvature of a point so that we can find the curvature
of the point in the square coordinate of the difference of five points around a point. In this
way, we can find the curvature, c, of each point, and by comparing the curvatures, we can
select the edge points with a larger curvature and the plane points with a smaller curvature.
To prevent the feature points from clustering, each scanned point cloud is divided into four
parts, from which two points with the largest curvature are selected as edge points and
four points with the smallest curvature are selected as plane points.

When selecting points, we want to avoid selecting points around already selected
points or points whose LiDAR lines are close to parallel planes, which are generally
considered unreliable because they cannot be seen at any time. We also want to avoid
possible obscuring points. The odometry algorithm estimates the motion of the LiDAR
within a sweep. Let tk be the starting time of a sweep, k. At the end of each sweep, the point
cloud perceived during the sweep, pk, is reprojected to the time stamp tk+1. We denote the
reprojected point cloud as

_
pk. During the next sweep, k + 1,

_
pk is used together with the

newly received point cloud, pk+1, to estimate the motion of the LiDAR. The next step is to
find the corresponding relationship, i.e., to match the feature points of two point clouds; the
corner point of pk+1 matches the corner line of

_
pk, and the plane point of pk+1 matches the

plane of
_
pk. With the corresponding relationship between point-to-line and point-to-face,

we can calculate the distance between point-to-line and point-to-face:

dE =

∣∣∣(X̃L
(k+1,i) − X̄L

(k,j)

)
×
(

X̃L
(k+1,i) − X̄L

(k,l)

)∣∣∣∣∣∣(X̄L
(k,j) − X̄L

(k,l)

)∣∣∣ (2)
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Then we can find the distance from the plane point to the corresponding plane:

dH

∣∣∣∣∣∣
(

X̃L
(k+1,i) − X̄L

(k,j)

)((
X̄L
(k,j) − X̄L

(k,l)

)
×
(

X̄L
(k,j) − X̄L

(k,m)

))∣∣∣∣∣∣∣∣∣(X̄L
(k,j) − X̄L

(k,l)

)
×
(

X̄L
(k,j) − X̄L

(k,m)

)∣∣∣ (3)

The LiDAR motion is modelled with constant angular and linear velocities during a
sweep. This allows us to linearly interpolate the pose transformation within a sweep for
the points that are received at different times. If we let t be the current time stamp, and
recall that tk+1 is the starting time of sweep k + 1, the linear interpolation formula is

TL
(k+1,i) =

ti − tk+1
t− tk+1

TL
k+1. (4)

In order to obtain the corresponding relationship between the points in this frame
data and the points in the previous frame data, we use a rotation matrix R and a translation
amount T.

XL
(k+1,i) = RX̃L

(k+1,i) + TL
(k+1,i)(1 : 3) (5)

Since the derivation of rotation matrix is very complex, the rotation matrix R is
expanded as follows by the Rodrigues formula:

R = eω̂θ = I + ω̂ sin θ + ω̂2(1− cos θ). (6)

This makes it easy to derive the rotation matrix.
Now we have the distance from point-to-line and point-to-face, we can obtain the

error function for optimization:

f
(

TL
k+1

)
= d. (7)

Each line in f represents a characteristic point. The next requirement is to solve the
Jacobian matrix. Finally, the LM method is used for optimization:

TL
k+1 ← TL

k+1 −
(

JT J + λdiag
(

JT J
))−1

JTd (8)

Since the solution in the previous step is the result according to the local LiDAR
observation coordinate system TL, it solves the transformation between adjacent frames.
However, in order to simultaneously locate and map, it is necessary to solve the transfor-
mation under the global coordinate system TW . Therefore, when we obtain the attitude
transformation information of several adjacent frames, we need to match it with the global
map and add it to the global map.

Finally, the attitude information obtained from the LiDAR odometer solution and the
information obtained from the map construction are transformed and integrated, through
the use of rviz software, for example.

2.2. NDT Relocation Algorithm

In order to identify the location of the LiDAR in the offline map, we compared the
point cloud from the LiDAR scan with the point cloud from the offline map. During the
relocation process, the point cloud from the LiDAR scan may differ from the point cloud
from the offline map, either because the LiDAR field of view is occluded, or because the
vehicle uses only part of the LiDAR point cloud.

For relocation in maps with deviations, we use the NDT alignment algorithm, which
does not compare the difference between two point clouds but transforms the reference
point cloud map into a normal distribution of multidimensional variables [25–27]. If the
transformation parameters enable a good match between the two sets of LiDAR data, then
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the probability density of the transformed points in the reference system will be large.
Therefore, an optimization method can be considered to find the transformation parameter
that maximizes the sum of the probability densities, when the two sets of LiDAR point
cloud data will match best.

The first step is to grid the 3D offline point cloud map, using a small cube to divide the
entire space of scanned points, and for each grid, calculate its probability density function
based on the points within the grid. This can be described as:

~µ =
1
m

m

∑
q=1

~yq (9)

Σ =
1
m

m

∑
q=1

(
~yq −~µ

)(
~yq −~µ

)T (10)

where
→
µ is the mean of the normal distribution of the grids of the offline map, m indicates

the number of points in the offline map grid, q means the qth point in the offline map

grid,
→
y q=1,...,m for all scanned points in the offline map grid, and ∑ denotes the covariance

matrix of the offline map grid. The probability density function of a grid can be described
as:

f (~x) =
1

(2π)
3
2
√
|Σ|

e−
(~x−~µ)T Σ−1(~x−~µ)

2 . (11)

The use of normal distribution to represent an otherwise discrete offline point cloud
map has many benefits. This chunked, smooth representation is continuously derivable
and the probability density function of each lattice can be thought of as an approximation
to a local surface, which not only describes the location of the surface in space, but also
contains information about the orientation and smoothness of the surface.

When using NDT alignment, the goal is to find the pose of the current LiDAR scan
in such a way as to maximize the likelihood of the currently scanned points lying on the
surface of the offline map. The parameter we then need to optimize is the transformation
(rotation, translation, etc.) of the currently scanned LiDAR point cloud, which we describe

using a transformation parameter
→
h . The current scan is a point cloud X = {→x 1, . . . ,

→
x n},

given the set of scan points X and the transformation parameter
→
h , such that the spatial

transformation function T(
→
h ,
→
x q) denotes the use of the pose transformation

→
h to move

the points
→
x q, combined with the previous set of density-of-state functions (Probability

Density Function for each grid), then the best transformation parameter
→
h should be the

pose transformation that maximizes the likelihood function:

Likelihood : Θ =
n

∏
q=1

f
(

T
(
~h,~xq

))
. (12)

Then, maximizing the likelihood is also equivalent to minimizing the negative log-
likelihood − log Θ;

− log Θ = −
n

∑
q=1

log
(

f
(

T
(
~h,~xq

)))
. (13)

An optimization algorithm is then used to tune the transformation parameter
→
h

to minimize this negative log likelihood. YThe NDT algorithm uses Newton’s method
for parameter optimization. Here the probability density function f (

→
x ) does not have

to be normally distributed; any probability density function that reflects the structural
information of the scanned surface and is robust to anomalous scan points will be sufficient.
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2.3. Point Cloud Data Preprocessing

The positive direction of the x-axis is the front of the LiDAR, and the positive direction
of the y-axis is the left side of the LiDAR, as shown in Figure 2. Different LiDAR point
cloud areas are extracted through the ROI (area of interest), and LiDAR point cloud areas of
different sizes are reserved at the front, back, left, and right to simulate the changes of the
LiDAR field of view in different degrees. The ROI can be delineated for further processing.
The LiDAR point clouds in each region can be described as:

Figure 2. Simulation of different fields of view of LiDAR.

ff(α) =

{
[(a, b)|b− a tan β < 0 ]

⋂
[(a, b)|b + a tan β > 0 ], α ∈ [0◦, 180◦]

[(a, b)|b− a tan β < 0 ]
⋃
[(a, b)|b + a tan β > 0 ], α ∈ (180◦, 360◦]

, (14)

fb(α) =

{
[(a, b)|b− a tan β > 0 ]

⋂
[(a, b)|b + a tan β < 0 ], α ∈ [0◦, 180◦]

[(a, b)|b− a tan β > 0 ]
⋃
[(a, b)|b + a tan β < 0 ], α ∈ (180◦, 360◦]

, (15)

fl(α) =

{
[(a, b)|b− a tan β > 0 ]

⋂
[(a, b)|b + a tan β > 0 ], α ∈ [0◦, 180◦]

[(a, b)|b− a tan β > 0 ]
⋃
[(a, b)|b + a tan β > 0 ], α ∈ (180◦, 360◦]

, (16)

fr(α) =

{
[(a, b)|b− a tan β < 0 ]

⋂
[(a, b)|b + a tan β < 0 ], α ∈ [0◦, 180◦]

[(a, b)|b− a tan β < 0 ]
⋃
[(a, b)|b + a tan β < 0 ], α ∈ (180◦, 360◦]

. (17)



Sensors 2023, 23, 843 7 of 20

The front, back, left, and right of the LiDAR point cloud areas are represented by f f (α),
fb(α), fl(α), fr(α). The point inside the LiDAR point cloud is represented by (a, b), α is the
angle of view of the cut LiDAR point cloud, and β is from 0◦ to 90◦, as shown in Figure 3.

Front 90° Back 90° Left 90° Right 90°

Front 180° Back 180° Left 180° Right 180°

Front 270° Back 270° Left 270° Right 270°

Figure 3. Simulation of the different fields of view of LiDAR.

Voxel downsampling creates a 3D voxel grid (considering the voxel grid as a collection
of spatial 3D cubes) from the input point cloud data [28–31]. Then within each voxel (3D
cube), the other points in the voxel are approximated by the center of gravity of all points
in the voxel, so that all points in the voxel are represented by one center-of-gravity point.
Voxel downsampling creates a 3D voxel grid (considering the voxel grid as a collection
of spatial 3D cubes) from the input point cloud data. Then within each voxel (3D cube),
all points in the voxel are approximated using the voxel’s center of gravity to reveal other
points in the voxel so that all points in the voxel are represented by a single center of gravity
point. As a result, the number of points is reduced, the matching speed is improved, the
shape features of the point cloud remain basically unchanged, and the spatial structure
information is preserved. The larger the voxel grid selection, the smaller the sampled point
cloud, and the faster the processing speed; however, the original point cloud will be too
blurred. A smaller voxel grid selection will have the opposite effect. At the same time, it
is necessary to record the number of points of the different LiDAR point cloud data after
desampling, as shown in Figure 4.
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Figure 4. LiDAR point cloud data downsampling.

3. The KITTI Dataset Test

To test the effect of the different fields of view of LiDAR on the NDT relocalization
algorithm, we used the KITTI dataset with a full length of 864.831 m and a duration of
117 s. The test platform was a Velodyne HDL-64E-equipped vehicle. All experiments were
performed on this platform. The average speed of the vehicle was about 2.5 m/s. All
the evaluation experiments were run on a computer with an AMD R7-4800H processor,
16 GB RAM, and a single NVIDIA GeForce GTX1650ti GPU. Velodyne HDL-64E is a 64-line
digital LiDAR mounted directly above the mobile chassis, with a 360° horizontal field
of view, 5–15 Hz rotational speed, a 26.8° vertical field of view (+2° to −24.8°), vertical
angular resolution of 0.4°, horizontal angular resolution of 0.08°, a point cloud count up to
1.3 million points per second, a maximum range of 100 m, and a ranging accuracy of ±2 cm.

As shown in Figure 5, a high-precision map is constructed by using the loam algorithm
for the KITTI dataset. The NDT matching points are the points where the original point
cloud data has been ROI processed and downsampled, as shown in Figure 6. Due to the
uneven density of the original point cloud after voxel downsampling, the number of NDT
matching points in each direction is also irregular, so the positioning accuracy of the NDT
matching points in each direction is different. The downsampling factor set by the code in
this article is 3.0. The transformation epsilon is 0.05, the step size is 0.1, the resolution is
2.0, and the maximum number of iterations is 30. This paper uses root mean squared error
(RMSE) to measure the positioning accuracy. The RMSE is the square of the ratio of the
square of the deviation between the predicted value and the true value and the number of
observations.
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Figure 5. The high-precision maps of KITTI datasets.

Figure 6. Local magnification during NDT relocation in KITTI datasets.

As shown in Table 1, the RMSE obtained from the LiDAR point cloud reposition tracks
at 90°, 180°, and 270° in different directions is compared. It can be seen that in the same
direction, the larger the view angle of the LiDAR and the more effective the matching
points of the NDT algorithm, the higher the positioning accuracy and the smaller the error.
The LiDAR cannot be repositioned when the left and right LiDAR field of view angles are
90 degrees. When the front and back LiDAR field of view angle is 90°, it can be repositioned.
When the angle of the LiDAR field of view in four directions is enlarged, the precision of
the front and back sides is improved greatly, while the precision of the left and right sides
is improved less.

In order to further explore the effect of the LiDAR-matching point cloud orientation
and the number of NDT matching points on the positioning accuracy and weight in the
point cloud, the influence of the positioning trajectory drift is extended in the middle of 90°
to 270° on the left and right. Experiments are carried out at different angles at 30 degrees.
As shown in Table 2, by comparing the number of NDT matching points on the left and
right sides of the LiDAR, it can be seen that due to the large number of NDT-matching
point clouds at the front and the back, and at 90°–270° on the left and right sides, at 1°, the
proportion of the number of matching points before and after NDT plays a decisive role in
the accuracy of the positioning trajectory. At the same time, it is also proved that the more
NDT matching points there are, the higher the positioning accuracy and the smaller the
degree of drift. In normal driving mode, since the point clouds at the front and back of
the radar point cloud are relatively abundant, it is recommended to use the front and back
point clouds more.
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Table 1. Absolute track error in four directions.

Max (m) Mean (m) Min (m) Rmse (m) Num (m) Ratio (%)

90_front 1.803023 0.820853 0.048090 0.953158 224,995 34.7
180_front 0.468620 0.213139 0.019969 0.224281 316,011 48.7
270_front 0.323754 0.115183 0.010731 0.126000 423,800 65.3
90_back 1.081605 0.646901 0.023327 0.690814 238,414 36.8

180_back 0.930584 0.452172 0.024949 0.500723 332,584 51.3
270_back 0.600951 0.250809 0.023253 0.276960 437,715 67.5

90_left 0 0 0 0 117,606 18.1
180_left 0.492303 0.244453 0.018364 0.265370 337,150 52.0
270_left 0.310869 0.132304 0.014551 0.141764 566,296 87.3
90_right 0 0 0 0 7658 0.12

180_right 1.422529 0.739286 0.022606 0.804200 311,443 48.0
270_right 1.029491 0.498957 0.009679 0.562762 545,708 84.1

Table 2. Absolute trajectory error left and right.

Max (m) Mean (m) Min (m) Rmse (m) Num (m) Ratio (%)

90_left 0 0 0 0 117606 18.1
120_left 1.408121 0.533117 0.010324 0.576745 162,363 25.0
150_left 1.042893 0.504791 0.013068 0.549890 223,012 34.5
180_left 0.492303 0.244453 0.018364 0.265370 337,150 52.0
210_left 0.425172 0.164817 0.012010 0.177659 482,429 74.4
240_left 0.374192 0.143122 0.009739 0.154102 534,265 82.4
270_left 0.310869 0.132304 0.014551 0.141764 566,296 87.3
90_right 0 0 0 0 7658 12.2

120_right 0 0 0 0 135,137 20.8
150_right 2.502934 1.440530 0.036937 1.535981 191,471 29.5
180_right 1.422529 0.739286 0.022606 0.804200 311,443 48.0
210_right 1.326894 0.649623 0.014481 0.731533 451,772 69.7
240_right 1.371113 0.661285 0.014154 0.760515 508,636 78.4
270_right 1.029491 0.498957 0.009679 0.562762 545,708 84.1

Based on the squeezing theorem and a large number of experiments, and setting the
LiDAR angle accuracy to 1°, the critical value of the relocation loss in four directions is
obtained. When NDT matching points are 21.3% to 24.9% of the total, there is a high
probability of missing NDT relocations. The limit is between 137,933 and 161,495. The
results are shown in Table 3.

Table 3. Absolute trajectory error of critical values in four directions.

Max (m) Mean (m) Min (m) Rmse (m) Num (m) Ratio (%)

41_front 3.008521 1.307617 0.075811 1.509459 161,495 24.9
33_back 3.445162 1.199947 0.156978 1.278492 154,256 23.8
113_left 5.058614 0.807393 0.025104 0.913465 151,678 23.4

122_right 2.680347 1.295943 0.035288 1.380118 137,933 21.3

With an approximate number of NDT matching points, only a smaller LiDAR field
of view angle is required to use the previous NDT matching points. Front NDT matching
points also have larger errors. This reflects the robustness of the NDT matching points at
the front and back ends.

4. Urban Dataset Testing

Tracked vehicles equipped with 64-line LiDAR are used in real environments, as
shown in Figure 7. The LiDAR used here was the Ouster OS1-64, with a measurement
range of 150 m, an accuracy of ±2 cm, a vertical perspective of 30°, a horizontal perspective
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of 360°, a vertical angle resolution of 0.52°, a horizontal angle resolution of 0.09°, and a
rotation rate of 10 Hz. The test was conducted in a complex urban environment with
obvious characteristics. As shown in Figure 8, there were curved roads, straight roads,
and obvious large obstacles on the left and right sides of the crawler. The road length in
the dataset was 1 s and the duration was 23 s. All evaluation experiments were run on a
computer with an AMD R7-4800H processor, 16 GB RAM, and a single NVIDIA GeForce
GTX1650ti GPU.

Figure 7. Tracked vehicles equipped with 64-line LiDAR.

Figure 8. High-precision maps recorded using tracked vehicles equipped with 64-line LiDAR.

It can be seen from Figures 9 and 10 that when the number of NDT matching points is
less than 100, the relocalization error will increase sharply, and when the number of NDT
matching points is less than 50, it is extremely easy to lose positioning. The theoretical value
for the number of NDT matches per frame is set to 100. Since the number of NDT matching
points is 3109, the number of NDT matching points is 249,2189. Therefore, the number
of NDT valid matches cannot be less than 12.4% of the total number, and the number of
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single-frame NDT valid matches cannot be less than 100. However, the complexity of the
road sections (there are straight sections and curved sections) led to the fluctuation of NDT
matching points in terms of the volume of the point cloud frame. According to the actual
experiment, a reliable range was obtained, which was 14.7% to 16.3%, as shown in Table 4.

Table 4. Absolute trajectory error of critical values in four directions.

Max (m) Min (m) Rmse (m) Num (m) Ratio (%)

20_front 1.715141 0.021566 0.547751 367,065 14.7
22_back 6.650557 0.018378 1.027503 378,291 15.2
97_left 2.507830 0.031737 0.995748 460,454 18.5

110_right 1.038546 0.023148 0.703556 406,214 16.3

Figure 9. Number of valid points on the front and back during NDT relocation.

Figure 10. Number of valid points on the left and right during NDT relocation.
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It can be seen from Figures 9 and 10 that each group of data has four turning points
with great changes. As shown in Figures 11 and 12, as the vehicle turns, the number of
LiDAR-effect matching points on both sides decreases dramatically, resulting in reduced
repositioning accuracy, as shown in Figures 13 and 14. The LiDAR field of view on the
left and right sides becomes larger, and the number of effective matching points increases
dramatically, resulting in higher repositioning accuracy, as shown in Figures 15 and 16.

Figure 11. NDT valid matching points on the direct path.

Figure 12. NDT valid matching points on curves.
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Figure 13. Track error using front LiDAR data at curves.

Figure 14. Track error using back LiDAR data at curves.
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Figure 15. Track error using left LiDAR data at curves.

Figure 16. Track error using right LiDAR data at curves.

As shown in Figures 17 and 18, in the normal, straight-line segment, obstacles were
distributed unevenly and close by. It is easy to reduce the left and right LiDAR field
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of vision, resulting in a number of NDT-effective matching points between 50 and 100,
resulting in reduced relocation accuracy, or even loss of location. In the normal, straight-line
segment, since most of the front and back LiDAR data were ground points, the relocation
accuracy was seriously affected. The left and right LiDAR points were mostly effective
feature points with rich features. As shown in Figures 19 and 20, in the straight-line
segment, the positioning accuracy of the LiDAR data on the front and back sides was poor.
As shown in Figures 21 and 22, the positioning effect of the LiDAR data on the left and
right sides was good.

Figure 17. Road conditions with real obstacles on the left side.

Figure 18. LiDAR point clouds with real obstacles on the left.
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Figure 19. Track error using front-front LiDAR data on the straight track.

Figure 20. Track error using front-back LiDAR data on the straight track.
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Figure 21. Track error using front-left LiDAR data on the straight track.

Figure 22. Track error using front-right LiDAR data on the straight track.

5. Conclusions

This paper presents a LiDAR layout and field-of-view selection method based on
high-precision map NDT relocation to solve the problem of large NDT relocation error and
position loss when the field of view is too large to be obstructed. In order to simulate the
real placement environment and obstructed LiDAR, an ROI algorithm is used to cut the
LiDAR point cloud to obtain different sized LiDAR point cloud data. First, the cut point
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cloud data is downsampled, then relocated. The downsampling points for NDT relocation
are recorded as valid matching points. The direction and angle settings for LiDAR point
cloud data are optimized using RMSE values and valid matching points. The results show
that in urban scenes with complex road conditions, there are more front and back matching
points than left and right matching points in the unit angle. The more matching points
the NDT relocation algorithm has, the higher the relocation accuracy will be. Increasing
the front and back LiDAR field of view prevents the loss of repositioning. The effective
matching points of single-frame LiDAR data are larger than the set threshold. By increasing
the field of view of the left and right LiDAR, the repositioning accuracy can be improved.
You also need to keep a safe distance from obstacles on both sides. The future research plan
is to improve the NDT algorithm to speed up its processing speed, increase the positioning
accuracy, and enable it to be relocated, even when the LiDAR data is sparse.

Author Contributions: Conceptualization, J.G. and L.Y.; methodology, J.G. and L.Y.; software, J.G.;
validation, J.G., L.L. and L.Y.; formal analysis, J.G., F.K. and L.Y.; investigation, J.G.; resources, Y.L.,
J.G. and L.Y.; data curation, J.G. and L.Y.; writing—original draft preparation, J.G., L.L. and L.Y.;
writing—review and editing, J.G. and L.Y.; visualization, J.G. and L.Y.; supervision, J.G., F.K. and L.Y.;
project administration, J.G., H.S., J.L. and L.Y.; funding acquisition, L.Y. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Special Funding Project for “One Event and One Discus-
sion” for Importing Top Talent in Shandong Province (Lu Zheng Ban Zi [2018]27). This research was
funded by the Zibo Unmanned Farm Research Institute Project (2019ZBXC200).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are available upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ng, H.F.; Hsu, L.T.; Lee, M.J.L.; Feng, J.; Naeimi, T.; Beheshti, M.; Rizzo, J.R. Real-Time Loosely Coupled 3DMA GNSS/Doppler

Measurements Integration Using a Graph Optimization and Its Performance Assessments in Urban Canyons of New York.
Sensors 2022, 22, 6533. [CrossRef] [PubMed]

2. He, G.; Yuan, X.; Zhuang, Y.; Hu, H. An integrated GNSS/LiDAR-SLAM pose estimation framework for large-scale map building
in partially GNSS-denied environments. IEEE Trans. Instrum. Meas. 2020, 70, 1–9. [CrossRef]

3. Ye, F.; Pan, S.; Gao, W.; Wang, H.; Liu, G.; Ma, C.; Wang, Y. An Improved Single-Epoch GNSS/INS Positioning Method for Urban
Canyon Environment Based on Real-Time DISB Estimation. IEEE Access 2020, 8, 227566–227578. [CrossRef]

4. Kusaka, T.; Tanaka, T. Stateful Rotor for Continuity of Quaternion and Fast Sensor Fusion Algorithm Using 9-Axis Sensors.
Sensors 2022, 22, 7989. [CrossRef]

5. Li, Y.; Yang, S.; Xiu, X.; Miao, Z. A Spatiotemporal Calibration Algorithm for IMU–LiDAR Navigation System Based on Similarity
of Motion Trajectories. Sensors 2022, 22, 7637. [CrossRef]

6. Lyu, P.; Bai, S.; Lai, J.; Wang, B.; Sun, X.; Huang, K. Optimal Time Difference-Based TDCP-GPS/IMU Navigation Using Graph
Optimization. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [CrossRef]

7. Aghili, F.; Salerno, A. Driftless 3-D attitude determination and positioning of mobile robots by integration of IMU with two RTK
GPSs. IEEE ASME Trans. Mechatron. 2011, 18, 21–31. [CrossRef]

8. Takai, R.; BARAWID Jr, O.; Ishii, K.; Noguchi, N. Development of crawler-type robot tractor based on GPS and IMU. IFAC Proc.
Vol. 2010, 43, 151–156. [CrossRef]

9. Mur-Artal, R.; Tardós, J.D. Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE Trans. Robot.
2017, 33, 1255–1262. [CrossRef]

10. Zhang, C.; Huang, T.; Zhang, R.; Yi, X. PLD-SLAM: A new RGB-D SLAM method with point and line features for indoor dynamic
scene. ISPRS Int. J. Geoinf 2021, 10, 163. [CrossRef]

11. Bakkay, M.C.; Arafa, M.; Zagrouba, E. Dense 3D SLAM in dynamic scenes using Kinect. In Proceedings of the Iberian Conference
on Pattern Recognition and Image Analysis, Santiago de Compostela, Spain, 17–19 June 2015; Springer: Berlin/Heidelberg,
Germany, 2015; pp. 121–129.

12. Zheng, Z.; Li, X.; Sun, Z.; Song, X. A novel visual measurement framework for land vehicle positioning based on multimodule
cascaded deep neural network. IEEE Trans. Industr. Inform. 2020, 17, 2347–2356. [CrossRef]

http://doi.org/10.3390/s22176533
http://www.ncbi.nlm.nih.gov/pubmed/36080991
http://dx.doi.org/10.1109/TIM.2020.2987049
http://dx.doi.org/10.1109/ACCESS.2020.3044197
http://dx.doi.org/10.3390/s22207989
http://dx.doi.org/10.3390/s22197637
http://dx.doi.org/10.1109/TIM.2021.3125990
http://dx.doi.org/10.1109/TMECH.2011.2161485
http://dx.doi.org/10.3182/20101206-3-JP-3009.00026
http://dx.doi.org/10.1109/TRO.2017.2705103
http://dx.doi.org/10.3390/ijgi10030163
http://dx.doi.org/10.1109/TII.2020.2998107


Sensors 2023, 23, 843 20 of 20

13. Yang, K.; Zhang, W.; Li, C.; Wang, X. Accurate location in dynamic traffic environment using semantic information and
probabilistic data association. Sensors 2022, 22, 5042. [CrossRef] [PubMed]

14. Zhao, Z.; Zhang, Y.; Shi, J.; Long, L.; Lu, Z. Robust Lidar-Inertial Odometry with Ground Condition Perception and Optimization
Algorithm for UGV. Sensors 2022, 22, 7424. [CrossRef] [PubMed]

15. Ma, X.; Li, X.; Song, J. Point Cloud Completion Network Applied to Vehicle Data. Sensors 2022, 22, 7346. [CrossRef]
16. Schulte-Tigges, J.; Förster, M.; Nikolovski, G.; Reke, M.; Ferrein, A.; Kaszner, D.; Matheis, D.; Walter, T. Benchmarking of Various

LiDAR Sensors for Use in Self-Driving Vehicles in Real-World Environments. Sensors 2022, 22, 7146. [CrossRef]
17. Wen, W.; Hsu, L.T.; Zhang, G. Performance analysis of NDT-based graph SLAM for autonomous vehicle in diverse typical driving

scenarios of Hong Kong. Sensors 2018, 18, 3928. [CrossRef]
18. Wen, W.; Bai, X.; Zhan, W.; Tomizuka, M.; Hsu, L.T. Uncertainty estimation of LiDAR matching aided by dynamic vehicle

detection and high definition map. Electron. Lett. 2019, 55, 348–349. [CrossRef]
19. Akai, N.; Morales, L.Y.; Takeuchi, E.; Yoshihara, Y.; Ninomiya, Y. Robust localization using 3D NDT scan matching with

experimentally determined uncertainty and road marker matching. In Proceedings of the 2017 IEEE Intelligent Vehicles
Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 1356–1363.

20. Javanmardi, E.; Javanmardi, M.; Gu, Y.; Kamijo, S. Pre-estimating self-localization error of NDT-based map-matching from map
only. IEEE trans. Intell. Transp. Syst. 2020, 22, 7652–7666. [CrossRef]

21. Zhao, Z.; Zhang, W.; Gu, J.; Yang, J.; Huang, K. Lidar mapping optimization based on lightweight semantic segmentation. IEEE
Trans. Veh. Technol. 2019, 4, 353–362. [CrossRef]

22. Zhang, J.; Singh, S. LOAM: Lidar odometry and mapping in real-time. In Robotics: Science and Systems; IFRR: Berkeley, CA, USA,
2014; Volume 2, pp. 1–9.

23. Anderson, S.; Barfoot, T.D. RANSAC for motion-distorted 3D visual sensors. In Proceedings of the 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 2093–2099.

24. Tong, C.H.; Barfoot, T.D. Gaussian process Gauss-Newton for 3D laser-based visual odometry. In Proceedings of the 2013 IEEE
International Conference on Robotics and Automation, Karlsruhe, Germany, Tokyo, Japan, 3–7 November; pp. 5204–5211.

25. Zhou, Z.; Zhao, C.; Adolfsson, D.; Su, S.; Gao, Y.; Duckett, T.; Sun, L. Ndt-transformer: Large-scale 3d point cloud localisation
using the normal distribution transform representation. In Proceedings of the 2021 IEEE International Conference on Robotics
and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 5654–5660.

26. Chen, S.; Ma, H.; Jiang, C.; Zhou, B.; Xue, W.; Xiao, Z.; Li, Q. NDT-LOAM: A Real-time Lidar odometry and mapping with
weighted NDT and LFA. IEEE Sens. J. 2021, 22, 3660–3671. [CrossRef]

27. Kan, Y.C.; Hsu, L.T.; Chung, E. Performance Evaluation on Map-based NDT Scan Matching Localization using Simulated
Occlusion Datasets. IEEE Sens. Lett. 2021, 5, 1–4. [CrossRef]

28. Wang, X.; Shang, H.; Jiang, L. Improved Point Pair Feature based Cloud Registration on Visibility and Downsampling. In
Proceedings of the 2021 International Conference on Networking Systems of AI (INSAI), Shanghai, China, 19–20 November 2021;
pp. 82–89.

29. Yang, D.; Jiabao, B. An Optimization Method for Video Upsampling and Downsampling Using Interpolation-Dependent Image
Downsampling. In Proceedings of the 2021 4th International Conference on Information Communication and Signal Processing
(ICICSP), Shanghai, China, 24–26 September 2021; pp. 438–442.

30. Hirose, O. Acceleration of non-rigid point set registration with downsampling and Gaussian process regression. IEEE Trans.
Pattern Anal. Mach. Intell. 2020, 43, 2858–2865. [CrossRef] [PubMed]

31. Zou, B.; Qiu, H.; Lu, Y. Point cloud reduction and denoising based on optimized downsampling and bilateral filtering. IEEE
Access 2020, 8, 136316–136326. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/s22135042
http://www.ncbi.nlm.nih.gov/pubmed/35808536
http://dx.doi.org/10.3390/s22197424
http://www.ncbi.nlm.nih.gov/pubmed/36236522
http://dx.doi.org/10.3390/s22197346
http://dx.doi.org/10.3390/s22197146
http://dx.doi.org/10.3390/s18113928
http://dx.doi.org/10.1049/el.2018.8075
http://dx.doi.org/10.1109/TITS.2020.3006854
http://dx.doi.org/10.1109/TIV.2019.2919432
http://dx.doi.org/10.1109/JSEN.2021.3135055
http://dx.doi.org/10.1109/LSENS.2021.3060097
http://dx.doi.org/10.1109/TPAMI.2020.3043769
http://www.ncbi.nlm.nih.gov/pubmed/33301401
http://dx.doi.org/10.1109/ACCESS.2020.3011989

	Introduction
	Algorithm Principle
	Loam
	NDT Relocation Algorithm
	Point Cloud Data Preprocessing

	The KITTI Dataset Test
	Urban Dataset Testing
	Conclusions
	References

