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Abstract: To monitor objects of interest, such as wildlife and people, image-capturing devices are
used to collect a large number of images with and without objects of interest. As we are recording
valuable information about the behavior and activity of objects, the quality of images containing
objects of interest should be better than that of images without objects of interest, even if the former
exhibits more severe distortion than the latter. However, according to current methods, quality
assessments produce the opposite results. In this study, we propose an end-to-end model, named
DETR-IQA (detection transformer image quality assessment), which extends the capability to perform
object detection and blind image quality assessment (IQA) simultaneously by adding IQA heads
comprising simple multi-layer perceptrons at the top of the DETRs (detection transformers) decoder.
Using IQA heads, DETR-IQA carried out blind IQAs based on the weighted fusion of the distortion
degree of the region of objects of interest and the other regions of the image; the predicted quality
score of images containing objects of interest was generally greater than that of images without
objects of interest. Currently, the subjective quality score of all public datasets is in accordance
with the distortion of images and does not consider objects of interest. We manually extracted the
images in which the five predefined classes of objects were the main contents of the largest authentic
distortion dataset, KonIQ-10k, which was used as the experimental dataset. The experimental
results show that with slight degradation in object detection performance and simple IQA heads,
the values of PLCC and SRCC were 0.785 and 0.727, respectively, and exceeded those of some deep
learning-based IQA models that are specially designed for only performing IQA. With the negligible
increase in the computation and complexity of object detection and without a decrease in inference
speeds, DETR-IQA can perform object detection and IQA via multi-tasking and substantially reduce
the workload.

Keywords: blind image quality assessment; objects of interest; object detection; transformer; DETR;
multi-task

1. Introduction

In the real world, in order to monitor objects of interest, a large number of image-
capturing devices, such as camera traps [1–3] for observing wild animals and video surveil-
lance cameras for recording the activities of people, have been deployed. These automatic
recording cameras produce a large number of images containing objects of interest at all
times. These images can provide sufficient and diverse image data for many applications
and research studies [4,5]. For example, the images from camera traps have recorded
various animal behaviors without human interference, and people can use these images
for animal protection and conduct various animal behavior analyses [6–9]. Thus, image
quality assessment (IQA) plays an important role in image applications because the images
can undergo various distortions during image acquisition, compression, transmission,
etc. [9]. Since people are the final users of images, people’s subjective assessment of an
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image’s quality is the most direct and reliable method [10]. However, the number of im-
ages substantially exceeds subjective human assessment capacities. Thus, objective image
quality assessments, which enable computers to make assessments that are consistent with
subjective assessments, have recently attracted increasing attention [11–13].

Generally, IQA methods can be categorized as full-reference IQA [14,15], reduced-
reference IQA [16,17], and no-reference or blind IQA [18,19] via the availability of reference
images. Full-reference IQA and reduced-reference IQA methods, respectively, utilize
full or a part of the information from reference images to assess the distorted image’s
quality. Since they do not require reference images, which are usually difficult to obtain or
completely unavailable in real-world applications, blind IQA methods are more challenging
but more applicable [20,21].

In recent years, due to the achieved remarkable results of deep learning [22] in
many computer vision tasks, many deep learning-based blind IQA models have been
proposed [23–29]. Deep learning-based blind IQA methods have significantly outper-
formed other types of methods, such as natural scene statistic-based methods [12,30,31]
and texture feature-based methods [32,33], which have currently become the dominant
scheme [21]. Based on the assumption that the high-level semantic features extracted by
pre-trained CNN (convolutional neural network) models for image classification tasks on
large-scale datasets (such as ImageNet [34] and Places365 [35]) are quality-aware, many
proposed CNN-based methods leverage these features to predict the subjective quality
score, and this is carried out using mainly two methods: using a regression model such as
support vector regression to regress the features onto the subjective score, or replacing the
final classification layer with a regression layer and fine-tuning the regression layer with
the IQA datasets to predict the image quality score [23,36–38]. The latter method results in
end-to-end image quality assessments. Li et al. [9] utilized three well-known pretrained
classification deep CNNs, including AlexNet [39] and ResNet [40], to extract deep semantic
features and trained a linear regression model for regressing the aggregated feature onto
the image quality score. Li et al. [41] utilized a network in network (NiN) model that was
first pretrained on ImageNet to extract features and fine-tuned the concatenated new layers
to map the learned features onto the subjective quality score. Finally, the model could
directly take raw images as inputs and estimate the image quality. Very recently, end-to-end
deep learning-based blind IQA methods have become the mainstream methods. Ma et
al. [42] proposed a multi-task end-to-end CNN-based blind IQA method, namely MEON,
which consists of two sub-networks for identifying the distortion type and predicting the
quality score. Rehman et al. [43] proposed an end-to-end deep learning-based region and
proposed the network (RPN) methodology for blind IQA, which used pretrained VGGNet
and ResNet to extract feature maps, and RPN was used to extract region proposals from
feature maps as the regions of interest (ROIs); moreover, fully connected and regression
layers were used to compute the local quality score of ROI, and the average of all local ROI
scores was used as the final total image quality score. For the first time, they leveraged
the proposals to predict image quality and achieved standout accuracies with respect to
synthetically distorted and real-world images.

It is well known that the receptive field of CNN is limited and only captures the local
features of the image, thus losing non-local information and having a strong local bias.
Moreover, due to the spatial invariance of shared convolution kernel weights, CNN has
limited abilities in handling complex feature combinations. The attention mechanisms of
the transformer [44] can aggregate global information from entire images [38]. In various
computer vision tasks, such as classification [45] and object detection [46], transformer
has achieved great success. In the real world, authentic images, especially the images
captured from the wild, not only contain global distortions caused by low illumination,
loss of focus, fog, rain, etc., but also suffer from distortions in local areas, which are caused
by an object’s fast movement, overexposure, etc. Thus, deep blind IQA models should
accurately capture local and global features in order to fuse them and carry out image
quality prediction [27]. Following the utilization of the transformer encoder in vision
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transformer model [45], You et al. [47] proposed an architecture that leverages the feature
maps extracted by CNN as input to the transformer encoder for image quality assessments.
To address the shortcoming of image quality degradation caused by resizing and cropping
images to fixed shapes in CNN-based models, Ke et al. [48] designed a multi-scale image
quality transformer (MUSIQ) that encodes multi-aspect ratio multi-scale image features
into a sequence of tokens as the input of the transformer encoder for image quality score
prediction. Golestaneh et al. [38] sequenced the extracted features into the transformer
encoder and applied relative ranking and self-consistency loss to reduce the uncertainty
of the model. Yang et al. [49] first applied attention mechanisms across the channel and
spatial dimensions on the extracted features via the vision transformer model to predict the
quality score, and they achieved state-of-the-art performance.

In fact, the devices for monitoring objects of interest inevitably take on a large num-
ber of blank background images that do not contain objects of interest, such as animals.
Currently, most deep learning-based blind IQA methods only evaluate the image’s quality
according to the distortion, and they do not consider the content of the objects of interest.
When the distortion degree of the images containing objects of interest is greater than that
of the images without objects of interest, the quality assessment predicted via the blind
IQA of the former is worse than the latter, which is unreasonable or even incorrect in
some real-world applications. For example, as shown in Figure 1, although the left image,
which records the nocturnal behavior of animals, exhibits more severe distortion, such as
dimming and overexposure, than the right image without animals, which was taken during
the day, the left image is more valuable and exhibits better quality than the right image
due to the presence of animals. Thus, we present a practical problem with respect to the
blind IQA: how do we objectively and accurately evaluate the quality of images containing
objects of interest?

Figure 1. A real-world example of an image containing animals and a blank image without animals.
The left image should be more valuable and is of better quality than the right image because it
captures Prionailurus bengalensis (marked in red rectangle) while exhibiting more severe distortion,
such as dimming and overexposure, than the right image.

For obtaining accurate image quality assessments, humans should first focus on the
image’s content, especially the objects of interest. Moreover, the human visual system first
pays attention to the objects of interest in an image and perceives its quality. Cao et al. [50]
used an object detector to detect objects and aggregated the features of the detected objects
and the image to assess image quality. The achieved state-of-the-art performance demon-
strated that the objects in the images are highly relevant for IQA. Inspired by this work, the
object detection network should have the potential to solve the above practical problem. In
practical applications, the most direct way to blindly assess the quality of images containing
objects of interest is to first filter out these images using a deep object detection model and
then carry out a quality assessment on these images. Can a deep learning-based model
perform both object detection and blind image quality assessment simultaneously in a
multi-tasking manner (thus simplifying the process and reducing efforts, which renders it
more suitable for practical application requirements)? Thus far, no research conducted has
met the above requirements.
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In this paper, we chose to use an advanced object detection model, DETR (detection
transformer) [46], as the baseline model. Referring to the object detection heads of DETR,
we added blind IQA heads on the top of the transformer decoder to extend its capability
to perform object detection and blind IQA simultaneously; moreover, we named the
final model DETR-IQA. The blind IQA heads consisting of simple multilayer perceptron
(MLP) [51] translate the object queries from the decoder of DETR into image quality scores,
and we set a hyperparameter to linearly combine the L2 loss of objects and no objects with
a subjective score. We transformed the traditional blind IQA based on the distortion degree
of the entire image into the blind IQA based on the weighted fusion of the distortion degree
of the region of objects of interest and the other regions of the image. Finally, the proposed
DETR-IQA can not only carry out accurate blind quality assessments of images containing
objects of interestbut it can also carry out realistic and reasonable quality assessments
relative to images without objects of interest. In addition, DETR-IQA performs object
detection and blind IQA simultaneously with negligible increases in model computation
and complexity, which can substantially reduce the practical workload.

The structure of this paper is as follows: In Section 2, we present the materials and
methods used in this study. The details of images containing objects of interest and the
results of several experiments are presented in Section 3. In Section 4, we discuss the results
presented in Section 3 and the deficiencies and direction of our work. In Section 5, we
present the conclusions.

2. Materials and Methods
2.1. Images Containing Objects of Interest

Several commonly used public datasets for image quality assessment can roughly be
categorized as synthetic and authentic [21] datsets. Synthetic datasets, such as LIVE and
TID2013 datasets, consist of reference images and distorted reference images of several
types, such as JPEG2000 compression, white noise, Gaussian blur, and fast fading [52,53]
distortion types in synthetic images could occur in real-world image applications, artificially
synthesizing some complex distortions, such as blur, which is caused by the fast motion of
objects, is difficult [54]. In this study, we worked on the blind IQA of real-world images
containing objects of interest. Thus, we selected some images from the largest authentic
dataset, KonIQ-10k [54], which contains 10,073 quality score images, with each image
scoring a reliable 120 in terms of ratings from 1459 crowd workers on a crowdsourcing
platform; these were used to construct the experimental dataset. The subjective score is in
the form of a mean opinion score (MOS) ranging from 1 to 100, in which the larger MOS
values present better image quality. The subjective quality score of images in KonIQ-10k is
mainly used to consider 8 distortion types: noise, JPEG artifacts, aliasing, lens and motion
blur, over-sharpening, wrong exposure, color fringing, and over-saturation. The crowd
workers carried out image quality assessment based on the degree of the above types of
distortion, and they were not instructed to consider the content of some classes of objects,
such as people, birds, dogs, etc., in the images. Thus, before selecting the images, we
firstly predefined some classes of objects of interest and then manually extracted the images
relative to which the objects of interest were the main content component. The object of
interest as the main content component can ensure that the MOS score of the image is
mainly based on the object of interest. Some examples of images containing objects of
interest are shown in Figure 2. The predefined class of objects of interest comprised people,
birds, dogs, horses, and other animals, including sheep, animal sheer, monkey, etc. The
total number of images is 3582, in which the number of images of people is 2069, bird
images number 543, dog images number 456, horse images number 105, and other animal
images number 541. Finally, we used a labeling tool to annotate images with a bounding
box with respect to the objects of interest. We also randomly extracted 460 images without
objects of interest to verify whether the proposed DETR-IQA can carry out reasonable and
realistic image quality prediction: that is, it does not exhibit the problems discussed in
the Introduction.
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Figure 2. Example of images containing objects of interest, which are marked in rectangles and are
the main content components of the image.

2.2. DETR-IQA

In real-world image applications, even if the distortion of the images containing objects
of interest, such as rare animals, is more severe than that of the images without objects of
interest, they are more valuable and exhibit better quality because they record the behavior
and activity of the objects of interest. Therefore, people are more concerned about the
distortion degree of the objects of interest in images. The human visual system first pays
attention to the objects of interest in an image and perceives its quality. Since the behavior
of the object of interest in the image is closely related to its surrounding environment, the
image’s background information can be used as auxiliary information for IQA. To mimic
the above process of a human being perceiving the image’s quality, the blind IQA model
can be divided into two stages: object detection for extracting the features of the objects
of interest and image quality assessment for predicting the quality score based on the
extracted features.

Transformer, which solely relies on the attention mechanism, was first proposed in
NLP tasks [44], and it achieved great performance with respect to various compute vision
tasks. In the object detection task, DETR (detection transformer) [46] employs the pure
transformer architecture to model object detection as a set prediction task without using
hand-designed components, such as anchor design and non-maximum suppression. The
multi-scale features of input images are first extracted by CNN and then fed into the
encoder together with positional embedding. DETR uses a fixed number of learnable
queries to probe the outputs of an encoder in a decoder and then adds a feedforward
network on top of the decoder to predict either an object (object class with bounding box)
or no-object (background class). DETR simplifies the detection pipeline without the need
for hand-designed anchors [55] and non-maximum suppression [56], and it predicts all
objects at once. The architecture of DETR is simple yet effective in the object detection task.
The fixed number of decoder outputs contains the features of the objects of interest and
can be used to assess the image’s quality. Another advantage of DETR is that it is easy to
expand because of its simple and advanced architecture. Thus, we extended the capabilities
of DETR by adding IQA heads to carry out image quality assessment without degrading
the object detection performance, and we named this model DETR-IQA. To the best of
our knowledge, this is the first attempt to blindly assess image quality based on objects of
interest. As a DETR-like model, DETR-IQA consists of four main components: a multi-scale
CNN backbone, multi-layer transformer encoder–decoder, simple feedforward network
(FFN) with a linear projection as detection heads, and simple multilayer perceptron (MLP)
as IQA heads. In this study, the feedforward network and multilayer perceptron have
the same structure, and only the dimensions of the outputs differ. The overall network is
illustrated in Figure 3.
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Figure 3. An overview of DETR-IQA, in which the bottom is the original DETR model and DETR-IQA
is the DETR with IQA heads.

Given an input image, a conventional CNN backbone, such as ResNet-50, extracts
multi-scale features. Flattened features supplemented with fixed positional encodings as
a sequence are fed into the transformer encoder. The features from the encoder and N
(e.g., N = 100) object queries, which are learnable positional embeddings, are fed into the
transformer decoder, which contains cross-attention and self-attention modules. Then,
the feedforward network regresses the object queries produced by the decoder relative to
the bounding box coordinates, and a linear projection generates the classification results.
Because the number of object queries is greater than the actual number of objects, the
object queries not match the ground truth are denoted by the “no-object” class label. We
intuitively think that the features of no objects contain some information in the background:
more precisely, the surrounding information of objects that can assist the IQA. The multi-
layer perceptron of IQA heads translates all object queries from the decoder into quality
scores; then, all scores are averaged in some way as the image quality score. DETR-IQA is
completely inherited from the original DETR and is then leveraged on the object queries of
the DETR decoder to convert the IQA; this is carried out based on the distortion of the entire
image relative to the IQA’s object and no-object distortion. In addition, via multi-tasking,
DETR-IQA can perform object detection and blind IQA simultaneously, which simplifies
the practical process and reduces the practical workload.

The loss of DETR-IQ contains two parts—original loss from DETR and designed loss
relative to the blind IQA head—and is defined as follows:

LDETR−IQA = LDETR + LIQA (1)

where LDETR defines a linear combination of standard cross-entropy functions for classifi-
cation and a combination of absolute error (L1 loss) and generalized IoU (intersection over
union) for box coordinate prediction, and LIQA defines a linear combination of object score
loss and no-object score loss. For a more detailed description and details of the loss from
DETR, we refer the reader to the DETR literature. Partly because of the blind IQA loss, we
first caculated the L2 loss for all matched object regression scores with an averaged and
partial MOS and all unmatched no-object regression scores with an averaged and partial
MOS; finally, we added the two L2 losses as the image quality assessment’s loss. Herein,
the function is as follows:

LIQA = L2(
∑O

i=1 Si

O
, λ ∗ MOS) + L2(

∑NO
j=1 Sj

NO
, (1 − λ) ∗ MOS) (2)
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where Si and Sj, respectively, represent the score of one object and one no object, O
represents the number of matched objects and NO represents the number of unmatched
no objects. The sum of O and NO is equal to the fixed number of learnable quries. We
intuitively considered that the MOS of an image consists of the MOS of objects and no
objects, and we used λ as the hyperparameter to linearly split the MOS into two parts. We
determined the value of λ based on the experimental results of object detection and image
quality assessments.

2.3. Evaluation Metrics

Following prior studies, we selected Spearman’s rank-order correlation coefficient
(SRCC) and Pearson’s linear correlation coefficient (PLCC) to evaluate the performance of
DETR-IQA. The metric used to evaluate the performance of DETR-IQA relative to object
detection comprises the traditional and commonly used average precision at different IoUs.

The SRCC calculates the monotonic relationship between the subjective and predicted
scores and is defined as follows:

SRCC = 1 −
6 ∑i d2

i
N(N2 − 1)

(3)

where di represents the rank difference between the MOS and the predicted score of the
i-th image, and N represents the number of test images.

The PLCC computes the linear correlation between the MOS values and predicted
scores, and it is defined as follows:

PLCC =
∑i (si − msi )(ŝi − mŝi )√

∑i (si − msi )
2
√

∑i (ŝi − mŝi )
2

(4)

where si and ŝi, respectively, represent the MOS and predicted scores of the i-th test image,
and mi and m̂i, respectively, represent the mean of the MOS and the predicted scores of all
test images.

When values of SRCC and PLCC are closer to 1, this indicates the better performance
of the blind IQA.

2.4. Implementation Details

In this study, we implemented the DETR-IQA model via PyTorch, and experiments
were run on 2 NVIDIA TITAN RTX GPUs, each with 24G VRAM size. We trained 300 epochs
with a batch size of 2. Moreover, we leveraged the pre-trained DETR model with the ResNet-
50 backbone on COCO 2017 val5k and fine-tuned it using our constructed dataset. We
did not change the structure of the baseline DETR model and used the default parame-
ters. DETR-IQA is composed of ResNet-50, a 6-layer transformer encoder, and a 6-layer
transformer decoder. We used an AdamW optimizer with a weight decay of 1 × 10−4

and at most 200 epochs. We set the initial transformer‘s learning rate to 1 × 10−4 and the
backbone‘s learning rate to 1× 10−5. The weights of DETR-IQA were initialized with a
COCO-pretrained DETR model. The hyperparameters λ were empirically set to 0.99, 0.9,
0.8, 0.7, and 0.6. According to the ratio of 8:2, the constructed images containing objects of
interest were randomly divided into the training set and testing set.

3. Results
3.1. Images Containing Objects of Interest

In some real-world applications, especially monitoring objects of interest such as
animals, it is common that the images containing objects of interest, such as nocturnal
animals and rare animals, exhibit greater distortion than images without objects of interest.
It is unreasonable or even incorrect to assess the images’ quality only based on image
distortion because people subjectively think that images containing objects of interest are
more valuable and of better quality than images without objects of interest and, therefore,
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should have greater quality scores. In order to simulate the images’ data in real-world
applications, we predefined five classes of objects of interest and extracted images in which
the objects of interest are the main content components in KonIQ-10k. The object of interest
occupying the major region of an image can ensure that the subjective quality score is
mainly based on the perception of objects of interest. Then, we manually annotated the
bounding box of the objects in each image. At the same time, we also randomly selected
460 images without objects of interest to evaluate the performance of the proposed model
relative to images without objects of interest. The details of images containing objects of
interest are shown in Table 1. The distribution histogram of the MOS of these extracted
images is shown in Figure 4.

Table 1. The details of images containing five classes of objects of interest.

Class No. of Images

Person 2069
Bird 543
Dog 456

Horse 105
Other animal 541

Figure 4. The distribution histogram of the MOS of images containing objects of interest (left) and
images without objects of interest (right).

According to the ratio of 8:2, the images containing objects of interest were randomly
divided into the training set and testing set, as shown in Table 2.

Table 2. The extracted images’ training set and testing set assignments.

Training Set Test Set

2866 716

3.2. Performance Evaluation

In this study, we added the MLP on top of the transformer decoder to extend the
capability of DETR to perform object detection and blind IQA via multi-tasking. The
IQA heads and detection heads shared the same backbone: the transformer encoder and
transformer decoder. Because the ground-truth image quality score’s MOS did not contain
any information about the location of objects in the image, the IQA heads could degrade
the performance of object detection. However, the IQA heads depend on the outputs of
the decoder; thus, the object detection performance of DETR-IQA should not degrade too
much and should preferably be close to the performance of the baseline DETR model.

We firstly conducted a DETR experiment without using IQA heads to provide the
baseline object detection performance as shown in Table 3.
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Table 3. The results of DETR based on the constructed dataset.

Model Name AP50 AP75 APS APM APL

DETR 0.74 0.663 0.112 0.269 0.678
Note: AP50 is the average precision calculated when IoU is 0.5; AP75 is the average precision calculated when Iou
is 0.75; APS is the average precision calculated when the object is small; APM is the average precision calculated
when the object is sized in the middle; APL is the average precision calculated when object is large.

Then, we conducted several DETR-IQA experiments using different hyperparameters
λ to find the suitable value. The results of the experiments are shown in Table 4.

Table 4. The results of several DETR-IQA experiments with different hyperparameters, λ.

λ AP50 AP75 APS APM APL PLCCT SRCCT PLCCNO SRCCNO

0.99 0.728 0.646 0.118 0.21 0.657 0.746 0.707 0.282 0.299

0.90 0.726 0.647 0.224 0.201 0.665 0.732 0.686 0.549 0.514

0.80 0.741 0.647 0.114 0.267 0.668 0.785 0.727 0.659 0.609

0.70 0.73 0.642 0.083 0.256 0.663 0.763 0.721 0.643 0.591

0.60 0.672 0.589 0.107 0.299 0.61 0.735 0.709 0.645 0.565

Note: PLCCT and SRCCT are, respectively, the Pearson and Spearman correlation coefficients relative to the test
set; PLCCNO and SRCCNO are, respectively, the Pearson and Spearman correlation coefficients of the images
without objects of interest.

We used AP50, AP75, APS, APM, and APL to comprehensively measure object detection
performance, and PLCC and SRCC were used to measure the image quality prediction
accuracy of the model relative to the test dataset (represented by T) and images without
objects of interest (represented by NO). Some examples of images with ground-truth MOS
and the predicted score of DETR-IQA are illustrated in Figure 5, and it can be observed
that DETR-IQA can carry out reasonable and accurate image quality assessment.

Figure 5. Some examples of images with MOS and a predicted score of DETR-IQA. Upper four
images contain objects of interest and lower four images do not contain objects of interest.

Finally, we calculated the FLOPs and FPS of DETR and DETR-IQA to compare their
computation and complexity, and the results are shown in Table 5.
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Table 5. The results of FLOPs and the FPS of DETR and DETR-IQA.

Model Name FLOPs Inference FPS Params

DETR-IQA 70.09 G 41.41 M 20
DETR 70.01 G 41.27 M 20

4. Discussion

In this study, we attempted to solve the practical problem of blindly assessing the
quality of images containing objects of interest in some real-world applications. Thus, we
selected the largest-scale authentic dataset KonIQ-10k [54] as the base dataset. Since the
crowd workers were only instructed to consider the distortion of the entire image, the
subjective quality score they provided was not closely related to the objects in the images. In
order to solve this problem, we first predefined five classes—person, bird, dog, horse, and
other animals (such as sheep and monkey)—and manually extracted the images containing
objects belonging to these classes. To ensure that the subjective score is closely related to
the objects of interest, we extracted images in which the objects of interest were the main
content component in order to construct the experimental dataset. As shown in Table 1,
the extracted images exhibited a long-tailed distribution, in which the number of images
containing a person was close to 60% and the proportion of images containing other classes
of objects comprised a smaller portion; real-world datasets typically exhibit this imbalanced
distribution [57]. The consistency with the distribution of the real-world dataset indicated
that the constructed dataset could be used to simulate the data generated by real-world
scenarios, such as camera traps used to monitor wild animals. To test whether DETR-IQA
has the ability to carry out reasonable and accurate quality assessments on images without
objects of interest, we also manually extracted images without the above classes of objects
from the KonIQ-10k dataset. We used 10 intervals as the MOS segment, and we counted
the number of extracted images in each MOS segment. As shown in Figure 4, most images
in the two extracted images datasets have an MOS between 50 and 80, and the number of
images accounts for more than 70%. There are very few images in the two extracted image
datasets with an MOS that is lower than 20, and the number of images does not exceed 2%.
The MOS distribution of both datasets is consistent with the MOS distribution of the entire
KonIQ-10k dataset.

In this study, we focus on a practical problem in the field of blind image quality
assessment: In real-world applications, for the purpose of monitoring certain objects,
the quality of images should be better than that of images without objects of interest
even if the former images exhibit more severe distortion than the latter images because
the images containing objects record important information—such as the activity and
behavior of objects. However, according to the current methods, the quality assessment
produced opposite results. Ignoring the distortion of the image region of objects of interest
may lead to inconsistency between the predicted quality and human visual perception
because the human visual system is sensitive to the visual quality of objects of interest
in an image. Based on the assumption that people are more concerned about the visual
quality of objects of interest, we added a simple multi-layer perceptron on the top of
the transformer decoder of DETR to regress the feature of objects onto the quality score.
Because of the surrounding auxiliary information relative to objects, we also simply took
advantage of the feature of no-objects to assist in quality prediction. The proposed end-
to-end model, DETR-IQA, possesses the capability to simultaneously carry out object
detection and blind image quality assessment. Thus, the performance evaluation should
comprehensively consider object detection performance and image quality assessment
accuracy. In DETR-IQA, the image quality assessment and object detection shared the
same original DETR architecture. The quality evaluation score not only did not contain any
information, such as location, that could help improve the performance of object detection,
but the quality evaluation head could also increase the loss of object detection and degrade
the performance results. However, DETR-IQA carried out quality assessment based on
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the results of DETR. Therefore, the object detection performance was vital. We conducted
baseline object detection experiments using DETR without IQA heads, and the baseline
object detection results are shown in Table 3. We designed the loss of IQA heads with
hyperparameter lambda to simply divide the MOS linearly in order to map the features
of objects with the auxiliary features of noobjects to obtain the subjective quality score.
We conducted several experiments using DETR-IQA with different λ—0.99, 0.9, 0.8, 0.7,
and 0.6—and the results, including the object detection performance and image quality
assessment accuracy, are shown Table 4. Comparing the five types of AP in Tables 3 and 4,
the various declining trends in object detection can be observed when hyperparameter
lambda is set to different values. When λ was 0.8, the performance of object detection
degraded the least. At the same time, the IQA accuracy was the best relative to the test
set and image set without objects of interest. This result shows that, to some extent, the
performance of object detection determines the accuracy of the image quality assessment.
When λ was set to 0.99, 0.9, 0.7, and 0.6, the results indicated that the feature of no objects
can provide auxiliary but limited information for image quality assessments. A λ value of
0.8 also indicated that the predicted quality score of an image without objects of interest
would not exceed 20 due to the absence of objects of interest. As shown in Figure 4, the
number of images with an MOS below 20 did not exceed 2% in the two extracted images
datasets; this is, again, relative to the entire KonIQ-10k dataset. When λ was set to 0.8,
DETR-IQA guaranteed that the predicted quality score of images containing objects of
interest was generally greater than that of images without objects of interest unless the
former had particularly severe distortion. Moreover, according to the results of PLCC and
SRCC in the last two columns of Table 3, the quality assessment scores of DETR-IQA for
images without objects of interest are highly correlated with subjective scores. This indicates
that DETR-IQA can carry out reasonable and accurate image quality score predictions.
Some examples of images with MOS and the predicted score of DETR-IQA in Figure 5 show
that DETR-IQA can produce accurate quality assessments of images containing objects
of interest and reasonable quality assessments of images without objects of interest even
if the MOS of images containing objects of interest is lower than that of images without
objects of interest; moreover, the predicted quality scores are highly related to the distortion
of images.

We investigated the performance of methods proposed in the other blind IQA research
literature on the entire KonIQ-10k dataset. The existing methods adopted many advanced
architectures and tricks to fit the predicted score and the ground-truth subjective score,
MOS, on the KonIQ-10k dataset. Moreover, the MOS only functions in accordance with
the distortion of an entire image without considering the objects of interest. The dataset
constructed in this study only ensures that MOS is mainly based on the objects in the image.
Even so, the performance of our proposed DETR-IQA method with respect to predicting
image quality exceeded that of some deep models that are specially designed for only
performing image quality assessments, such as MEON [42] and CNN [23]. Moreover, our
proposed DETR-IQA has the advantage of avoiding false quality assessments in which
the predicted quality score of images containing objects of interest is lower than that of
images without objects of interest. The results in Table 5 show that the proposed method
negligibly increased the calculation and complexity of the DETR model and did not decrease
inference speeds. If applied in practical applications, the proposed DETR-IQA method can
simultaneously perform object detection and IQA via multi-tasking, which can simplify
the conventional process—in which object detection is first carried out, followed by image
quality assessment—and greatly reduce the workload.

Finally, in this study, the accuracy of DETR-IQA in image quality assessments was con-
strained by the performance of object detection. Since the original DETR has drawbacks such
as slow convergence and instability, we leveraged SOTA adaptive activation functions [58]
to accelerate the convergence and stabilize the performance of DETR-IQA. In addition,
other models with better detection performances, such as Deformable-DETR [59],DINO [60],
Co-DETR [61], etc., can be used to extract the features of objects more accurately, thus



Sensors 2023, 23, 8205 12 of 14

improving the accuracy of IQA. Moreover, the IQA heads in this study only used a very
simple multi-layer perceptron to achieve better results than some deep learning-based
models. Therefore, the design and use of more complex and advanced IQA heads, such
as SwinTransformer [62], and the combination of CNN and transformer, could improve
IQA accuracy.

5. Conclusions

In some practical image applications, images containing objects of interest are more
valuable than images without objects of interest, even though the former exhibit greater
distortion. Therefore, humans should be more concerned with the distortion of objects of
interest. In this paper, the proposed model, DETR-IQA, extended DETR using IQA heads
to simulate how humans perceive the quality of images containing objects of interest. The
model can blindly predict the image quality score based on the features of objects detected
using DETR, and the object detection performance only exhibits a slight decrease. The IQA
heads consisting of very simple multi-layer perceptron architecture can not only accurately
and blindly assess the quality of images containing objects of interest but also perform
reasonable quality assessments on images without objects of interest. With the negligible
increase in the model’s computation and the complexity of object detection, DETR-IQA can
perform object detection and IQA simultaneously. DETR-IQA is a simple yet meaningful
effort toward solving the practical IQA problem. In the future, we will use more advanced
object detection networks and design more powerful IQA heads to improve their potential
in practical image applications.
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