
Citation: Gec, S.; Stankovski, V.;

Lavbič, D.; Kochovski, P. A

Recommender System for Robust

Smart Contract Template

Classification. Sensors 2023, 23, 639.

https://doi.org/10.3390/s23020639

Academic Editors: Tiago M.

Fernández-Caramés and Paula

Fraga-Lamas

Received: 1 December 2022

Revised: 1 January 2023

Accepted: 2 January 2023

Published: 5 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Recommender System for Robust Smart Contract
Template Classification
Sandi Gec , Vlado Stankovski , Dejan Lavbič and Petar Kochovski *

Faculty of Computer and Information Science, University of Ljubljana, 1000 Ljubljana, Slovenia
* Correspondence: petar.kochovski@fri.uni-lj.si

Abstract: IoT environments are becoming increasingly heterogeneous in terms of their distributions
and included entities by collaboratively involving not only data centers known from Cloud com-
puting but also the different types of third-party entities that can provide computing resources. To
transparently provide such resources and facilitate trust between the involved entities, it is necessary
to develop and implement smart contracts. However, when developing smart contracts, developers
face many challenges and concerns, such as security, contracts’ correctness, a lack of documentation
and/or design patterns, and others. To address this problem, we propose a new recommender
system to facilitate the development and implementation of low-cost EVM-enabled smart contracts.
The recommender system’s algorithm provides the smart contract developer with smart contract
templates that match their requirements and that are relevant to the typology of the fog architecture.
It mainly relies on OpenZeppelin, a modular, reusable, and secure smart contract library that we
use when classifying the smart contracts. The evaluation results indicate that by using our solution,
the smart contracts’ development times are overall reduced. Moreover, such smart contracts are
sustainable for fog-computing IoT environments and applications in low-cost EVM-based ledgers.
The recommender system has been successfully implemented in the ONTOCHAIN ecosystem, thus
presenting its applicability.

Keywords: smart contract; classification; cluster; recommender system; inheritance

1. Introduction

The Internet of Things (IoT) is a modern technology that allows various devices
to exchange information over the Internet. These devices aid their users in facilitating
their everyday routines and automate them via digitalization. Typical IoT environments
comprise many components, such as sensors, gateways, computing, and storage nodes in
the Edge-to-Cloud continuum. Despite the enormous benefits the IoT has introduced to
domains, such as smart and safe construction, Industry 4.0, smart cities, and IoT solutions
are generally based on centralized architectures. Essentially, a single point of failure in such
scenarios, where the server goes down, can significantly reduce the Quality of Service (QoS)
and the Quality of Experience (QoE), decrease trust in the system, and place its IoT data
in danger. However, these problems in IoT can be overcome by implementing blockchain
and its core technologies (i.e., immutable ledgers, smart contracts, and smart oracles) [1].
Thus, the usage of smart contracts in IoT environments not only benefits from the implicit
blockchain benefits but enables the implementation of comprehensive functionalities that
may significantly increase the distribution and overall trust of the IoT environment.

A smart contract is a digital variation of a traditional contract stored as programs on
a blockchain that is ordinarily used to automate the execution of an agreement without
any intermediary’s involvement. The basic purpose of each smart contract is to automate
workflows by triggering specific actions when conditions are met. Our work relies on the
first publicly released smart contract, enabling ledger Ethereum with built-in fully fledged
Turing-complete programming language Solidity. Nevertheless, the operational cost and

Sensors 2023, 23, 639. https://doi.org/10.3390/s23020639 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23020639
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2331-4523
https://orcid.org/0000-0001-9547-787X
https://orcid.org/0000-0003-2390-4160
https://orcid.org/0000-0003-4345-2069
https://doi.org/10.3390/s23020639
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23020639?type=check_update&version=2

Sensors 2023, 23, 639 2 of 17

speed limitations in block generation times using native Ethereum ledgers cannot always
satisfy the requirements of many use case domains, including IoT. For this reason, new
solutions using the Ethereum ledger core computational engine called the Ethereum Virtual
Machine (EVM) launched their own ledger. The primary purpose of these ledgers is to
increase sustainability and overall performances. Since general blockchain research studies
strive to improve general requirements such as the optimization of query processing [2,3]
and many others, the smart contract is more likely to investigate how to cover new use
cases from the cloud to the edge using the development of more performant blockchain
ledgers [4]. Moreover, on-chain operations started interacting with off-chain data within
the Smart Oracle mechanism available in smart contracts.

The development process of smart contracts in Solidity language is a very challenging
task. For example, the documentation is limited, the community of developers is limited,
and the language does not follow standardized design patterns, etc. Since the principles
of smart contracts do not allow updating or deleting a smart contract once deployed, the
functionalities have to be extremely well written and tested to ensure security, as outlined
by Zou et al. [5].

The high-level goal of our work is to decentralize fog-based IoT architectures with
the integration of smart contracts on the fog layer using low-cost EVM-enabling ledgers.
To reach the goal, we propose a recommender system that provides the developer with
robust, reusable smart contract templates based on the fog architecture characteristics and
requirements. Our approach can be summarized as follows. First, we obtain production-
ready and secure smart contract templates (e.g., OpenZeppelin (https://www.openzeppelin.
com/ (accessed on 3 November 2022)) and ChainLink https://chain.link/ (accessed on
14 October 2022)) and classify them according to the interactions that occur among them
and the actual purpose of the contracts. Afterward, we define our fog architecture in a
standardized TOSCA format [6]. Then, we use our TOSCA-defined fog architecture and
requirements as the input data of our recommender system. As a result, we obtained a list
of the relevant smart contract templates that can be used in our system directly or in an
extended manner to fulfill all use-case-specific requirements and workflow. By providing
such templates, we implicitly promote secure smart contracts by design and strive to follow
good practices provided as ready-to-use functions or interface function standards. Hence,
the development time of the developers is reduced. By upgrading fog architecture with
smart contracts, it is possible, for example, to provide a pricing policy among end users
that want to provide the hardware and/or software resources within the fog environment
using cryptocurrencies or tokens. A main benefit for the system is either a reduction in the
operational cost and/or the increase in the system’s revenue. To summarize, we provide the
following contributions in the paper:

• We propose a classification of smart contracts built upon the characteristics of the
contracts and the inheritance relationship among them.

• We develop a recommender system algorithm for smart contract template selection in
fog architectures.

• We introduce a novel architecture for a recommender system that proposes robust
smart contract templates based on the fog architecture and system requirements’
input data.

The remainder of the paper is split into seven sections. Section 2 places our work
within the context of other related works. Section 3 describes the baseline scenario. Section 4
analyzes reusable smart contract templates by using classification and clustering methods
to propose fog-oriented classification. Section 5 proposes the recommender system of the
classified smart contract templates for fog architectures. Section 6 presents an experimental
evaluation of the proposed recommender system, and Section 7 draws the conclusion.

2. Related Works

Smart contracts were first publicly available in 2015 with the release of the Ethereum
decentralized ledger (https://ethereum.org (accessed on 2 October 2022)). The novel

https://www.openzeppelin.com/
https://www.openzeppelin.com/
https://chain.link/
https://ethereum.org

Sensors 2023, 23, 639 3 of 17

concept enabled application scripts in terms of their deployment and execution in a safe
environment named the Ethereum Virtual Machine (EVM) on distributed nodes in the
form of decentralized applications (DApps). In the Cloud domain, smart contracts became
extremely popular as a tool to improve existing environments [7–9] and even addressed
different requirements such as privacy-preserving data sharing [10]. With the introduction
of dedicated optimized variations of Ethereum (e.g., BNB chain (https://www.bnbchain.
org (accessed on 3 October 2022)), Polygon (https://polygon.technology/ (accessed on
7 October 2022)), Optimism (https://www.optimism.io/ (accessed on 9 October 2022)),
and many others) using the same EVM core engine, the sustainability of the smart contract
use case increased. Even IoT-dedicated ledgers such as IOTA (https://www.iota.org/
(accessed on 16 October 2022)) started with the integration of EVM, enabling ledgers
with limited compatibility and thus allowing the integration of smart contracts into more
complex IoT scenarios [11]. Lakhan et al. [12] proposed an Ethereum smart-contract-based
client-fog-cloud healthcare system by integrating sustainable smart contracts for dedicated
operations focused on scheduling.

The development of smart contracts enabling Cloud-to-Edge architectures is a com-
plex task that requires experienced developers in combination with the usage of analysis
tools [13] to avoid or minimize the known vulnerabilities in the design process of smart
contracts. To better understand the design of smart contracts in the Ethereum ledger,
Angelo et al. [14] performed a study of the smart contracts’ similarities by analyzing the
design of their interfaces and grouping them into a small set of clusters. The relevance
of code reutilization was further studied by Chen et al. [15], and the authors found that
26% of the contract code blocks were reused until early 2021. In collaboration with the
EVM-based ledger solutions, individual researchers and companies, such as OpenZeppelin,
actively started to promote the usage of production-ready smart contract templates in the
development process. Moreover, a particular focus on understanding tokenomics was
proposed as a design-oriented morphological framework by Freni et al. [16].

A recommender system is a subclass of information systems. In general, the workflow
of recommender systems can be described with three steps: (i) information collection phase,
(ii) learning (algorithmic) phase, and (iii) recommendation phase [17]. In the context of the
blockchain domain, there were many variations in the implementation of recommender
systems in a distributed manner [18]. Zhang et al. [19] developed a recommender system
tool CloudRecommender by proposing a declarative solution for recommending Cloud
infrastructure services in contrast to our approach of recommending smart contract tem-
plates. A context-free recommender system approach was proposed by Lisi et al. [20], and
the authors offloaded most of the system’s logic into smart contracts, thus making it mainly
decentralized. On the other hand, the scope of our recommender system is domain-specific,
and smart contracts have played the role of recommender output results in order to improve
IoT fog architectures with blockchain-implicit properties and/or dedicated functionalities.

All code-based analysis studies and available smart contract templates (e.g., Open-
Zeppelin and our past work) comprised the foundations of the further classification of
the smart contract templates proposed in our work. To our knowledge, no studies on
recommender systems for robust smart contract templates in the context of fog computing
and the Internet of Things (IoT) have been proposed.

3. Baseline Scenario

Typical IoT applications are composed of many different components such as sensors,
gateways, computing, and storage nodes that are often not owned by the application
developer but implemented as pay-per-use services by third-party resource providers.
Due to the immense diversity of IoT environments, they often differ because of their
specific requirements. Moreover, applying blockchain as a technology in such complex
environments can cause lengthy development, reduce scalability, and increase complexity
due to incompatible standards.

https://www.bnbchain.org
https://www.bnbchain.org
https://polygon.technology/
https://www.optimism.io/
https://www.iota.org/

Sensors 2023, 23, 639 4 of 17

The baseline scenario (see Figure 1) of our solution is motivated by the above-elaborated
problems and envisions the implementation and utilization of a novel blockchain recom-
mender system that will perform the following: (1) compose smart contract templates that
are based on the application’s specification, following good practices and design patterns;
(2) facilitate the blockchain implementation by providing the IoT developers with reliable,
standardized smart contracts for their use cases; (3) accelerate the overall development and
implementation of smart contracts in IoT environments. Moreover, it will enable peer-to-
peer (P2P) transactions between the application’s developers and the resource providers. In
other words, the scenario currently targets two essential groups of potential users: The IoT
application developers and the resource providers. The complete workflow is composed of
five consecutive steps:

1. The application developer defines IoT’s available application quality requirements
(e.g., data access, accessibility, scalability, etc.) and baseline cloud–fog specifications
for application deployment using a TOSCA standard.

2. The Recommender System receives the requirements and specifications as input and
assembles a set of smart contract templates, which will be further selected by the
application developer and further implemented in comprehensive fully functional
dedicated smart contracts.

3. The Application Developer is offered the opportunity to approve or modify the smart
contracts. Once the smart contracts are approved, they are deployed on the blockchain.

4. When the smart contracts are deployed on the blockchain, different entities in the
system (e.g., resource providers) can interact with them according to the democratic
voting that takes places among the system’s stakeholders and resource providers. For
instance, by interacting with the smart contract, the resource providers enable access
to their resources (i.e., computing, storage resources, and IoT data) for third parties
and obtain direct incentives from that interaction.

5. When the interaction with the smart contracts results in new records on the blockchain,
the application’s developer (i.e., the IoT application) is allowed to interact with the
providers’ resources based on the policy agreed in the previous step.

Figure 1. Outline of the baseline scenario.

4. High-Level Classification of Reusable Smart Contracts

This section presents a classification of reusable smart contracts based on hierarchical
analysis. First, we offer the main domains in the ONTOCHAIN environment. Then, we
select the most currently advanced library for reusable smart contracts and describe them
by their base properties and predefined modules. By the topology of smart contracts and in-

Sensors 2023, 23, 639 5 of 17

heritance among the smart contracts and in contrast to ONTOCHAIN domains, we propose
a classification of smart contracts. Since tokenomics represents one of the most important
categories, we present the token standards and summarize the fundamental properties.

4.1. Pillar Domains in the ONTOCHAIN Ecosystem

The next-generation ONTOCHAIN framework is a modular blockchain framework
that leads to a more human-centered Internet that supports the values of openness, decen-
tralization, inclusiveness, and the protection of privacy [21]. It delivers various real-world
solutions, such as trustworthy web and social media, trustworthy crowdsensing and repu-
tation management, distribution logistics, data management, and similar solutions via the
use of multiple ledgers and semantic technologies. Its main goal is to further expand as an
ecosystem that will address and complement different use cases using the ONTOCHAIN
protocols and their different blockchain and semantic components.

Figure 2 depicts the high-level multi-layer architecture of the ONTOCHAIN frame-
work. The blockchain layer provides a distributed execution environment that enables
access to multiple distributed ledger networks that the ecosystem stakeholders can utilize.
The ontologies layer comprises novel ontologies that can be managed in a trusted and
secure manner. The application and core protocols and services enable seamless interaction
between the framework’s layers. Namely, these interoperability protocols offer identity
management, reputation management, data provenance, market mechanisms, and other
functionalities that the applications of the ecosystem can exploit.

Based on meticulous state-of-the-art analyses [22,23], the ONTOCHAIN framework
identified 15 domains that can deliver a plethora of core use-case applications that can
complement the ecosystem and exploit the framework’s functionalities. Namely, the fol-
lowing application domains were identified: agrifood, art, construction industry, education
and science, energy management, fashion and luxury, financing, healthcare, Industry 4.0,
information fact-checking, insurance, logistics mobility, public administration, and tourism.
Given the uniqueness and variety of different types of possible applications, their decen-
tralization and development of smart contracts can be complex and lengthy. Motivated
by this, the following sections introduce a categorization of smart contracts and a recom-
mender system for smart contracts that aims to facilitate smart contract development and
application decentralization.

Figure 2. ONTOCHAIN high-level architecture.

Sensors 2023, 23, 639 6 of 17

4.2. Base Categorization of Smart Contracts

Initially, smart contracts were represented in a low-level, assembly-like sequence of
operands that demanded proper low-level programming knowledge and experience from
developers. In March 2018, the first version of Solidity-based, JavaScript-like programming
language, smart contracts, was released and thus encouraged a more comprehensive range
of developers to contribute to the Ethereum ecosystem. The development methodology did
not fully follow standard processes due to the specifics in the life-cycle of Ethereum smart
contracts [24]. For example, it is impossible to update an instance of a smart contract by only
redeploying it due to the tamper-proof implicit properties of the Ethereum ledger. Therefore,
coding anomalies in the smart contracts, such as bugs, lack of validation, incompatible
command sequence, and other issues, led to security vulnerabilities with usually severe
consequences in communities using vulnerable smart contracts [25]. This iterative learning
process delivered coding guidance provided by various analysis tools [13] and design
patterns in the form of smart contract templates. The latter covers different functionalities,
standards (e.g., tokens), and good practices that may facilitate the development process
of solidity-based smart contracts. Most companies providing production-ready smart
contracts rely on security-audited smart contract templates by OpenZeppelin.

The library of modular, reusable, and secure smart contracts for Ethereum and other
EVM-enabling ledgers consists, in the time of writing (library version 4.8.0), of 174 smart
contracts. The actual number of operational ones is 155, defined by the base smart-contract
document definitions such as contract, abstract contract, interface, or library. By default, the
smart contracts are organized into 11 main modules that may be summarized as follows:

• The Access module supports basic, role-based, cross-chain, and other access control
mechanism or policies: typically, these policies are applied in the smart contract’s
individual functions.

• The Cross Chain module provides a component to improve cross-chain awareness of
smart contracts via the Arbitrary Message Bridge (AMB) mechanism.

• The Finance module roughly includes functionalities for financial systems on both
types of assets, ETH or other EVM coins and tokens. The main two contracts provide
splitting payments among multiple entities and the vesting of assets for a given
beneficiary.

• The Governance module consists of comprehensive on-chain governance smart con-
tracts for use cases such as voting, governance control, and other time-lock-related
functionalities.

• The Interfaces module summarized the interfaces that may be implemented in smart
contracts and thus provided dedicated functionality workflows.

• The Meta-transactions module includes minimal-extended ERC-2771 contract instance
and a context variant with the ERC-2771 support to support gasless transactions.

• The Proxy module defining a low-level set of contracts defining different proxy pat-
terns: (i) not able to upgrade, immutable by default, and (ii) scalable using an upgrad-
able proxy pattern.

• The Security module aims to cover the security domain—More concretely, the good
practices enhancing security.

• The Tokens module includes the definition of fundamental ERC-based token standards
that are presented and compared among them in the following subsection.

• The Utilities module consists of miscellaneous contracts and libraries containing utility
functions that facilitate the data management of new data types, security, and the safe
use of low-level primitives.

• The Vendor module includes smart contracts that enable work with the most common
EVM-compliant chains (e.g., Arbitrum, Polygon, Optimism, etc.).

Sensors 2023, 23, 639 7 of 17

The main categorization based on the described modules above consists of smart
contracts proposed by the library authors consisting of different types of smart contracts
and smart contract quantitative coverage, as depicted in Figure 3. Our classification is
derived from the main categories relying on inheritance levels and interconnections from
the perspective of available functionalities, as presented in the following subsections.

Figure 3. OpenZeppelin main smart contract modules in relation to the contract types.

4.3. Tokenomics

Tokenomics plays a crucial part in the design of smart contract functionalities due
to the possibility of providing advanced functionalities enabled by the token exchange
and/or interaction throughout smart contracts. EVM-enabling ledger tokens, by design,
run on a Layer-2 protocol that relies on Layer-1 for security and consensus. For example, all
operations performed with tokens are fueled in the transactions by native cryptocurrencies,
such as ETH in the Ethereum ledger. In the smart contract implementation of token func-
tionalities, it is vital to understand the token standards, their methodology, capabilities, and
limitations. Currently, there are five token standards officially approved by the Ethereum
developer community in addition to the attempts that were not approved or finalized,
such as ERC-223 and ERC-1337. The main comparison of the official ERC standards is
summarized in Table 1.

The standards are mainly divided by fungible properties along with other specific
properties. In our work, we consider token standards that contrast with common use cases
that may be applied to fog architectures.

Sensors 2023, 23, 639 8 of 17

Table 1. Comparison among the available EVM-compliant token standards.

Token
Standard

Fungible
Token

Non-fungible
Token

Token
Compatibility

Release
Year

Advanced
Features

ERC-20 Yes No / 2015
Reduces the

complexity of
token interactions.

ERC-721 No Yes / 2018

Enables a
certificate of

ownership for a
virtual item.

ERC-777 Yes No extends ERC-20 2017 Allows backwards
compatibility.

ERC-1155 Yes Yes

functionalities
from ERC-20,
ERC-721 and

ERC-777

2019

Allows batched
operations for
increased gas

efficiency.

ERC-4626 Yes No extends ERC-20 2022 Standardizes
tokenized vaults.

4.4. Hierarchical Analysis of Smart Contracts

The design of smart contracts follows standard object-oriented programming features,
such as an extension of the functionalities of a program to encourage the development
of individual ready-to-use modules in a comprehensive smart contract. For example,
developers strive to more systematically separate codes, reduce the dependencies, import
directives, increase the re-usability of existing programming code, and even enforce the
proposed workflow (e.g., voting smart contract). In the initial OpenZeppelin analysis,
65 individual smart contracts and 90 smart contracts were involved in the inheritance. The
inheritance is represented either as extended in a smart contract or defines the module’s
fundamental behavior, functions, or primitives, identifying four main clusters sorted by
the ascending number of contracts in the interaction:

1. The first cluster consists of two smart contracts designed for EVM-based dedicated
chain Arbitrum. The hierarchy dictates the interface contract (IInbox) extending
standard Arbitrum events through the base interface (IDelayedMessageProvider) as
shown in Figure 4 in the bottom left.

2. The second cluster organizes the ERC-1820 standard defined in the contract
ERC1820Implementer, extending the interface IERC1820Implementer and roughly defin-
ing a universal registry smart contract where the address policy is defined (e.g., an
address can register which interface it supports and which smart contract is responsi-
ble for its implementation), as depicted in Figure 4 in the bottom upper left.

3. The third cluster of seven contracts describes the proxy policy for different purposes
(see Figure 4: bottom right).

4. The fourth biggest cluster of ninety-nine contracts involves ERC token standards in
conjunction with the modules such as governance, access, and others, as shown in
Figure 4. The most dominant module in inheritance is token, followed by governance
and utils (utilities). Deployable contracts are realized by inherited abstract contracts
containing minimal business logic and interfaces that enforce function definitions,
including global variables and events.

We classified the most relevant smart contract functionalities from the basic OpenZep-
pelin categorization and clustering derived from the inheritance among smart contracts.
In addition, the ONTOCHAIN environment was considered in order to converge the cate-
gories into requirement-like descriptions on two levels (see Figure 5): (i) the base classifier
and (ii) the detailed classifiers suitable in the process of the recommender system where
the system requirements are more concrete.

Sensors 2023, 23, 639 9 of 17

Figure 4. Inheritance of OpenZeppelin components containing contract types: (i) contracts, (ii) inter-
faces, and (iii) abstract contracts. Libraries have not been visualized. The most dominant classifiers
are tokens, governance, and utilities.

Sensors 2023, 23, 639 10 of 17

Figure 5. Identified classifiers represented into two levels: (i) main and (ii) detailed classifiers.

5. Recommender System of Reusable Smart Contracts for Fog Architectures

In this section, we describe the recommender system’s methodology. First, we consider
the fog environment’s data representation to represent the architecture’s base properties,
such as components, end users, and relationships among them. Then, we propose a taxon-
omy of the input data described as fog architectures and related requirements defined by
the stakeholders of the environment. At the end of the section, we propose the architecture
of our recommender system.

5.1. Data Descriptors

Fog architectures consist of many types of components that are represented in different
formats and even different notations. In the cloud computing domain, this problem was
addressed in 2014 with the establishment of a standard proposed by a nonprofit consor-
tium OASIS (www.oasis-open.org (accessed on 28 September 2022)) named Topology and
Orchestration Specification for Cloud Applications (TOSCA). The standard specifications
defined the cloud architectures with components in YAML format. Furthermore, the re-
search community also addressed other emerging domains, such as fog and edge, where
Tsagkaropoulos et al. [26] proposed extensions to the existing standard. In our work, the
fog architectures are packed in TOSCA format to describe the interactions among the
components and the involved entities (e.g., properties, capabilities, and relationship), as
shown in Listing 1.

www.oasis-open.org

Sensors 2023, 23, 639 11 of 17

Listing 1. Example of a component with basic properties in TOSCA.

t o s c a _ d e f i n i t i o n s _ v e r s i o n : a l i e n _ d s l _ 2 _ 0 _ 0
topology_template:
node_templates:
Componnet_A:
type: org . a l i en4c loud . fog . nodes . CustomFogNode
p r o p e r t i e s :
durat ion: 55
v a r i a t i o n : 20
log_length : 2000
requirements:
− endpoint:
node: Component_B
c a p a b i l i t y : org . myFog . c a p a b i l i t i e s . FogComponentEndpoint
r e l a t i o n s h i p : org . myFog . r e l a t i o n s h i p s . FogC_ConnectToComponent

5.2. Architecture of the Recommender System

Fog architecture is becoming popular due to its possibility for offloading computa-
tional tasks, and thus, the components on the fog nodes that can be a part of cloud-dedicated
data centers and infrastructure, provided by the end users [27]. The process of offloading
includes end-user provisioning services or resources in the fog environment and ordinarily
demanded manual operations (e.g., agreement about the price and policy, registering a new
provisioning component, etc.) that are often performed via centralized components. These
manual operations can be defined in a dedicated smart contract following the requirements
of the system and stakeholders. Developing such complex smart contracts is very difficult
and requires an experienced smart contract developer. Therefore, the development can be
facilitated since the recommender system provides, as a result, smart contract templates
that are intended to be extended to follow the use case of the system jointly with smart
contracts.

The architectural design of the recommender system, depicted in Figure 6, relies on
two main inputs: (i) fog architecture represented in standardized format TOSCA v. 2.0 and
(ii) requirements provided as system requirements by the fog architect. The recommender
system engine analyzes the input data using the three following main steps:

1. The architecture reasoning step analyzes the topology of the fog architecture among
the individual sets of components by focusing on the capability attribute, which
defines the characteristics of the specific component, and the relationship that provides
the type of the connection (e.g., protocol, allowance such as command-line interface
(CLI), etc.). Additional features are extracted from the fog environment’s high-level
properties, such as the types and number of components where the component’s
representation and the algorithm’s details are presented in the following section.

2. The requirement analysis step focuses on system requirements that can be either gen-
eral or detailed. General requirements such as token support provide a wider range
of smart contract template candidates, which include all types of tokens (fungible and
non-fungible). The detailed requirements, on the other side, significantly narrow the
smart contract template candidates.

3. The comprehensive check step unifies the results from the first two steps, particularly
the cases of conflicting smart contract templates (e.g., ER-C20 and ERC-721) that
cannot be defined in the same smart contract together. Therefore, the first and second
steps are repeated, including scoring on each smart contract template candidate,
where the one with a higher score is included in the component’s result list.

The algorithm of the recommender system engine is presented in the following sec-
tion. Finally, the developer obtains a list of smart contract templates by matching the
fog architecture’s typology and system requirements. The developer obtains ready-to-use
smart contracts, abstract smart contracts that need to be extended, interfaces, and libraries
implicitly via other contracts.

Sensors 2023, 23, 639 12 of 17

Figure 6. High-level architecture representing the pillar recommender system components with the
main workflow.

6. Experimental Evaluation
6.1. Cost Estimation of Smart Contracts

The long-term sustainability of smart contracts integrated with the fog environments
is a significant property in developing dedicated smart contracts based on robust templates.
The aim of this experimental study is cost estimation expressed with Ethereum network
fees Gas by definition, which measure the amount of computational effort required to
perform specific operations on Ethereum or other EVM-compliant ledgers. In our work, we
use Ethereum’s Gas represented with the unit Gwei or in nanoeth, which is represented as
1ETH = 109Gwei.

Our cost estimation methodology follows the following steps: (i) deployment of
smart contract in a local testnet environment, (ii) the execution of all available smart
contract functions with dedicated gas estimation function or empirically execute complex
functions [28], and a (iii) summary of the operational cost obtained in the first and second
steps. We use the default Gas parameters within the TruffleSuite (https://trufflesuite.
com/ (accessed on 14 October 2022)) framework to simulate the EVM environment. The
experiments were performed on deployable smart contracts of type contract and the
simulation’s results are shown in Figure 7. The aim of the experiment is to prove the
sustainability of smart contracts within the IoT fog environment.

Figure 7. Cost estimation of the deployment process and available functions in deployable smart
contracts.

https://trufflesuite.com/
https://trufflesuite.com/

Sensors 2023, 23, 639 13 of 17

6.2. Fog Recommender System Algorithm

The recommender system’s algorithmic basis on fog architectures that are used as
baseline inputs are obtained by the largest Cloud providers: Azure (https://docs.microsoft.
com/en-us/azure/architecture/reference-architectures/ (accessed on 4 September 2022))
provides categorized cloud architecture references in our IoT case and Google Cloud (https:
//cloud.google.com/architecture (accessed on 4 September 2022)) in the cloud architecture
center offers reference to IoT architectures with guidance, and Amazon AWS (https://aws.
amazon.com/architecture/well-architected/ (accessed on 6 September 2022)) provides
defined cloud-to-edge architecture applications. We composed our fog architectures from
the cloud providers and available architectures that will be run on our Algorithm 1 with
different requirements. The algorithm is written in JavaScript programming language as
REST API services where the time complexity of the algorithm is quadratic, O(n2). In the
worst-case scenario, the algorithm based on two nested loops has to perform n operations
per iteration of the outer loop, making it a total of n ∗ n operations. Since the order of
magnitude is up to 100 components per IoT fog architecture, this does not represent an
issue. The base data (available components, classifications, and smart contract templates)
are stored in the MongoDB database.

Algorithm 1 Recommender system algorithm represented in pseudocode

procedure RECOMMENDER SYSTEM
templates← dictionary of smart contract templates
fogTOSCA← architecture represented in TOSCA format
requirements← list of requirements
resultList← result list of smart contract templates
finished← false
scoring← false
while f inished = f alse||scoring = true do . while the results are not conflicting

if scoring == true then
. Loop through the fogTOSCA components and vote (relationship, capability, type)

if scoring results not equal then
return resultList

end if
if scoring results are equal then

return resultList and label conflicting templates
end if

end if
while iterate through templates do . filter each contract based on the requirements

. if conflicting contract found set scoring = true
end while
while iterate through fogTOSCA do . for each component, add weight scores

about relationship, capability and component type to potential templates
. if conflicts still occur set scoring = true

end while
end while

end procedure

Moreover, to compose the fog architectures used in our experimental study, we defined
each architecture in TOSCA v. 2.0 format by using a Web tool Alien4Cloud (https://alien4
cloud.github.io/index.html (accessed on 8 September 2022)), which provides a series of
more than 90 representations of the standard definitions of cloud-to-edge components
such as hypervisor, deployment, network, server, storage, management, service, gateway,
and others. As outlined in the previous section for the main steps of the architecture, the
algorithm extracts the key characteristics of the architecture, such as relationship, capability,
and type. The algorithm mainly relies on the component’s type and relationship related
to the three capability properties: feature, host, and scalability. These features are aligned

https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/
https://cloud.google.com/architecture
https://cloud.google.com/architecture
https://aws.amazon.com/architecture/well-architected/
https://aws.amazon.com/architecture/well-architected/
https://alien4cloud.github.io/index.html
https://alien4cloud.github.io/index.html

Sensors 2023, 23, 639 14 of 17

with identified classifiers. Since there are no research baseline architectures to be used, we
evaluated our recommender system’s algorithm with simulations.

We performed simulations of our recommender algorithm on three base architectures
(Azure IoT reference architecture (https://tinyurl.com/mrp8hjdd (accessed on
12 September 2022)), Intelligent Products Essentials reference architecture (https://tinyurl.
com/3m9vnpba (accessed on 14 September 2022)), and Smart Metering for Water Utilities
(https://tinyurl.com/4n4ny2ea (accessed on 17 September 2022)) using different require-
ments, as shown in Table 2. We did not include inherited contracts in the smart contract’s
template results because they are implicitly included.

Table 2. Simulations of different recommender system scenarios.

IoT Fog
Architecture

No.
Components

Components
Type

Requirements Smart Contract
Template Results

Azure IoT
reference

architecture
21

Application,
Service,

Gateway,
Management,

Device

Payment

ERC-20,
ERC-777,

ERC-4626,
PaymentSplitter,

VestingWallet

Intelligent
Products
Essentials
reference

architecture

19

Device,
Application,

Service,
Gateway,
Storage,

Management

Fungible token,
Governance

ERC-777,
Governor,

AccessControl

Smart Metering
for Water
Utilities

20

Device, Gateway,
Management,
Monitoring,

Storage, Service,
Hypervisor,

Server

Token, Polygon,
Scalability

ERC-4626,
Upgradeable-

Beacon,
IFxMessagePro-

cessor

6.3. Smart Contract Development Time Evaluation

To evaluate the performance of the recommender system in the context of the smart
contracts’ development time, in December 2022, we prepared a study with 50 participants
with different levels of blockchain expertise. We targeted participants to whom we had
direct access, such as undergraduate university students, researchers, and collaborators in
the ONTOCHAIN project. Each participant had to develop four smart contracts, and each
participant had to develop the smart contracts once without the help of the recommender
system and also by using the recommender system. To maintain the moment of surprise,
the order in which they received the assignments was random.

At the time of the result’s analysis, we excluded the participants who did not submit
all four smart contracts, did not pass the unit tests for the developed smart contracts, or
took more than two hours for development. As a result, we finalized the evaluation with
the 36 participants passing the tasks, 27.8% female and 72.2% male, with ages ranging from
20 to 55 years old. In general, the participants were 36.1% undergraduate students and
63.9% non-students.

The results have shown that for the smart contracts that were developed without
the help of the recommender system, the participants spent an average of 50 min on
development. In comparison, for the smart contracts that were developed using the
recommender system, they developed smart contracts with an average of 12 min, which
reduced the development time by 76%.

7. Discussion and Conclusions

In our work, we proposed a recommender system that will simplify and accelerate
the development of decentralized IoT applications. The recommender system outputs

https://tinyurl.com/mrp8hjdd
https://tinyurl.com/3m9vnpba
https://tinyurl.com/3m9vnpba
https://tinyurl.com/4n4ny2ea

Sensors 2023, 23, 639 15 of 17

smart contract templates based on the system’s requirements that the IoT developer defines
during the development phase. In our experimental results, we focused on two key
properties: sustainability and development time reduction.

Smart contracts initially interact with the EVM-based ledger first in the development
process, which is the most costly operation. This is expected since the entire Dapp as
a programming script has to be deployed on the ledger. Once deployed, the involved
stakeholders of the system trigger functions that update the state of the variables, execute
transactions, or other purposes. Functions are compared to the deployment of the contract,
and they are significantly cheaper. Using a low-cost EVM-enabling ledger such as Polygon
makes it possible to perform most functions for less than USD 0.10 per transaction. Thus,
enabling smart contracts in fog environments is sustainable.

The quantitative results of our recommender system were addressed in the analysis
of the results provided by the algorithm. The workflow of the algorithm considers the
topology of the fog architecture with specified requirements. Based on our simulation of
three heterogeneous IoT reference architectures, the system provided a set of relevant smart
contract templates. These templates can be merged, extended, or modified to comply with
the environment. The development process is simplified, and the overall smart contract
preparation time is reduced.

Although this work addresses important challenges for building decentralized IoT
applications by using smart contract templates proposed by the newly developed smart
contract recommender system, there are still many challenges to be tackled in the future.
For instance, the recommendation results may be significantly improved if a reputation
system is integrated into the recommender system. As such, the recommender system
could also categorize the smart contracts and choose standards based on their reputation
that can be based on various requirements (e.g., security, data safety, scalability, etc.).
Another important challenge in decentralizing IoT applications would be the management
of decisions and service-level agreements in larger IoT systems, where various service
providers play important roles in the provision of sensor data and in computing and
processing resources. By expanding the recommender system functionalities, to update
the smart contract templates based on democratic methods for reaching a consensus, the
recommender system will evolve into a decentralized autonomous organization. This will
allow seamless smart contract management operations in complex IoT scenarios, where
all relevant stakeholders would be allowed to participate in smart contract management
without having prior expertise in smart contract development. These challenges will be
further researched within the scope of the ONTOCHAIN project, and the results will be
presented in our future works.

Author Contributions: Conceptualization, S.G., V.S. and P.K.; Methodology, S.G., V.S., D.L. and P.K.;
Software, S.G.; Validation, D.L. and P.K.; Writing—original draft, S.G., V.S., D.L. and P.K.; Writing—
review & editing, V.S., D.L. and P.K.; Supervision, V.S. and P.K.; Project administration, V.S.; Funding
acquisition, V.S. All authors have read and agreed to the published version of the manuscript.

Funding: The research and development reported in this paper have received funding from the
European Union’s Horizon 2020 Research and Innovation Programme under grant agreement 957338
(ONTOCHAIN: Trusted, traceable and transparent ontological knowledge on blockchain) and from
the Research Agency of the Republic of Slovenia under the research programme P2-0426 Digital
Transformation for Smart Public Governance 1/1/22–12/31/27.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2023, 23, 639 16 of 17

References
1. Atlam, H.F.; Azad, M.A.; Alzahrani, A.G.; Wills, G. A Review of Blockchain in Internet of Things and AI. Big Data Cogn. Comput.

2020, 4, 28. [CrossRef]
2. Wang, H.; Xu, C.; Zhang, C.; Xu, J.; Peng, Z.; Pei, J. vChain+: Optimizing Verifiable Blockchain Boolean Range Queries. In

Proceedings of the 2022 IEEE 38th International Conference on Data Engineering (ICDE), Kuala Lumpur, Malaysia, 9–12 May
2022; pp. 1927–1940. [CrossRef]

3. Wu, H.; Peng, Z.; Guo, S.; Yang, Y.; Xiao, B. VQL: Efficient and Verifiable Cloud Query Services for Blockchain Systems. IEEE
Trans. Parallel Distrib. Syst. 2022, 33, 1393–1406. [CrossRef]

4. Bodkhe, U.; Tanwar, S.; Parekh, K.; Khanpara, P.; Tyagi, S.; Kumar, N.; Alazab, M. Blockchain for Industry 4.0: A Comprehensive
Review. IEEE Access 2020, 8, 79764–79800. [CrossRef]

5. Zou, W.; Lo, D.; Kochhar, P.S.; Le, X.B.D.; Xia, X.; Feng, Y.; Chen, Z.; Xu, B. Smart Contract Development: Challenges and
Opportunities. IEEE Trans. Softw. Eng. 2021, 47, 2084–2106. [CrossRef]

6. Brogi, A.; Soldani, J.; Wang, P. TOSCA in a Nutshell: Promises and Perspectives. In Proceedings of the Service-Oriented and Cloud
Computing; Villari, M., Zimmermann, W., Lau, K.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 171–186.

7. Kumar, A.; Singh, A.K.; Ahmad, I.; Kumar Singh, P.; Anushree.; Verma, P.K.; Alissa, K.A.; Bajaj, M.; Ur Rehman, A.; Tag-Eldin,
E. A Novel Decentralized Blockchain Architecture for the Preservation of Privacy and Data Security against Cyberattacks in
Healthcare. Sensors 2022, 22, 5921. [CrossRef] [PubMed]

8. Ahmadjee, S.; Mera-Gómez, C.; Bahsoon, R.; Kazman, R. A Study on Blockchain Architecture Design Decisions and Their Security
Attacks and Threats. ACM Trans. Softw. Eng. Methodol. 2022, 31, 36e. [CrossRef]

9. Guo, H.; Li, W.; Nejad, M.; Shen, C.C. A Hybrid Blockchain-Edge Architecture for Electronic Health Record Management with
Attribute-based Cryptographic Mechanisms. IEEE Trans. Netw. Serv. Manag. 2022, 1. [CrossRef]

10. Peng, Z.; Xu, J.; Hu, H.; Chen, L.; Kong, H. BlockShare: A Blockchain empowered system for privacy-preserving verifiable data
sharing. Bull. IEEE Comput. Soc. Tech. Comm. Data Eng 2022, 1, 14–24.

11. Li, J.; Peng, Z.; Xiao, B. Smartphone-assisted smooth live video broadcast on wearable cameras. In Proceedings of the 2016
IEEE/ACM 24th International Symposium on Quality of Service (IWQoS), Beijing, China, 20–21 June 2016; pp. 1–6. [CrossRef]

12. Lakhan, A.; Mohammed, M.A.; Rashid, A.N.; Kadry, S.; Panityakul, T.; Abdulkareem, K.H.; Thinnukool, O. Smart-Contract
Aware Ethereum and Client-Fog-Cloud Healthcare System. Sensors 2021, 21, 4093. [CrossRef]

13. Kushwaha, S.S.; Joshi, S.; Singh, D.; Kaur, M.; Lee, H.N. Ethereum Smart Contract Analysis Tools: A Systematic Review. IEEE
Access 2022, 10, 57037–57062. [CrossRef]

14. Di Angelo, M.; Salzer, G. Assessing the Similarity of Smart Contracts by Clustering their Interfaces. In Proceedings of the 2020
IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Guangzhou,
China, 29 December 2020–1 January 2021. [CrossRef]

15. Chen, X.; Liao, P.; Zhang, Y.; Huang, Y.; Zheng, Z. Understanding Code Reuse in Smart Contracts. In Proceedings of the 2021
IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER), Honolulu, HI, USA, 9–12 March
2021; pp. 470–479. [CrossRef]

16. Freni, P.; Ferro, E.; Moncada, R. Tokenomics and blockchain tokens: A design-oriented morphological framework. Blockchain Res.
Appl. 2022, 3, 100069. .: 10.1016/j.bcra.2022.100069. [CrossRef]

17. Isinkaye, F.; Folajimi, Y.; Ojokoh, B. Recommendation systems: Principles, methods and evaluation. Egypt. Informatics J. 2015,
16, 261 – 273. .: 10.1016/j.eij.2015.06.005. [CrossRef]

18. Himeur, Y.; Sayed, A.; Alsalemi, A.; Bensaali, F.; Amira, A.; Varlamis, I.; Eirinaki, M.; Sardianos, C.; Dimitrakopoulos, G.
Blockchain-based recommender systems: Applications, challenges and future opportunities. Comput. Sci. Rev. 2022, 43, 100439. .:
10.1016/j.cosrev.2021.100439. [CrossRef]

19. Zhang, M.; Ranjan, R.; Nepal, S.; Menzel, M.; Haller, A. A Declarative Recommender System for Cloud Infrastructure Services
Selection. In Proceedings of the Economics of Grids, Clouds, Systems, and Services; Vanmechelen, K., Altmann, J., Rana, O.F., Eds.;
Springer: Berlin/Heidelberg, Germany, 2012; pp. 102–113.

20. Lisi, A.; De Salve, A.; Mori, P.; Ricci, L. A Smart Contract Based Recommender System. In Proceedings of the Economics of
Grids, Clouds, Systems, and Services; Djemame, K., Altmann, J., Bañares, J.Á., Agmon Ben-Yehuda, O., Naldi, M., Eds.; Springer
International Publishing: Cham, Switzerland, 2019; pp. 29–42.

21. Papaioannou, T.G.; Stankovski, V.; Kochovski, P.; Simonet-Boulogne, A.; Barelle, C.; Ciaramella, A.; Ciaramella, M.; Stamoulis,
G.D. A New Blockchain Ecosystem for Trusted, Traceable and Transparent Ontological Knowledge Management. In Proceedings of
the International Conference on the Economics of Grids, Clouds, Systems, and Services; Springer: Cham, Switzerland, 2021; pp. 93–105.

22. Casino, F.; Dasaklis, T.K.; Patsakis, C. A systematic literature review of blockchain-based applications: Current status, classification
and open issues. Telemat. Informatics 2019, 36, 55–81. [CrossRef]

23. CBInsight. Banking is Only the Beginning: 65 Big Industries Blockchain Could Transform. 2021. Available online: https:
//www.cbinsights.com/research/industries-disrupted-blockchain/ (accessed on 15 July 2022)).

24. Sillaber, C.; Waltl, B. Life Cycle of Smart Contracts in Blockchain Ecosystems. Datenschutz Datensicherheit—DuD 2017, 41, 497–500.
[CrossRef]

25. Kushwaha, S.S.; Joshi, S.; Singh, D.; Kaur, M.; Lee, H.N. Systematic Review of Security Vulnerabilities in Ethereum Blockchain
Smart Contract. IEEE Access 2022, 10, 6605–6621. [CrossRef]

http://doi.org/10.3390/bdcc4040028
http://dx.doi.org/10.1109/ICDE53745.2022.00190
http://dx.doi.org/10.1109/TPDS.2021.3113873
http://dx.doi.org/10.1109/ACCESS.2020.2988579
http://dx.doi.org/10.1109/TSE.2019.2942301
http://dx.doi.org/10.3390/s22155921
http://www.ncbi.nlm.nih.gov/pubmed/35957478
http://dx.doi.org/10.1145/3502740
http://dx.doi.org/10.1109/TNSM.2022.3186006
http://dx.doi.org/10.1109/IWQoS.2016.7590439
http://dx.doi.org/10.3390/s21124093
http://dx.doi.org/10.1109/ACCESS.2022.3169902
http://dx.doi.org/10.1109/TrustCom50675.2020.00261
http://dx.doi.org/10.1109/SANER50967.2021.00050
http://dx.doi.org/10.1016/j.bcra.2022.100069
http://dx.doi.org/10.1016/j.eij.2015.06.005
http://dx.doi.org/10.1016/j.cosrev.2021.100439
http://dx.doi.org/10.1016/j.tele.2018.11.006
https://www.cbinsights.com/research/industries-disrupted-blockchain/
https://www.cbinsights.com/research/industries-disrupted-blockchain/
http://dx.doi.org/10.1007/s11623-017-0819-7
http://dx.doi.org/10.1109/ACCESS.2021.3140091

Sensors 2023, 23, 639 17 of 17

26. Tsagkaropoulos, A.; Verginadis, Y.; Compastié, M.; Apostolou, D.; Mentzas, G. Extending TOSCA for Edge and Fog Deployment
Support. Electronics 2021, 10, 737. [CrossRef]

27. Mann, Z.A. Notions of Architecture in Fog Computing. Computing 2021, 103, 51–73. [CrossRef]
28. Li, C.; Nie, S.; Cao, Y.; Yu, Y.; Hu, Z. Dynamic Gas Estimation of Loops Using Machine Learning. In Proceedings of the Blockchain

and Trustworthy Systems; Zheng, Z., Dai, H.N., Fu, X., Chen, B., Eds.; Springer: Singapore, 2020; pp. 428–441.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/electronics10060737
http://dx.doi.org/10.1007/s00607-020-00848-z

	Introduction
	Related Works
	Baseline Scenario
	High-Level Classification of Reusable Smart Contracts
	Pillar Domains in the ONTOCHAIN Ecosystem
	Base Categorization of Smart Contracts
	Tokenomics
	Hierarchical Analysis of Smart Contracts

	Recommender System of Reusable Smart Contracts for Fog Architectures
	Data Descriptors
	Architecture of the Recommender System

	Experimental Evaluation
	Cost Estimation of Smart Contracts
	Fog Recommender System Algorithm
	Smart Contract Development Time Evaluation

	Discussion and Conclusions
	References

