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Abstract: Addressing insufficient and irregular sampling is a difficult challenge in seismic processing
and imaging. Recently, rank reduction methods have become popular in seismic processing algo-
rithms for simultaneous denoising and interpolating. These methods are based on rank reduction of
the trajectory matrices using truncated singular value decomposition (TSVD). Estimation of the ranks
of these trajectory matrices depends on the number of plane waves in the processing window; how-
ever, for the more complicated data, the rank reduction method may fail or give poor results. In this
paper, we propose an adaptive weighted rank reduction (AWRR) method that selects the optimum
rank in each window automatically. The method finds the maximum ratio of the energy between two
singular values. The AWRR method selects a large rank for the highly curved complex events, which
leads to remaining residual errors. To overcome the residual errors, a weighting operator on the
selected singular values minimizes the effect of noise projection on the signal projection. We tested
the efficiency of the proposed method by applying it to both synthetic and real seismic data.

Keywords: seismic data; interpolation; MSSA; SVD; rank reduction

1. Introduction

Seismic surveys are designed to keep a consistent grid of sources and receivers. In typ-
ical surveys, regularly sampled seismic surveys are uncommon or rare because of logistic
obstacles or economic constraints. These limitations lead to large shot and receiver sampling
intervals, which produce poorly, irregularly sampled seismic data along spatial coordinates
with gaps without recorded traces. Seismic reconstruction methods can be divided into four
main classes: signal processing-based methods, wave equation-based methods, machine
learning-based methods, and rank reduction-based methods.

Most of the methods in the signal processing-based category are multidimensional
and use prediction filters [1–3] and transform domains through means such as the Fourier
transform [4–6], Radon transform [7,8], or Curvelet transform [9]. There are some hybrid
techniques using combinations of the Fourier transform with prediction error filters [10] as
a way to improve interpolation beyond aliasing. Vassallo et al. [11] proposed multichannel
interpolation by matching pursuit (MIMAP), which interpolates high-order aliased data
without making any prior information about the linearity of seismic events or the seismic
wavefield model. Ghaderpour [12] proposed a multichannel anti-leakage least-squares
spectral (MALLSSA) method that includes the spatial gradients of seismic data into the
anti-leakage least-squares spectral (ALLSSA) to regularize seismic data beyond aliasing.

Wave-equation-based algorithms execute an implicit migration de-migration pair.
Stolt [13] introduced a reconstruction algorithm that regularized a dataset by mapping it to
physical space using migration–demigration. A finite-difference offset continuation filter
was proposed by Fomel [14].

In recent years, machine learning has attracted much attention in geophysical studies.
Deep learning (DL) is having a great influence on signal and image processing. However,
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although very powerful, machine learning for geophysical problems is not mature yet,
and applications often ignore the complications and subtleties of real data processing.
Wang et al. [15] proposed a ResNet block design to interpolate anti-aliased seismic data.
Siahkoohi et al. [16] proposed generative adversarial networks (GANs) to reconstruct
heavily sub-sampled seismic data by giving up linearity and using an adaptive non-linear
model. Convolutional neural networks (CNNs) are a novel strategy for the reconstruction
of missing traces in pr-stack seismic images [17]. A new framework for training artificial
neural networks (ANNs) was presented by Mikhailiuk and Faul [18] to restore corrupted
multidimensional seismic signals. Wang et al. [19] utilized an eight-layer residual learning
network (ResNet) with better back-propagation for interpolation.

The key aspect of rank reduction-based methods is that linear events in a clean seismic
dataset are low-rank in the time and frequency domains. On the other hand, noise and miss-
ing traces increase the rank of data [20]. In the Fourier domain, rank reduction algorithms
reduce the rank of Hankel/Toeplitz matrices generated from frequency slices. The singular
spectrum analysis (SSA) method proposed by Sacchi [21], Tricket and Burroughs [22],
Oropeza and Sacchi [23], and Bayati and Siahkoohi [24] works by rank-reduction of the
Hankel matrix with an iterative algorithm in the frequency domain. Gao et al. [25] ex-
tended the SSA method to higher seismic data dimensions and called it a multichannel
singular spectrum (MSSA). Interpolating regularly missing traces with a de-aliased MSSA
method was proposed by Naghizadeh and Sacchi [26]. Kreimer et al. [27] developed the
algorithm for pre-stack data via low-rank tensor completion. Kreimer and Sacchi [28] used
the higher-order SVD for rank-reduction of the pre-stack seismic data tensor. Ely et al. [29]
utilized a statistical test to control the complexity of regularization by tuning a single
regularization parameter. Kumar et al. [30] developed rank-reduction techniques using
matrix completion (MC) for seismic data reconstruction. Rekapali et al. [31] studied the
application of multi-channel time slice singular spectrum analysis (MTSSSA) for 3D seismic
data de-noising in the time domain and discussed the selection of the input processing
window length. A damped OptShrink was studied by Siahshahr et al. [32], which selects
the rank of the block of the Hankel matrix without knowing the final rank. Carozzi and
Sacchi [33] proposed a method called (I-MSSA) that interpolates seismic data in its exact
data coordinates that overcomes the problem of vertical errors in rough binning.

One of the necessary assumptions of rank-reduction-based techniques is that the
Hankel matrix generated from clean and complete seismic data containing plane waves is
low-rank, and its rank is equal to the number of plane waves present in the data. However,
gaps and noise increase the rank, breaking this assumption. When dealing with data from
complex geologies, rank selection becomes difficult and inconvenient. One approach to
deal with this problem is to apply the algorithm to local windows. However, in most cases,
it is not easy to find the proper window size because it is hard to decide if the structure in
the local window is linear or not. Moreover, it is difficult to approximate the rank of each
window. Choosing the wrong rank will lead to failure because, if overestimated, there will
be a significant amount of residual noise remaining, and if underestimated, it will cause
random noise and signal distortion.

In the presence of noise when the signal-to-noise ratio is low, data reconstructed by
TSVD tend to contain a significant amount of residual noise. This residual noise is because
part of the noise has a projection on the signal component projection. Nadakuditi [34]
introduced an algorithm that provides a weighted approximation, where the weights reduce
and threshold the singular values. Their method mitigates the effect of rank overestimation.
If the rank is properly estimated, the algorithm will better estimate weak components
of the signal subspace. Chen et al. [35] introduced a damping operator that shrinks the
singular values containing significant particles of residual noise. Their method reached
better results than the Cadzow rank-reduction method [22,23] in the reconstruction of
highly noisy incomplete 5-D data. In this paper, we propose a method that automatically
selects a rank for each local window. The method was proposed by Wu and Bai [36] for
2-D data. We improved it for 3-D data and propose an adaptive weighting rank reduction
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method (AWRR) that selects the rank of the block of Hankel matrices automatically to
reconstruct and denoise 3-D seismic data simultaneously. The strategy is to choose the
second cutoff in the singular-value spectrum of the block Hankel matrix. We tested the
efficiency of the proposed method by applying it to both synthetic and real seismic data.

2. Materials and Methods

Consider S(t, x, y) a block of 3-D seismic data in the t− x − y domain on Nt by Nx
by Ny samples. (t = 1, . . . , Nt), (x = 1, . . . , Nx),

(
y = 1, . . . , Ny

)
. In the frequency domain,

the data are represented as S(ω, x, y) and (ω = 1, . . . , Nω). Each frequency slice of the data
at a given frequency ωm can be represented by the following matrix:

S(ωm) =


S(1, 1) S(1, 2) . . . S(1, Nx)
S(2, 1) S(2, 2) . . . S(2, Nx)

...
...

. . .
...

S
(

Ny, 1
)

S
(

Ny, 2
)

. . . S
(

Ny, Nx
)
. (1)

To avoid notational confusion, let us ignore the argument ωm. Then, construct a Hankel
matrix from each inline of S; for the inline ith, the Hankel matrix in the mth frequency slice
will be:

H i =


S(i, 1) S(i, 2) . . . S(i, l)
S(i, 2) S(i, 3) . . . S(i, l + 1)

...
...

. . .
...

S(i, Nx − l + 1) S(i, Nx − l + 2) . . . S(i, Nx)

. (2)

At this step, we have Ny Hankel matrices of each inline. Then, the multichannel
singular spectrum analysis (MSSA) constructs a block Hankel matrix M from Hankel
matrices H i:

M =


H1 H2 . . . Hn
H2 H3 . . . Hn+1
...

...
. . .

...
HNy−n+1 HNy−n+2 . . . HNy

. (3)

The size of M is I × J, where I = (Nx −m + 1)
(

Ny − n + 1
)

and J = mn. The integers
m and n are chosen to make the Hankel matrices of H and the block Hankel matrix of M
square matrices, or close to square. As we see, including the two spatial dimensions of the
3-D cube for each frequency can make the block Hankel matrix very large.

In seismic data, the observed data can be indicated as Sobs = R
(
S0 + η

)
, where Sobs

represents observed seismic data, S0 indicates the full noiseless data, η represents the
random noise and the residuals, and R indicates the sampling matrix formed of zeros and
ones. Using the MSSA algorithm, we can write the Hankel matrix of observed data as:

M = P + N, (4)

where P represents low-rank Hankel matrix of the desired signal and N denotes the noise
component which includes the gaps as well. In MSSA, the decomposition of the Hankel
matrix in the rank-reduction step using TSVD will be as follows:

M = UΣV H . (5)

If one knows the desired rank of the Hankel matrix, the estimated signal desired signal
is recovered by:

M̂ = UkΣkV H
k , (6)

where M̂ is the estimated signal, and k is the predefined rank of the Hankel matrix equal to
the number of the linear events in each local window.
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Let us investigate the effect of linear events on the singular values in each frequency.
Figure 1a shows the cube of 3-D data. Figure 1b indicates an inline of the data and Figure 1c
represents a slice of data in a cross-line direction.

(a) (b) (c)

Figure 1. (a) Cube of 3-D data having three linear events. Slice of data in (b) inline direction,
(c) cross-line direction.

We investigate the singular value distribution of the data by converting it to the ( f , x, y)
domain. Next comes generating the block Hankel matrix in each frequency slice. Figure 2a
shows the block Hankel matrix for the frequency slice of 20 Hz. Figure 2b displays the
block Hankel matrix generated in the frequency slice of 50 Hz. According to Figure 2a,b,
it is clear that the block Hankel matrix for the frequency of 20 Hz is smoother than the
one for the frequency of 50 Hz. It signifies that the block Hankel matrices for the higher
frequencies require a higher rank than those in the lower frequencies to recover.

(a) (b)

Figure 2. Block Hankel matrix for frequency slice of (a) 20 Hz, (b) 50 Hz. The color bar represents the
absolute value of the FFT of input data in the mentioned frequency.

The singular-value spectrum of the data’s block Hankel matrices for its frequency
range is presented in Figure 3. Figure 3 represents the first 15 singular values’ spectrum.
This figure illustrates how the number of nonzero singular values of the block Hankel matrix
at low frequencies is equal to the number of linear events but increases with frequency.

Figure 3. Singular-value spectrum. The color bar represents the magnitude of the singular values.
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Similarly, Figure 4a represents the bar plot of the normalized singular values for the
frequency slice of 20 Hz. Figure 4b shows the zoomed image for the first 20 singular
values. Figure 4c shows the bar plot of the singular values for the frequency slice of 50 Hz.
Figure 4d is the zoomed image for the first 20 singular values. From the figures, one can
see that for the frequency of 20 Hz, the maximum difference in the energy between two
adjacent singular values occurs in the third singular value, and it is the same as the number
of linear events. However, for the frequency slice of 50 Hz, there is a second group of
nonzero singular values. It means that we need to keep more singular values to recover all
the frequencies completely.

(a) (c)

(b) (d)

Figure 4. Normalized singular value distribution of the block Hankel matrix of 3-D data with three
linear events in the frequency slice: (a) 20 Hz, (b) 50 Hz. The first 20 singular values of the same data
for frequency slice of (c) 20 Hz and (d) 50 Hz.

To analyze the effect of each singular value on the energy of each frequency for the data
presented in Figure 1, data were decomposed into their singular matrices and recovered
with each singular value from 1 to 15 separately. Then, the energy per frequency or power
spectrum of the recovered data with each singular value is calculated. In Figure 5, the red
line represents the graph of frequency energy per frequency, and the blue line shows the
estimate of the mean normalized frequency of the power spectrum. Figure 5a is the result of
recovering data with the first singular value. Figure 5b shows the energy per frequency for
the recovered data with the second singular value. Figure 5c is the energy per frequency for
the recovered data, including just the third singular value. The estimated mean frequency
for these first three singular values is 77 Hz. Figure 5d–f represent the energy per frequency
for the recovered data, including just the 4th, 5th, and 6th singular values, respectively.
The estimated mean frequency for these singular values is 90 Hz. Figure 5g–i indicates the
energy per frequency for the recovered data, including just the 7th, 8th and 9th singular
values, respectively. The estimated mean frequency for these singular values is 88 Hz.
Figure 5j–l show the energy per frequency for the recovered data, including just the 10th,
11th, and 12th singular values, respectively. It is clear that most energy of the useful signal is
recovered with the first three singular values. Nevertheless, the shift in the mean frequency
from 77 to 90 Hz states that there is leakage for the higher frequencies in the data. We
conclude from this test that despite the remaining residual errors in the presence of the
additive noise, we need to choose the rank of the block Hankel matrix to be greater than
the number of linear events in each processing window of frequency and space.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5. Analysis of the power spectrum for each singular value. Panels (a–l) show the power
spectrum recovered by the 1st to 12th singular values, respectively.

To find the best rank of data that minimizes residual errors, we tested different kinds of
data containing various numbers of events with different slopes and amplitudes. The best
result is when we choose the rank from the second cutoff of singular values instead of the
first cutoff.

In all tested data, it is possible to see the first cutoff with a distinct change in the energy
of singular values. However, sometimes there is no abrupt change in the amplitude of the
singular values for the second cutoff, especially in the presence of a high level of random
noise. Finding the second cutoff could be a challenge when the quality of the signal is poor.
With a careful look at where the first and the second cutoff in clean and complete data
happen, we conclude that there is a linear relationship between the first and second cutoff.
The best estimate for the second cutoff can be estimated as follows:

T (Σ, k) = maxi
σ2

i
σ2

i+1
, (7)

B
(
Σ, k̃
)
= 3× T (Σ, k), (8)

where σi is the ith singular value of the Hankel matrix in each frequency. T (Σ, k) indicates
the operator that finds the rank at the point where the two following singular values
become more scattered. B

(
Σ, k̃
)

indicates the second cutoff of the singular-value spectrum
of the block of a Hankel matrix in each frequency slice. k̃ can be introduced as the optimal
rank of the block Hankel matrix that minimizes the Frobenius-norm difference between the
approximated and the exact signal components.
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Substituting Equation (8) to the rank-reduction step will give us:

M̃ = U k̃B
(
Σ, k̃
)
V H

k̃ , (9)

By applying Equation (9) on the rank-reduction step of MSSA, the rank-reduced block
Hankel matrix is reconstructed. The next step is averaging anti-diagonals of the recovered
block Hankel matrix. It recovers the signal in the Fourier domain for each frequency
slice. The rank-reduction step leads to gradually reconstructing the missing traces and
can be used together with an iterative algorithm to replace the missing traces with the
reconstructed traces. An iterative algorithm is a practical approach for random noise
attenuation and seismic data amplitude reconstruction. The algorithm is written as follows:

S̃n+1(ωm) = αnSobs + (I − αnR)F−1ARBF
(

S̃n(ωm)
)

, n = 1, 2, . . . , N (10)

where ωm is the temporal frequency, I is a matrix of ones, αn ∈ (0, 1] is a weight factor,
which decreases linearly with iterations, F indicates the Fourier transform, and F−1 shows
the inverse Fourier transform. B points to the Hankelization operator to generate the
block Hankel matrix, R reveals the rank reduction operator, and A gives the averaging
anti-diagonal operator.

Selecting the rank using Equation (9) recovers all the signal components. One of the
advantages of this rank-reduction method is that it is adaptive and data-driven, and there
is no need to set any parameter for the rank-reduction step in each processing window.
Moreover, choosing the second cutoff instead of the first one leads to a better reconstruction
of the high frequencies. However, selecting large ranks leads to more residual errors in the
recovered data. That is why we need to apply a weighting operator to reduce the effect of
noise on the projected signal components to recover higher frequencies.

We are looking for a weighting operator Ŵ to adjust the singular values of M̃ to
calculate the best estimation of the desired signal. Nadakuditi [34] proposed an algorithm
for low-rank matrix denoising that can be summarized as follows

1. Mn×m is the signal plus noise Hankel matrix.
2. k is the best effective rank that can represent the signal.
3. For i = 1 : k,

compute ŵi =

(
− 2

σi

D(σi; Σ)

D′(σi; Σ)

)
, (11)

4. End for loop,
5. Compute results as M̂ = ∑k

i=1 ŵiσiuivH
i

In this algorithm, D(σ; Σ) is computed as:

D(σ; Σ) =
1
k

Tr
(
σ
(

σ2 I − ΣΣH
)−1)1

k
Tr
(
σ
(

σ2 I − ΣHΣ
)−1)

=

[
1
k

Tr
(
σ
(

σ2 I − Σ2
)−1)]2

, (12)

where D represents D-transform and Tr(.) denotes the trace operator of the input.
The D′ represents the derivative of D with respect to σ:

D′(σ; Σ) = 2
[

1
k

Tr
(
σ
(

σ2 I − Σ2
)−1)]

=

[
1
k

Tr
((

σ2 I − Σ2
)−1
− 2σ

(
σ2 I − Σ2

)−2
σ
)]

=
2
k2

[
Tr
(
σ
(

σ2 I − Σ2
)−1)][

Tr
((

σ2 I − Σ2
)−1
− 2σ2

(
σ2 I − Σ

)2)−2
)]

,

(13)
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The D-transform describes how the distribution of the singular values of the sum
of the independent matrices is related to the distribution of the singular values of the
individual matrices [37]. Benaych and Nadakuditi [38] indicate that the principal singular
values and vectors of a large matrix can be set apart as the singular values of the signal
matrix and the D-transform of the limiting noise-only singular value distribution. From
Equation (11), the weighting operator Ŵ can be written as:

Ŵ = diag(ŵ1, ŵ2, . . . , ŵk). (14)

We can substitute the weighting algorithm obtained from Equation (14) into Equation (9)
to enhance the results of the rank-reduction step as:

M̂ = U k̃ŴB
(
Σ, k̃
)
V H

k̃ , (15)

where M̂ indicates the reduced rank block Hankel matrix. Missing traces can be inter-
polated completely by applying the iterative algorithm. This adaptive-weighting rank-
reduction (AWRR) method leads the way that sorts out the rank of the block Hankel matrix
automatically while reducing the effect of the residual errors.

The weighting operator satisfies the equation below [34]:∥∥M̂ − P
∥∥ ≤ ε. (16)

To understand the effect of the weighting operator on the singular values of the block
Hankel matrices, the predefined rank-reduction method (TRR) and the weighting rank-
reduction method (WRR) with predefined rank were applied to a block Hankel matrix.
Figure 6a shows clean and complete 3-D synthetic data having four linear events. Figure 6b
indicates the same 3-D data with SNR = 2 and 51% missing traces. Figure 6c,d show slices
of data in inline directions for the cubes of Figure 6a and Figure 6b, respectively. Figure 6e,f
are the slices of the cubes of Figure 6a and Figure 6b in the crossline direction, respectively.

Figure 7 shows the Hankel matrices of data in Figure 6 for the frequency slice of 20 Hz.
Figure 7a is the block Hankel matrix of clean and complete data. Figure 7b corresponds
to the block Hankel matrix of data with SNR = 2 and 51% missing traces. Figure 7c
shows the block Hankel matrix after applying the predefined rank = 12 for ten iterations.
Figure 7d indicates the block Hankel matrix after applying the weighting operator to adjust
the singular values of the data using TSVD with predefined rank = 12 after ten iterations.
We can see from Figure 7 that the block Hankel matrix of the WRR method is smoother
than the result of applying a predefined rank = 12 after ten iterations.

Figure 8 corresponds to the spectrum of the first 25 singular values of the block Hankel
matrices of Figure 6. Figure 8a represents the singular-value spectrum of the block Hankel
matrix of clean and complete data for the frequency of 20 Hz, the first three singular
values indicate the useful signal that relates to the coherent events in the data. Figure 8b
relates to the singular-value spectrum of the noisy and incomplete data, Figure 8c shows
the singular-value spectrum of the noisy and incomplete data after applying TSVD with
rank = 12. Figure 8d indicates the singular-value spectrum of the noisy and incomplete
data after applying TSVD with rank = 12 and the weighting operator. We can see that the
singular spectrum of the data after applying the weighting operator is much closer to the
spectrum of the desired signal in Figure 8a.
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(a) (c) (d)

(b) (e) (f)

Figure 6. (a) Cube of 3-D synthetic clean and complete data; (b) Cube of 3-D synthetic data with
SNR = 2 and 51% missing traces; (c,d) inline and cross-line sections of cube (a), respectively;
(e,f) inline and cross-line sections of cube (b), respectively.

(a) (b)

(c) (d)

Figure 7. Block Hankel matrices for frequency of 20 Hz for (a) clean and complete data, (b) data with
SNR = 2 and 51% missing traces, (c) data recovered by TSVD rank-reduction after ten iterations,
(d) data recovered by WRR after ten iterations.
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(a) (b)

(c) (d)

Figure 8. The spectrum of the first 25 singular values of the block Hankel matrices for frequency
of 20 Hz for (a) clean and complete data and (b) data with SNR = 2 and 51% missing traces;
(c) the first 12 singular values of the data; (d) singular-value spectrum of the data after applying the
weighting operator.

Figure 9 corresponds to the block Hankel matrices of the same data in the constant
frequency slice of 50 Hz. Figure 9a shows the block Hankel matrix of the clean and complete
data, and Figure 9b is the block Hankel matrix of data with SNR = 2 where 51% of traces
are removed. Figure 9c displays the recovered block Hankel matrix after applying TRR and
rank = 4 for ten iterations. Figure 9d indicates the block Hankel matrix after applying the
WRR with predefined rank = 4. Figure 9e represents the recovered block Hankel matrix of
the ARR method, and Figure 9f is the block Hankel matrix recovered by the weighting ARR
(AWRR) method. Generally, the results of AWRR and WRR are smoother than the output
of TRR and ARR, and the results of ARR and AWRR include more details than those of
TRR and WRR.

Figure 10 corresponds to the spectrum of the first 25 singular values of the block
Hankel matrices of Figure 9. Figure 10a represents the singular-value spectrum of the block
Hankel matrix of clean and complete data for the frequency of 50 Hz. The abrupt drop in
energy of the third and the fourth singular values relates to the useful signal. However,
there are still nonzero singular values that are related to the useful signal. Figure 10b
is the singular-value spectrum of the block Hankel matrix of noisy and incomplete data.
Figure 10c shows the singular-value spectrum of the noisy and incomplete data after TRR
with rank = 4. Figure 10d displays the singular-value spectrum of the noisy and incomplete
data after applying WRR with rank = 4. Figure 10e depicts the singular-value spectrum
after applying ARR. Figure 10d indicates the singular-value spectrum of the noisy and
incomplete data after the implementation of the AWRR method. From the figures, one can
see that the result of AWRR is more comparable to the corresponding result for the desired
signal in Figure 10a.
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(a) (b)

(c) (d)

(e) (f)

Figure 9. Block Hankel matrices for frequency of 50 Hz for (a) clean and complete data and (b) data
with SNR = 2 and 50% missing traces; (c) block Hankel matrix recovered by TRR rank = 4 after ten
iterations; (d) data recovered by WRR after ten iterations. (e) Data recovered by applying the ARR
method for ten iterations, and (f) data recovered after applying AWRR for ten iterations.

(a) (b)

(c) (d)

Figure 10. Cont.
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(e) (f)

Figure 10. The spectrum of the first 25 singular values of the block Hankel matrices for frequency
slice of 50 Hz for (a) clean and complete data, (b) data with SNR = 2 and 50% killed traces, (c) data
recovered by TRR, (d) data recovered by WRR, (e) data recovered by ARR, (f) data recovered
by AWRR.

3. Results and Discussion

Several evaluations are presented in this section to estimate the proficiency of the
different methods of rank reduction for the MSSA algorithm. First, the methods were tested
on a synthetic shot gather containing nine hyperbolic events with different curvatures. Then,
they were tested on a shot gathered from a 3-D field dataset. To judge the reconstruction
results numerically, we use an interpolation quality factor (QF) defined by:

QF = 10 log10(
‖d0‖2

2
‖d f − d0‖2

2
), (17)

where d0 is the clean and complete data, and d f is the result after applying an interpola-
tion algorithm.

3.1. Synthetic Data

Figure 11 shows the result of applying the previously discussed methods of rank-
reduction to a synthetic shot gather holding nine hyperbolic events with different cur-
vatures. The first test is a cube of 100 inline and 11 crosslines with SNR = 2 and 60%
decimated traces. We chose the local window with 23 traces in the inline direction and 11
in the crossline direction for each method and half a window overlapping in each direction.
We set the number of iterations to be constant for all of the methods and the frequency
range for the application of the MSSA algorithm to 1 to 100 Hz. The rank of TRR and WRR
was set to nine. Figure 11a is the desired data arranged into a 2-D matrix. Figure 11b shows
input data with SNR = 2 and 60% missing traces. The results of applying TRR, ARR,
WRR, and AWRR methods are shown in Figure 11c,e,g,i, respectively. Figure 11d,f,h,j are
residual errors of Figure 11c,e,g,i, respectively. All four methods recovered the signals with
correct amplitudes. However, in the TRR and ARR results, we can see significant residual
errors. The AWRR result is much cleaner than those of TRR, ARR, and WRR. The input
data quality factor is QF = −1.44 dB. The output quality factors of the TRR, ARR, WRR,
and AWRR methods were QF = 5.23, 6.58, 7.56, 8.12 dBs, respectively.

Figure 12 compares the f − k spectra of the discussed rank-reduction methods.
Figure 12a shows the f − k spectra of clean data. Figure 12b represents the f − k spectra of
data with SNR = 2 and 50% missing traces. Figure 12c–f are the f − k spectra of the TRR,
WRR, ARR, and AWRR methods, respectively.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 11. Comparison of different methods of rank-reduction. (a) Clean and complete data, (b) input
data with SNR = 2 and 60% missing traces; (c,e,g,i) data interpolated by TRR, ARR, WRR, and AWRR,
respectively; (d,f,h,j) residual errors of TRR, ARR, WRR, and AWRR, respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 12. f − k spectral comparison of (a) clean and complete data, (b) input data, (c) TRR result,
(d) WRR result, (e) ARR result, (f) AWRR result.

To evaluate the stability of each algorithm, we ran them with different percentages of
gaps and noise realizations for an SNR of two. The other parameters were constant for each
run. Figure 13a shows a graph of the interpolation quality factor for each method versus
the gap ratio. The length of the error bars is the standard deviation of the interpolation
quality factor, and each colored line connects the mean value of the interpolation quality
factor for each method at each gap ratio. As we can see in Figure 13a, the input quality
factor decreases with increasing gap ratio, and the output quality factor decreases with
increasing gap ratios. Moreover, the output quality factor curve of the AWRR method is
always above the other curves.

(a) (b)

Figure 13. (a) The mean and standard error of the quality of reconstruction versus gap ratio for
various methods. These results were obtained by running each method on 20 noise realizations
of the dataset with different gap ratios and rank = 9 for the methods requiring a predefined rank.
(b) The mean and standard error of the reconstruction quality versus SNR for various methods. These
results were obtained by running each algorithm on 20 noise realizations of the dataset with a gap
ratio = 50%, and rank = 9 for the methods requiring a predefined rank.

In the next experiment, the stability analysis was repeated to test the sensitivity of
each method to the additive noise. The test was performed by changing the level of signal-



Sensors 2023, 23, 577 15 of 19

to-noise ratio with 20 different realizations of SNR for a gap ratio = 50%. We set the other
parameters to be constant for each run. In Figure 13b we can see that the proposed method
(AWRR) outperforms the other methods even with poor quality of the signal.

Table 1 indicates the values of the mean and standard deviation of the interpolation
quality of each method for each gap percent. We can see that the average value of the
AWRR quality factor is higher than for the other methods. Regarding the discussed
methods, AWRR has lower standard deviation values, which indicates the values tend to
be close to the mean value, especially when the data are sparser.

Table 1. Mean and standard deviation of the quality of interpolation for each method for different
gap-ratio inputs.

Output Quality Factor (dB)

AWRR WRR ARR TRR

Gap Ratio MEAN (dB) STD MEAN (dB) STD MEAN (dB) STD MEAN (dB) STD

10% 12.34 0.04 12.10 0.04 11.22 0.06 11.17 0.04

20% 11.90 0.05 11.64 0.05 10.71 0.09 10.69 0.06

30% 11.36 0.05 11.12 0.05 10.08 0.08 8.86 0.08

40% 10.45 0.07 10.35 0.07 9.24 0.10 8.90 0.11

50% 9.64 0.16 9.38 0.20 8.01 0.17 7.28 0.20

60% 8.13 0.13 7.61 0.13 6.51 0.14 5.16 0.20

70% 5.70 0.16 4.78 0.21 4.10 0.21 2.46 0.25

Table 2 represents the values of the mean and standard deviation of the output quality
factor of each method for each signal-to-noise ratio input.

Table 2. Mean and standard deviation of the quality of interpolation for each method for different
SNR inputs.

Output Quality Factor (dB)

AWRR WRR ARR TRR

Input SNR MEAN (dB) STD MEAN (dB) STD MEAN (dB) STD MEAN (dB) STD

100 13.64 0.41 12.98 0.41 11.90 0.44 10.72 0.30

10 13.32 0.42 12.89 0.42 11.44 0.30 10.34 0.28

4 12.10 0.26 11.77 0.28 10.25 0.23 9.36 0.38

2 9.61 0.26 9.20 0.26 8.16 0.16 7.26 0.15

1 5.88 0.09 5.51 0.09 4.61 0.05 3.40 0.07

3.2. Real Field Data

This experiment tested the efficiency of the methods on a shot gathered of a 3-D field
dataset. It is easy to inspect traces in shot/receiver gather displays for poor receivers or
any bad shots, which are the logistic constraints during the seismic survey. Regarding the
input data, the best results are obtained with NMO-corrected data [6]. However, in this
experiment, we applied the MSSA interpolation before NMO correction to see the effect of
the algorithm on the curvature.

Figure 14 refers to the acquisition coordinates of the shot gather. The red star represents
the location of the shot, and the black dot indicates the receiver’s location. Figure 14a shows
the initial distribution of the traces in a shot gather. For this experiment, 41% of the traces
were removed. Figure 14b illustrates the geometry of input traces after removed 41%
of them.



Sensors 2023, 23, 577 16 of 19

(a) (b)

Figure 14. Geometry of the field data. (a) Initial distribution of the traces. (b) Distribution of traces
after removing 41% of them.

This test applied the MSSA algorithm using the AWRR and TRR methods in the rank-
reduction step. Figure 15a shows the input cube of data, which presents the missing traces.
Figure 15b shows the result of the interpolation using TRR in the rank-reduction step,
and Figure 15c shows the result of using AWRR. For both tests, the number of iterations
and processing window remained unchanged. For the TRR approach, the predefined rank
wa set to rank = 10. Figure 16 represents the cube of data arranged into a 2-D matrix.
Figure 16a shows the input data. Figure 15b shows the result of applying TRR. Figure 16c
shows the result of applying AWRR. Figure 17 corresponds to a patch of data from the time
1.35 (s) to 1.75 (s) and the trace numbers 160 to 190. Figure 17 represents the cube of data
rearranged in a 2-D matrix. Figure 17a shows the input data. Figure 17b shows the result of
applying TRR. Figure 17c shows the result of applying AWRR.

(a) (b) (c)

Figure 15. Cube of 3-D field data. (a) The input data. (b) Interpolation result of applying TRR.
(c) Interpolation result of applying AWRR.

(a)

Figure 16. Cont.
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(b)

(c)

Figure 16. (a) Input real data, (b) interpolation result of applying TRR approach, (c) interpolation
result of applying the AWRR method.

Figure 17. Zooming area of Figure 16 from time 1.35 (s) to 1.75 (s) and trace numbers 160 to 190.
(a) input data, (b) TRR result, (c) AWRR result.

4. Conclusions

We proposed an adaptive weighting rank-reduction (AWRR) method by exploring
the singular values of the Hankel matrix in each frequency slice. The method chooses
the maximum energy ratio between the two following singular values as the criterion to
define the optimal rank. For 3-D data, the block Hankel matrices in higher frequencies are
recovered with higher ranks. Consequently, the method selects the second cutoff in the
singular-value spectrum. AWRR is based on an adaptive rank-reduction method combined
with a cascade weighting operator. It is adaptive in selecting the rank of the block Hankel
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matrices. In addition, the weighting operator reduces the effect of additive random-noise
projection on data, so a smoother block of Hankel matrices is its result. Furthermore,
for different types of data, such as linear and curved, through a lot of simulations with
different SNR and gap percentages, the proposed algorithm showed a higher output SNR
and a better reconstruction of data with the predefined rank reduction methods. Most
interpolation rank-reduction methods, such as MSSA, are SVD-based methods in their
rank-reduction step. An SVD decomposition of a Hankel matrix is a very time-consuming
operation. In addition, the iterative approach in the interpolation part of MSSA makes the
algorithm time-consuming. To make AWRR in the MSSA algorithm applicable for higher
dimensions, it is recommended to move from the SVD-based method to the SVD-free-based
rank minimization method.
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