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Abstract: A robust and scientifically grounded teaching evaluation system holds significant im-
portance in modern education, serving as a crucial metric that reflects the quality of classroom
instruction. However, current methodologies within smart classroom environments have distinct
limitations. These include accommodating a substantial student population, grappling with object
detection challenges due to obstructions, and encountering accuracy issues in recognition stemming
from varying observation angles. To address these limitations, this paper proposes an innovative
data augmentation approach designed to detect distinct student behaviors by leveraging focused
behavioral attributes. The primary objective is to alleviate the pedagogical workload. The process
begins with assembling a concise dataset tailored for discerning student learning behaviors, followed
by the application of data augmentation techniques to significantly expand its size. Additionally, the
architectural prowess of the Extended-efficient Layer Aggregation Networks (E-ELAN) is harnessed
to effectively extract a diverse array of learning behavior features. Of particular note is the integration
of the Channel-wise Attention Module (CBAM) focal mechanism into the feature detection network.
This integration plays a pivotal role, enhancing the network’s ability to detect key cues relevant to
student learning behaviors and thereby heightening feature identification precision. The culmina-
tion of this methodological journey involves the classification of the extracted features through a
dual-pronged conduit: the Feature Pyramid Network (FPN) and the Path Aggregation Network
(PAN). Empirical evidence vividly demonstrates the potency of the proposed methodology, yielding
a mean average precision (mAP) of 96.7%. This achievement surpasses comparable methodologies
by a substantial margin of at least 11.9%, conclusively highlighting the method’s superior recognition
capabilities. This research has an important impact on the field of teaching evaluation system, which
helps to reduce the burden of educators on the one hand, and makes teaching evaluation more
objective and accurate on the other hand.

Keywords: teaching evaluation system; student learning behavior; data augmentation; smart classrooms

1. Introduction

The rapid advancements in computer technologies, such as artificial intelligence, big
data, and cloud computing, have led to the pervasive integration of smart classrooms in
learning and teaching [1–3]. To bolster the development of these smart classrooms, the es-
tablishment of a robust and multifaceted teaching evaluation system is imperative [4,5],
with a primary focus on comprehensive teaching evaluations. Among the array of evalua-
tion tools, the recognition of student learning behaviors emerges as a particularly potent
method for assessing teaching approaches [6,7]. By scrutinizing and identifying student
learning behaviors, educators gain valuable insights into their students’ progress and
learning efficacy, enabling them to fine-tune teaching strategies and methods accordingly.
This ultimately cultivates a more conducive learning environment [8].
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In traditional classroom settings, educators and teaching personnel primarily rely on
direct observation of students’ learning behaviors to comprehend their ongoing learning
trajectory [9–11]. Additionally, indirect evaluation methods, including grade records,
homework completion, and class attendance tracking, are harnessed to gauge students’
learning journey. With the integration of multimedia teaching in classrooms, sensor-
based technologies have emerged, enabling the nuanced recognition of students’ learning
behaviors. For instance, Mohammed et al. [12] harnessed the Internet of Things (IoT) to
devise an automated classroom behavior classification system. This system assesses class
effectiveness through result recognition, furnishing administrators with insightful data
to enhance overall classroom performance. In the field of psychology, researchers have
explored the benefits of MOOC learning for students with dependent speech cognitive
style and dependent image cognitive style based on students’ brain waves, so as to provide
targeted guidance for students’ learning styles. However, traditional direct observation
methods rely too much on the subjectivity of the observer and are time-consuming, while
sensor technology and brainwave observation rely on expensive equipment and are difficult
to popularize [13].

With the maturity of computer vision technology, it has become a trend to apply it to
the intelligent classroom environment as an auxiliary tool for teaching evaluation. These
technologies are characterized by continuous monitoring, objective evaluation and real-time
interaction. Wang [14] proposed a deep residual network that leverages residual structures
to identify students’ engagement levels during class. This technological innovation serves
as a pivotal cornerstone for the development of intelligent classrooms. It is worth noting
that researchers in the field of education and teaching have recognized that factors such as
different lighting conditions, different viewing angles, and the quality of image acquisition
equipment in dense teaching environments pose challenges for the accurate identification
of student learning behaviors [15–17]. Therefore, in addition to improving lighting facilities
and optimizing the layout of camera equipment, the researchers are also working to develop
and optimize more universal detection algorithms to address these challenges.

Our research question can be summarized as follows: how to accurately detect and rec-
ognize students’ learning behaviors in complex smart classrooms (including a large number
of students, occlusions, and different observation angles)? Building upon the foundation
of previous research, this paper adopts the YOLOv7 framework as the principal network
architecture, thereby achieving swift recognition while preserving accuracy. Moreover, we
seamlessly integrate the attention recognition mechanism of CBAM to heighten recognition
precision within complex background scenarios. Concretely, we employ the proposed algo-
rithm to detect seven distinctive learning behaviors typically exhibited by elementary school
students, encompassing actions like writing, reading, raising hands, and participating in
discussions. We undertake a comprehensive performance comparison against state-of-the-
art (SOTA) learning behavior recognition frameworks. This paper makes several significant
contributions that advance the field of student learning behavior recognition:

• In response to the absence of specialized datasets for student learning behavior recogni-
tion in the field of education, this study introduces the Student Learning Behavior (SLB)
dataset. This dataset is meticulously annotated to include comprehensive information
about classroom learning behaviors among primary and secondary school students.
Researchers and practitioners can access this valuable resource on GitHub through
the following link: https://github.com/houhou34/Teaching-evaluation-dataset (ac-
cessed on 6 March 2023). The availability of this dataset addresses a critical gap
in the domain, facilitating the development and evaluation of learning behavior
recognition models.

• This paper proposes a novel learning behavior recognition method that builds upon
the YOLOv7 architecture. This method has been designed to accurately detect multiple
students’ learning behaviors. Furthermore, we conduct an in-depth investigation into
the impact of incorporating the attention detection mechanism into our proposed

https://github.com/houhou34/Teaching-evaluation-dataset


Sensors 2023, 23, 8190 3 of 25

method. This integration of the attention mechanism is shown to significantly enhance
the recognition performance of our model.

• Our developed student learning behavior recognition network demonstrates a no-
table improvement over state-of-the-art (SOTA) methods. Specifically, it achieves an
enhanced mean average precision (mAP) by 11.9%. Our model exhibits remarkable
advantages in detecting students, even in scenarios with significant occlusion. It excels
in identifying common classroom behaviors such as students turning their heads,
raising their hands, and looking up. These achievements underscore the effectiveness
of our proposed approach in real-world classroom environments.

• We tackle the challenge posed by limited training samples by employing two crucial
techniques: data augmentation and transfer learning. These methods allow us to
maximize the utility of the available data, enhancing the robustness and generalization
capacity of our model.

The ensuing sections of this paper are structured as follows: Section 2 offers an in-
depth review of pertinent research in student classroom behavior recognition and the YOLO
algorithm. In Section 3, we provide a problem definition of this research and summarize
the notations that appear in this paper. Section 4 elucidates the procedural approach and
network framework adopted for detecting and identifying student behaviors. In Section 5,
we present a detailed comparison and conduct ablation experiments to rigorously assess
the efficacy of our proposed methodology. Lastly, Section 6 encapsulates our conclusions
and outlines potential avenues for future research exploration.

2. Related Work

In this section, we will take a closer look at student learning behavior and current
methods for detecting student behavior in the classroom, as well as provide an overview of
the YOLO object recognition model. In addition, the application of attention mechanisms
in computer vision is explored.

2.1. Student Learning Behavior

The manifestations, characteristics, and phenomena apparent in students’ learning
behaviors have been extensively studied in the fields of educational research and educa-
tional psychology [18]. Typically, these characteristics and phenomena are interrelated
with various aspects of students’ cognitive, affective, and social interactions. The impact
of students’ learning behaviors on their academic performance and learning experiences
is significant. Learning analytics is a rapidly developing academic field that evaluates
the status of students from various perspectives. In classroom instruction, attendance
is vital, as it serves as the initial step towards participation in classroom activities and
academic seminars [19]. Furthermore, attention plays a crucial role in gauging a student’s
dedication to learning. Students must maintain a high level of focus to comprehend and
absorb course content effectively. Effective attention and focus contribute significantly
to academic performance. Collaboration with peers further underscores the pivotal role
of cooperative learning proficiency when working in teams [20,21]. Cultivating positive
study behaviors and habits facilitates meeting academic challenges, enhancing academic
performance, and improving lifelong learning outcomes. Learning behaviors and habits are
instrumental in the success of learners. Therefore, educators must foster these behaviors
during the teaching and learning process to assist students in achieving better academic
outcomes and preparing for future careers.

2.2. Student Learning Behavior Recognition Based on Deep Learning

Student behavior within the classroom significantly impacts the quality of educa-
tion [7]. Active participation, attentive listening, note-taking, and adherence to classroom
rules all contribute to effective teaching and a conducive learning environment [22,23].
To address the significance of student behaviors, researchers have harnessed deep learn-
ing techniques to construct frameworks for detecting and recognizing these behaviors.
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An enhanced Faster R-CNN model for student behavior recognition was proposed by
Zheng et al. [24], which incorporated a novel scale-aware recognition head and a fresh
feature fusion strategy for detecting low-resolution behaviors. Lv et al. [25] integrated the
ResNet and FPN modules into the SSD model, addressing the challenge of recognizing
small targets at the back of the classroom and significantly boosting image recognition
efficiency. Mindoro et al. [26] introduced a method to predict student behavior based on
facial expressions and real-time behavior recognition, implementing it with the YOLOv3
network. Tang et al. [27] employed a weighted bidirectional feature pyramid network
(BIFPN) along with YOLOv5’s feature pyramid structure, effectively transforming the
target recognition issue into a fine-grained representation challenge. Furthermore, they
enhanced the non-maximal value suppression algorithm to improve the differentiation of
highly occluded objects. Yang et al. [28] developed an analytical system for assessing stu-
dents’ learning status, harnessing the YOLOv5 network and the CBAM attention module to
extract robust features from student behavior. Mo et al. [29] proposed a multitask learning
method to identify students’ classroom behaviors, which used MTHN module to extract
intermediate heat maps and combined key points and object locations to simulate students’
behaviors. It is noteworthy that researchers in education and teaching face the challenge
of detecting behaviors within densely populated classrooms, calling for a comprehensive
solution to tackle missed and erroneous recognitions due to occlusion and observation
angles during classroom behavior recognition.

In addition to computer vision-based techniques for identifying student classroom
behaviors, Zhao et al. [30] leveraged deep learning and developed models grounded in
Deep Belief Networks (DBNs) to assess teaching speech standards. Lu et al. [31] applied
feature data mining methods to detect learning behaviors in online English classrooms.
In Table 1, comparisons of deep learning-based student learning behavior recognition
methods in terms of methods, implementation techniques, and results are shown.

Table 1. Comparison of student learning behavior recognition methods based on deep learning.

Method Technique Performance

Faster R-CNN [24]

1. Proposal of an improved Faster R-CNN model;
2. Introduction of a scale-aware detection head
to handle scale variations;
3. Feature fusion strategy to detect low-resolution
behaviors;
4. Use of Online Hard Example Mining (OHEM) to
address class imbalances.

Experimental results on real corpus show that the
performance of the proposed method is improved
compared with the baseline method.

SSD [25]

1. Data enhancement techniques were applied to
expand the dataset;
2. The improved model showed better feature
extraction ability and small target recognition
accuracy compared to the native SSD model.

The improved SSD model achieves high recognition
accuracy and provides technical support for intelligent
management and teaching in universities.

YOLOv3 [26] The researchers used the YOLOv3 algorithm
for face recognition and prediction of student behavior.

The proposed method offers a reasonable pace of
identification and positive outcomes for measuring
student interest based on observable actions in the classroom.

YOLOv5 [27]

1. Proposal of a classroom behavior detection
algorithm using an improved YOLOv5 model;
2. Combination of feature pyramid structure
and weighted bidirectional feature pyramid network;
3. Addition of spatial and channel convolutional
attention mechanism;
4. Improvement of non-maximum suppression using
distance-based intersection ratio.

The average precision of the algorithm on the self-built
dataset is 89.8%, and the recall rate is 90.4%.

2.3. Target Detection Based on YOLO

This subsection provides an extensive overview of the YOLO networks’ evolution,
highlighting their multifarious applications in student learning behavior detection.
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The You Only Look Once (YOLO) algorithm, introduced by Redmon et al. [32], repre-
sents a single-stage target detection approach. It reimagines target detection as a regression
task, negating the need for candidate region extraction inherent in traditional two-stage
target detection algorithms. The YOLO algorithm simultaneously ascertains target cate-
gories and regresses their positions using a singular network. Progressing iterations have
yielded enhanced YOLO algorithm performance. YOLOv2 [33] introduced anchor boxes
and batch normalization techniques to amplify detection accuracy. YOLOv3 [34] integrated
the Darknet-53 architecture and Feature Pyramid Network (FPN) to elevate target detection
efficacy. YOLOv4 [35] streamlined the target detection model by refining the training
threshold. YOLOv5 [36] unveiled five distinct models of varying sizes, attaining perfor-
mance amelioration through channel scaling and model size adjustments. Subsequently,
YOLOv6 and YOLOv7 emerged. YOLOv6 embraced the RepVGG architecture, augmenting
GPU device adaptability and engineering adaptations [37]. YOLOv7 incorporated module
re-referencing and dynamic tag assignment strategies, bolstering both speed and accuracy,
effectively outpacing existing target detectors in the 5 FPS to 160 FPS range [38].

Researchers have harnessed the YOLO family of algorithms across diverse applications
within the realm of student behavior detection. Chen et al. [39] introduced an enhanced
YOLOv4 behavior detection algorithm infused with Repulsion loss functions, thus amplify-
ing detection capabilities for varying behaviors in the classroom. Mindoro et al. [26] utilized
the YOLOv3 algorithm to decipher students’ facial expressions and predict their behaviors.
Wei and Ding [40] harnessed the OpenPose algorithm to extract global features of the
human body and joint angle information, effectively distinguishing head-up from head to
down states. Additionally, they employed the YOLO algorithm to discern hand-related
information, determining whether a student was using a cellphone.

2.4. Attention Mechanism in Computer Vision

The attention mechanism, often referred to as selective attention, constitutes a cogni-
tive ability observed in both humans and animals [41]. This ability enables the selective
focusing on specific information while effectively ignoring irrelevant data when encoun-
tering intricate stimuli [42]. Such a mechanism serves to enhance cognitive efficiency
and accuracy, thereby facilitating more streamlined information processing. The study of
attention mechanisms finds application across a diverse array of fields, spanning cognitive
psychology, neuroscience, and computer science. In the domain of clinical neuroscience, at-
tention mechanisms are explored for their potential in diagnosing and addressing attention-
related disorders, such as ADHD [43]. Within the realm of speech recognition, attention
mechanisms find employment in critical tasks such as speech recognition and synthesis.
Moreover, attention mechanisms have garnered substantial acceptance and utilization in
recommendation systems, computer vision, and speech recognition, leading to tangible
enhancements in model performance. In recommendation systems, these mechanisms
prove invaluable in deciphering user interests and preferences, subsequently refining the
accuracy of recommendations. Within the scope of computer vision, attention mechanisms
are strategically deployed for tasks encompassing image classification, target recognition,
and image generation, culminating in augmented model performance by virtue of their
capacity to concentrate on pertinent image regions [44].

Specifically within the realm of computer vision, attention mechanisms can be broadly
categorized into three distinctive types: channel attention mechanisms, spatial attention
mechanisms, and region attention mechanisms. Channel attention mechanisms allocate
distinct weights to individual channels within the feature map, thus amplifying recogni-
tion precision and efficiency. A salient illustration of channel attention mechanisms is the
Squeeze-and-Excitation module as seen in SENet, which autonomously discerns the signifi-
cance of each channel in the feature map, invariably heightening recognition accuracy [45].
Spatial attention mechanisms, on the other hand, endow diverse spatial locations within
the feature map with varying weights, optimizing recognition precision and efficiency.
The Spatial Attention module, a prime example of a spatial attention mechanism within
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CBAM, effectively captures the significance of each spatial location in the feature map,
resulting in an elevated level of recognition accuracy [46]. Region attention mechanisms
further contribute by assigning distinct weights to discrete regions within an image, thereby
enhancing recognition accuracy and efficiency. Notably, RoI Pooling as implemented in
Faster R-CNN exemplifies a region attention mechanism, effectuating the extraction of
feature maps of fixed dimensions through pooling operations applied to regions of inter-
est [47]. These various attention mechanisms collectively bolster performance and precision
across a spectrum of computer vision tasks.

Overall, the integration of attention mechanisms across diverse domains, including
the realm of computer vision, holds substantial potential for elevating model performance
and refining the concentration on pertinent information. By harnessing the capabilities of
attention mechanisms, researchers have made substantial strides in areas such as student
behavior recognition, target recognition, and related tasks. These developments pave the
way for further exploration and refinement of attention-based models within the dynamic
landscape of computer vision.

Summary: YOLO networks have attained widespread utilization and notable ad-
vancements in the arena of student learning behavior recognition. They have demonstrated
remarkable efficacy in capturing localized visual features, such as body pose and facial
expressions, that are integral for behavior recognition. Nonetheless, YOLO networks might
encounter challenges in effectively modeling intricate relationships existing between di-
verse body parts and in comprehensively capturing overarching contextual information.
Hence, attention mechanisms emerge as a prospective avenue to enhance the capabilities
of student learning behavior recognition systems. These mechanisms possess the inherent
capacity to apprehend global dependencies and contextual nuances. By adeptly modeling
relationships between distinct body parts and judiciously considering the holistic context
of students’ classroom behaviors, we stand poised to amplify both the accuracy and the
resilience of behavior recognition models.

3. Preliminaries

This section aims to elucidate the task of identifying student learning behaviors and
the behavior recognition framework adopted in this study. To facilitate understanding,
Table 2 presents crucial symbols alongside their corresponding interpretations.

Table 2. Symbols and notations.

Number Notation Description

1 (x, y, w, h, o) The position coordinates and background of the marker box
2 MLP Multi-Layer Perceptron Calculator
3 Wx MLP layer x parameters
4 F Feature Map
5 ⊗ Pixel-level multiplication
6 Mc(F) Channel Attention maps
7 Ms(F) Spatial Attention Maps
8 f 7×7 7 × 7 convolution

3.1. Problem Definition

The central challenge tackled pertains to the detection and recognition of student
learning behaviors within classroom settings. Figure 1 provides an overview of the student
classroom learning behavior testing system’s workflow adopted in this research. The red
and blue arrows symbolize the training and testing processes, correspondingly. The system
starts with continuous video frame input from a classroom camera. It unfolds through
three principal stages: the collection of student classroom learning behavior data, feature
extraction, and behavior detection and recognition.
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Figure 1. Process of student learning behavior recognition.

3.2. Definitions

Definition 1. (Data collection of student learning behavior): Continuous video frames are captured
by classroom cameras.

Definition 2. (Feature extraction of student learning behavior): The feature vectors corresponding
to diverse student learning behaviors are extracted via deep neural network. These feature vectors
are subsequently employed as inputs for the feature detection network during both the training and
testing phases of the proposed network.

Definition 3. (Detection of student learning behavior characteristics): The proposed network
amalgamates the CBAM attention mechanism with the YOLOv7 feature detection network to
construct a model geared towards detecting and recognizing student classroom learning behaviors.

4. Methods

This section provides details of the framework for analyzing student learning behavior.
The task of detecting and recognizing student behavior within an smart classroom teaching
environment is complex due to challenges such as diverse illumination sources, lighting
variations, background interference, occlusion, and image noise. The You Only Look Once
(YOLO) algorithm, known for its real-time performance, global sensing capability, multi-
target recognition, and end-to-end training, has gained prominence in target recognition.
Leveraging its versatility, this study presents a learning behavior recognition framework
centered around YOLOv7.

4.1. Network Design of Student Behavior Recognition Task

The network structure adopted for this research is divided into four main components:
Input, Backbone, Head, and Output. The input image is resized to 640 × 640 pixels and
enters the backbone network. The head network generates three tiers of feature maps
with varying dimensions. The RepConv module’s recognition output yields both the
target object’s position and category information. The location information is typically
represented as bounding box coordinates [33], where (tx, ty) denote the center coordinates,
and (tw, th) represent the bounding box’s width and height. The category information is
deduced using a multi-category classifier, obtaining confidence levels. This indicates the
presence of the target object within the bounding box and provides a measure of accuracy.
The method employs three anchor frames, resulting in 36 outputs per layer, computed as
(7 + 5)× 3. These outputs are then concatenated with the feature map size to produce the
final output. Figure 2 visually outlines the network structure, with blue boxes signifying
enhancements made.
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Figure 2. Student learning behavior recognition framework.

The backbone network, as depicted in Figure 2, incorporates the Conv module for
input image normalization and nonlinear transformation. The MaxPool (MP) module
and the E-ELAN module work together to learn image features with varying perceptual
fields. The outcomes from three distinct E-ELANs are combined into the YOLOv7 feature
detection network. The integration of the E-ELAN module enhances YOLOv7’s learning
capabilities, parameter utilization, and computational efficiency. To cater to targets of
different scales, the head network augments feature map output from the backbone network
using the Spatial Pyramid Pooling Combined with Spatial Context Prediction (SPPCSPC)
module [38]. Furthermore, the E-ELAN module is employed to further heighten the
network’s computational efficiency.

This paper introduces the Convolutional Block Attention Module (CBAM) attention
mechanism to underscore critical information concerning students’ learning behaviors.
CBAM effectively captures contextual features and bolsters the network’s feature detection
capabilities. Figure 2 illustrates the network architecture integrating the CBAM attention
mechanism. The network’s prediction results, post the RepConv module, comprise the
multi-scale output from the head network.

4.2. Extended-Efficient Layer Aggregation Networks Module

This model introduces the Extended-efficient layer aggregation networks (E-ELAN)
module, elevating network learning potential through the Expand, Shuffle, Merge Car-
dinality Network (EALN) approach. The E-ELAN module modifies both the backbone
network and the head network’s structure [38]. Group convolution is employed to expand
the feature base count, and features from different groups are fused using shuffling and
merging cardinality operations. This strategy improves parameter utilization, computa-
tional efficiency, and features learned from various feature maps. Figure 3 illustrates the
architecture of the E-ELAN module.
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Figure 3. E-ELAN module’s architectural depiction.

4.3. Convolutional Block Attention Module

The Convolutional Block Attention Module (CBAM) is an attention mechanism com-
monly employed in convolutional neural networks to enhance model performance in
tasks such as recognition and classification, as shown in Algorithm 1. Its primary func-
tion is to adapt the input feature map by selectively highlighting crucial features through
attention tuning across both channel and spatial dimensions. By doing so, the CBAM
mechanism effectively improves the network’s ability to understand and model complex
images. The structure of the CBAM module is visually represented in Figure 4.

Channel
Attention
Module

Input Feature Refined Feature
Spatial

Attention
Module

Figure 4. Schematic representation of the CBAM module.

The CBAM module is composed of two distinct sub-modules: the Channel Attention
Module (CAM) and the Spatial Attention Module (SAM). The CAM’s role is to perform
spatially informative aggregation on the feature map, utilizing global max pooling and
global average pooling techniques. Subsequently, the resulting feature maps undergo a two-
layer Multi-Layer Perceptron (MLP) neural network. The output features are then element-
wise summed and passed through a sigmoid activation function, ultimately producing the
final channel attention feature.
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Algorithm 1 Algorithm for CBAM attention mechanism

Input: Network intermediate volume characteristics map
Output: Attention maps

1: CAM performs a spatially informative aggregation operation on the feature map:

Mc(F) = σ(MLP(AvgPool(F)) + (MLP(MaxPool(F)))

= σ
(

W1

(
W0

(
Fc

avg

))
+ W1(W0(Fc

max))
)

2: The channel attention map is multiplied at the pixel level with the original image:

F′ =Mc(F)⊗ F,

3: SAM performs feature focus and dimensionality reduction operations on feature maps:

Ms(F) = σ
(

f 7×7([AvgPool(F′); Max Pool(F′)])
)

= σ
(

f 7×7
([

Fs
avg; Fs

max

]))
4: Spatial Attention Maps are multiplied by the original map at the pixel level:

F′′ = Ms(F′)⊗ F′

5: Output CBAM processed feature maps.

SAM, on the other hand, operates on the feature map obtained from the CAM. It
undertakes global max pooling and global average pooling along the channel dimension
to yield two distinct feature maps. These feature maps are used to calculate the spatial
attention feature using a sigmoid activation function. Finally, the spatial attention feature is
element-wise multiplied with the initial feature map to generate the ultimate feature output.

The combined utilization of these modules, namely E-ELAN and CBAM, significantly
contributes to the enhancement of object recognition models by bolstering the network’s
learning capacity and selectively highlighting important features. CBAM attention mecha-
nism can enhance CNN’s attention to important student behavior features, focus attention
on features related to student behavior, and resist redundant information in the data. In ad-
dition, the CBAM attention mechanism can reduce unnecessary computational burden,
filter out irrelevant feature information.

4.4. Data Augmentation

The efficacy of deep learning in the realm of computer vision hinges on access to
extensive, meticulously annotated datasets [48]. However, constructing a high-quality
dataset for target recognition introduces a host of challenges:

(1) Labeling complexity: Target recognition mandates the precise identification and
classification of each object, rendering the annotation process more time-intensive. Ensuring
accuracy and consistency necessitates skilled annotators. Moreover, complexities like
occlusion, rotation, and pose variations further compound the labeling process.

(2) Dataset imbalance: Target recognition datasets often exhibit significant disparities
in the number of samples across different categories, leading to suboptimal recognition for
certain categories. It is crucial to achieve a balanced distribution of samples to alleviate
category imbalance during dataset creation.

(3) Dataset diversity: The target recognition dataset must encompass a wide spectrum
of characteristics—varied target objects, scenes, lighting conditions, poses, and viewpoints—
to bolster generalization capabilities. Yet, curating such diverse datasets entails substantial
investments of time and labor.
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(4) Dataset size: Successful target recognition models typically demand a substantial
volume of training data for optimal performance. However, constructing a sufficiently large
dataset poses challenges due to the heightened complexity and time required for annotation.

(5) Dataset quality: Producing a high-quality target recognition dataset mandates an-
notators with professional acumen to ensure precision and uniformity. Moreover, datasets
may inadvertently contain errors or noise, necessitating thorough screening and cleaning
to preserve data quality.

To address these challenges, this paper turns to data augmentation, an essential
technique to bolster the training of deep learning models using limited effective training
data. Data augmentation diversifies the dataset, mitigates overfitting, and enhances the
model’s capacity for generalization. In this study, data augmentation is performed on the
self-built Student Learning Behavior (SLB) dataset through a series of techniques.

4.4.1. Random Rotation Enhancement

To enhance the variability of the SLB dataset and mitigate the risk of overfitting, ran-
dom rotation enhancement is introduced. This technique introduces diversity by applying
random rotations to images. Figure 5 visually illustrates this process, depicting the original
image, a 15° clockwise rotation, and a 15° counterclockwise rotation. Algorithm 2 provides
the underlying principle behind random rotation enhancement.

Algorithm 2 Image random rotation enhancement algorithm

Input: image max_angle
Output: enhanced_image

1: function RANDOM_ROTATION(image, max_angle)
2: height, width = image.shape
3: Randomly generate the rotation angle. Randomly generated rotation angle θ can be

represented by the random number function rand:

θ = rand× 2×max
−

angle−max
−

angle

4: Calculate the center of rotation. Assume that the coordinates of the center of rotation
are (x_center, y_center).

center_x =
width

2
, center_y =

height
2

5: Define the rotation matrix.

rotation_matrix =

cos(θ) − sin(θ) (1− cos(θ)) · center_x + sin(θ) · cente
sin(θ) cos(θ) − sin(θ) · center_x + (1− cos(θ)) · cent

0 0 1


6: Performs image rotation. The position of each pixel after rotation is (x′,y′).

(x′, y′) =
{

x′ = (x− center_x) · cos(θ)− (y− center_y) · sin(θ) + center_x
y′ = (x− center_x) · sin(θ) + (y− center_y) · cos(θ) + center_y

7: return rotated_image
8: end function
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(a) The original image from a 

smart classroom

(b) Rotate clockwise to 

enhance the image

(c) Rotate counterclockwise to 

enhance the image

Figure 5. Illustration of random rotation enhancement.

4.4.2. Grayscale Enhancement

In the context of smart classroom environments, certain image details and features
often pose challenges for human observation and automated recognition, particularly when
influenced by low light conditions or shadows. Enhancing the grayscale level of an image
serves to accentuate these intricate aspects, thereby bolstering the differentiation of features
within the image. Moreover, grayscale enhancement transcends the realm of object color
and encompasses other crucial cues like shape and edges.

Within this paper, we employ grayscale enhancement to the Single-Label Behavior
(SLB) dataset. The technique involves extending the grayscale dynamic range of the
original image to a predefined interval, facilitated through a linear relationship equation.
The equation reads as follows, where f (x, y) and g(x, y) denote the grayscale values of
pixels at positions (x, y) before and after enhancement. The parameters a and b stand for
the minimum and maximum values of grayscale levels in the original image, while c and d
pertain to the minimum and maximum values in the enhanced image:

g(x, y) =


c, [0, a)
d− c
b− a

× f (x, y) + c, [a, b]

d, (b, 255]

(1)

This study embraces a grayscale transformation employing k = 25% on the SLB
dataset. An exemplar of the grayscale enhancement process is portrayed in Figure 6.

(a) The original image (b) Grayscale enhanced image

(c) Histogram of original image (d) Histogram of Grayscale image

Figure 6. Illustration of grayscale enhancement.
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4.4.3. Noise Enhancement

Within real classroom scenarios, images often encounter inevitable disturbances and
noise, encompassing phenomena like lighting variations, image blurring, and image dis-
tortion. To bolster the model’s aptitude for discerning robust features and enhancing its
resilience against disturbances and noise, this paper introduces noise to the images through
a noise enhancement algorithm grounded in the mean filter approach.

Figure 7 offers a visual demonstration of this transformation. In this context, the mean
filter operates by replacing the value of the central pixel with the average of the pixel
values within a window centered on the pixel. Typically, the size of the filter’s window
corresponds to an odd number, determining its dimensions. The specifics of the image
noise enhancement algorithm, utilizing mean filtering, are elucidated in Algorithm 3:

Algorithm 3 Image noise enhancement algorithm based on mean filtering

Input: image kernel_size
Output: enhanced_image

1: function ENHANCE_NOISE_WITH_AVERAGE_FILTER(image, kernel_size)
2: height, width = image.shape
3: Creates a blank image of the same size as the original image.
4: Gets the height and width of the image.
5: Performs noise enhancement on the image.
6: for y = 0 to height − 1 do
7: for x = 0 to width − 1 do
8: Calculate the boundary coordinates of the filter. Assume that the coordinates

of the computational boundary are (x, y).

(x.y) =


top = max(y− bN/2c, 0)
bottom = min(y + bN/2c, height− 1)
left = max(x− bN/2c, 0)
right = min(x + bN/2c, width− 1)

9: The average value is calculated for the pixels within the filter.

sum−value =
bottom

∑
i=top

right

∑
j=left

image(x + i− bN/2c, y + j− bN/2c)

10: The average value is used as the enhanced pixel value.

average =
sum_value

N × N

11: end for
12: end for
13: return enhanced_image
14: end function

(a) The original image (b) Noise enhanced image

Figure 7. Noise enhancement example.



Sensors 2023, 23, 8190 14 of 25

In this study, the SLB dataset is enriched through the noise enhancement algorithm
based on mean filtering, thereby simulating an array of disturbances and noise scenarios.

5. Experimental Results and Analysis

Building upon the aforementioned framework for learning behavior recognition, we
conducted empirical research using real smart classroom data.

5.1. Dataset for Experiments

In the realm of computer vision, a plethora of datasets have emerged to cater to diverse
visual tasks. Examples include the MNIST dataset for digit recognition, the KITTI dataset
for autonomous driving research, and the ADE20K dataset for scene understanding. These
datasets have furnished researchers and developers with extensive image samples and
annotated information, thereby enabling comprehensive investigations and algorithmic
advancements tailored to specific vision tasks. At the intersection of computer vision
technology and pedagogy lies the significant challenge of detecting and recognizing diverse
learning behaviors exhibited by students.

In response to this challenge, we have crafted a dataset called Student Learning Be-
havior (SLB) to facilitate researchers and educators in comprehending students’ behavioral
patterns and learning states. This dataset is constructed from classroom videos acquired
from NPS, and comprises 600 high-resolution RGB color images, with one image extracted
every 150 frames. Each image boasts dimensions of 2048 × 1152 pixels. The vott [49] open-
source software was employed for annotating learning behaviors and bounding boxes of
students in each image. The dataset encompasses seven categories of student classroom
learning behaviors: write, read, lookup, turn_head, raise_hand, stand, and discuss. Fur-
thermore, the dataset covers four smart classroom scenarios, each boasting distinct layouts.
Within each scenario, approximately 30 individual students are present, culminating in
around 120 distinct student objects. An illustrative instance of each behavior type is de-
picted in Figure 8. The dataset is divided into three segments: 420 images for training,
120 images for validation, and 60 images for testing. The distribution of different labels,
conforming to the VOC2012 dataset format [38], is provided in Table 3.

write read lookup raise_hand

discussstandturn_head

Figure 8. Example images from the SLB dataset.
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Table 3. Details of the SLB dataset.

Number Classes Num of Labels Train Val Test

1 write 1025 452 491 82
2 read 1075 810 139 126
3 lookup 5725 3620 1656 449
4 turn_head 1025 748 117 160
5 raise_hand 725 561 82 82
6 stand 94 50 30 14
7 discuss 242 172 50 20

5.2. Evaluation Metrics

To evaluate the effectiveness of the proposed approach, this study employs the PAS-
CAL VOC metric [27]. This metric assesses the accuracy of object identification based on
four key parameters: true positive (TP), true negative (TN), false positive (FP), and false
negative (FN). TP signifies correct positive predictions, where both the predicted and true
values are positive samples. TN denotes correct negative predictions, where both the pre-
dicted and true values are negative samples. FP represents incorrect positive predictions,
where the predicted value is positive but the true value is negative. FN indicates incorrect
negative predictions, where the predicted value is negative but the true value is positive.
Precision and Recall are calculated based on these parameters.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

Furthermore, the concepts of Average Precision (AP) and mean Average Precision
(mAP) are introduced to jointly evaluate Precision and Recall. AP serves as a metric
to assess the performance of detecting individual targets within specific categories. It
quantifies the model’s accuracy by calculating the area under the precision-recall curve,
as defined in Equation (4). AP values range from 0 to 1, with higher values indicating
superior model performance. In contrast, mAP represents the mean Average Precision for
detecting multiple targets across various categories. In multi-category target recognition
tasks, an AP value can be computed for each category. These AP values are then averaged
to derive mAP, as shown in Equation (5) [27].

In addition, this study uses Frames Per Second (FPS) to evaluate the real-time per-
formance and efficiency of the model [27]. Its calculation method is given in Equation (6),
where inference time refers to the time from the preprocessed image input model to the
model output result, and NMS is the post-processing time.

APi =
∫ 1

0
P(r)dr (4)

mAP =
1
n

n

∑
i
(APi) (5)

FPS = 1/in f erencetime + NMS (6)

5.3. Baselines

In order to comprehensively evaluate the efficacy of our proposed method, we con-
ducted a comparative analysis against several established models within the domain of
student learning behavior recognition systems. Furthermore, we included YOLOv6, a re-
cent addition to the YOLO family, as well as the lightweight YOLOv7-Tiny model from
YOLOv7, for comparative purposes.
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SSD [25]: This method employs the ResNet network for feature extraction and inte-
grates the Region Proposal Network (RPN) for generating bounding boxes. Subsequently,
a k-means algorithm is employed for post-processing and filtering.

Faster R-CNN [24]: Faster R-CNN, a classic two-stage target detection approach, is
widely applied for various behavior detection tasks. It leverages Region Proposal Network
(RPN) networks to streamline model computation and enhance detection efficiency.

YOLOv3 [26]: YOLOv3-SPP employs a feature extraction network to capture features,
followed by the utilization of the Spatial Pyramid Pooling (SPP) module for multi-scale
feature extraction. The detection network is then utilized for behavior classification and
positional regression to derive final behavior detection outcomes.

YOLOv5 [27]: The YOLOv5 model adapts anchor frames during computation. It
employs k-means clustering to determine n anchors and employs a genetic algorithm to
randomize anchor width and height (wh). An anchor fitness approach is employed for
evaluating obtained fitness.

YOLOv6 [50]: YOLOv6 introduces varied backbone networks based on model scale
and employs distinct activation functions for different scenarios to balance between field
deployment and model accuracy. The model training incorporates the ATSS label assign-
ment strategy during the initial stages. In sum, YOLOv6 is particularly well-suited as a
behavior detection method for industrial applications.

YOLOv7-Tiny [38]: YOLOv7-Tiny, a lightweight network introduced by the YOLOv7
system, features fewer layers and parameters, making it more compatible with GPU devices
in specific deployment contexts. Consequently, YOLOv7-Tiny holds promise for application
in industrial environments.

5.4. Training

The experiments were executed using an Intel(R) Xeon(R) Platinum 8358P CPU boast-
ing 24 GB of RAM, alongside an NVIDIA Tesla 3090 GPU. The software stack utilized
PyTorch 1.8.1, Python 3.8, and CUDA 11.1.

For the training phase, we employed the pre-training weights (yolov7.pt) provided
by YOLOv7. The stochastic gradient descent (SGD) [51] algorithm was adopted as the
optimizer for updating and refining the network model weights. To mitigate model
oscillations due to a high initial learning rate, a warm-up strategy was incorporated during
training. Within this warm-up phase, the model’s learning rate was gradually increased to
reach 0.01. Following the warm-up, the network’s learning rate was dynamically adjusted
using the cosine annealing algorithm. Specific experimental parameters were set as follows:
batch size of 12, learning rate of 0.01, and weight update factor of 0.0005.

The progress of the detector’s loss was tracked during training, as depicted in Figure 9.
Notably, the training and validation losses for the student learning behavior detector
converged satisfactorily after 75 rounds.

The observed training progress conclusively establishes that the learned model suc-
cessfully avoids both overfitting and underfitting, attesting to its optimal suitability for
subsequent experiments.

5.5. Comparison with YOLOv7 on Individual Learning Behavior Recognition

We conducted empirical research from two perspectives: a comparison with the baseline
YOLOv7 in single-class learning behavior recognition and a comparison with six benchmark
methods in overall learning behavior recognition. For the sake of convenience in describing, we
have named our method the Student Learning Behavior Recognition Framework (SLBRF).

The results of the single-class comparison between our proposed method and the
baseline models on the SLB test dataset are provided in Table 4. These results clearly
illustrate the superior single-class average precisions (APs) achieved by our proposed
method in comparison to the benchmark models. Notably, our method surpasses the
YOLOv7 network model on the SLB dataset, showcasing its effectiveness in the domain of
student learning behavior recognition.
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Figure 9. Training and validation losses for students’ learning behavior recognition.

Furthermore, Figure 10 displays the heat map generated using the GradCAM [52]
visualization model on the original SLB test set images, highlighting key behavioral fea-
tures. The prominent orange areas in the heat map indicate the successful localization of
relevant image features by the student behavior recognition network. This visualization
solidifies the efficacy of our proposed method in accurately identifying and highlighting
learned behaviors.

(a) Input Images (b) Category Heat Maps (c) Heat Maps

Figure 10. Heat map generated by the GradCAM visualization model on SLB test dataset.
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These compelling results underscore the superiority of our proposed method in de-
tecting student learning behaviors, substantiating its efficacy and potential applications in
educational contexts.

Table 4. Single-class AP results on the test set. The bold means the best performance.

Classes YOLOv7 (%) Proposed Method (%)

write 87.2 98.7
read 71.3 93.0

lookup 94.4 98.6
turn_head 84.7 96.4
raise_hand 95.0 99.1

stand 78.2 93.0
discuss 96.6 98.1

Total 84.8 96.7

5.6. Comparison with Six Baseline Methods

To further substantiate the performance of our proposed method, a comparison is
conducted with YOLOv7-Tiny, the SSD lightweight network, and other prominent classical
networks. The comparison experiments employ the same dataset and data configuration,
with the results summarized in Table 5.

Table 5. Comparison of performance and speed of different networks. The bold means the best
performance. The underline means the second best performance.

Methods mAP@0.5 (%) AP50 (%) FPS (f/s)
2080Ti 11G*1 3090 24G*1 12v 8255C (CPU)

SSD 65.7 43.0 10.5 18.0 0.1
Faster R-CNN 68.9 49.6 30.6 54.6 0.1
YOLOv3-SPP 63.1 43.0 80.6 95.2 3.9

YOLOv5 76.9 54.9 97.9 92.5 1.8
YOLOv6 77.7 52.9 62.8 89.1 4.7

YOLOv7-Tiny 54.3 34.8 86.2 81.3 12.8
SLBRF(Our Method) 96.7 75.8 80 84.8 2.7

As evident in Table 5, our proposed method consistently outperforms YOLOv7-Tiny,
SSD, YOLOv3-SPP, Faster R-CNN, YOLOv5, and YOLOv6, with a noteworthy minimum
improvement of 19% in terms of mAP. These results unequivocally establish the superiority
of our proposed method over other mainstream networks. In addition to this, in order to
analyze the time cost, inference is performed on RTX 2080TI (11G), 3090 (24G) and 12v
8255 cpu. The results show that our method achieves a good balance between precision
and speed.

5.7. Ablation Experiments

Ablation experiments play a pivotal role in dissecting the impact of network structure
modifications on performance. In this section, we present and analyze the outcomes of four
essential experiments: YOLOv7, SLBRF with Data Enhancement (SLBRF_DE), SLBRF with
the CBAM attention mechanism (SLBRF_CB), and SLBRF with both Data Enhancement and
CBAM (SLBRF_DE_CB). The visual training process of these methods on the SLB dataset is
depicted in Figure 11, with corresponding training results summarized in Table 6.

In Figure 12, we provide a visual comparison between the proposed method in this
paper and the baseline YOLOv7 network’s recognition results in different scenarios. Specif-
ically, the left figure in Figure 12 illustrates the recognition outcomes of the proposed
method, while the right figure presents the recognition results of the YOLOv7 baseline.



Sensors 2023, 23, 8190 19 of 25

Table 6. Performance comparison of different models on the SLB dataset. The bold means the
best performance.

Model mAP@0.5 (%) mAP@0.5:0.95 (%) Params (104) FLOPs (G) Weight (M)

YOLOv7 84.8 62.7 3722.3 105.2 71.4
SLBRF_CB 85.5 - 3721.2 105.2 71.4
SLBRF_DE 95.5 73.6 3722.7 105.2 71.4
SLBRF_DE_CB(ours) 96.7 75.9 3721.2 105.0 71.4
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Figure 11. Experimental results of each model on the SLB dataset.

5.7.1. The Effectiveness of CBAM

The integration of the CBAM attention mechanism exhibited a tangible enhancement
in the performance of the student classroom learning behavior recognition network. It led
to a 0.7% increase in mAP on the SLB dataset, while concurrently maintaining the number
of parameters and FLOPs at the baseline network level. This observation underlines
the constructive influence of the CBAM module on enhancing the accuracy of student
classroom learning behavior recognition.

5.7.2. The Effectiveness of Data Enhancement

Data augmentation, a crucial technique for mitigating small dataset limitations, not
only expanded the dataset to boost the model’s generalization capacity but also increased its
adaptability to diverse input data, thereby reinforcing the model’s robustness. The results
presented in Table 6 clearly demonstrate an improvement of up to 10.7% in the network’s
mAP on the SLB dataset, all without introducing additional computational overhead,
as indicated by the steady parameters count and FLOPs.
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(b) The read, stand behavior detection comparison.

(c) The lookup behavior detection comparison.

(d) The turn_head behavior detection comparison.

(a) The write behavior detection comparison.

Figure 12. Results of student learning behavior recognition.

5.7.3. The Effectiveness of the Model Ensemble

The ultimate recognition outcomes of the integrated model, as presented in Table 4,
substantiate its superiority over the baseline model for each category. Improved Average
Precision (AP) values were observed across all categories, attesting to the model’s excep-
tional overall recognition performance. Moreover, Figure 12 provides visual evidence of
diverse behaviors within different scenarios. A stark enhancement in recognition accuracy
over the baseline model is evident in Figure 12d, where the head-turn behavior, denoted
by the black box, is correctly detected, rectifying the previous erroneous outcomes and
markedly improving accuracy.
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Lastly, the visual representation in Figure 12 provides vivid confirmation of the pro-
posed method’s efficacy in boosting recognition accuracy, especially in challenging scenar-
ios where the YOLOv7 model may encounter difficulties. These findings provide further
validation of the proposed method’s superior performance and its capability to accurately
detect targets across a variety of real-world scenarios.

5.7.4. The Effectiveness of Attention Mechanism in Learning Behavior Recognition

Given the proven widespread efficacy and performance of attention mechanisms in
target recognition, this study extended its exploration to include other attention mechanism
modules within the YOLOv7 network. As demonstrated in Table 7, the inclusion of the
CBAM module notably amplified the recognition accuracy of the network compared to
alternative attention mechanism modules, including CA, SE, and SimAM modules. This
outcome emphasizes the CBAM module’s potential in boosting recognition performance.

Table 7. Comparison of networks using different attention mechanism modules.

Model mAP (%) Precision (%) Recall (%) FLOPs (G) Params (104) Weight (M)

YOLOv7 84.8 86.24 77.8 105.2 3722.3 71.4
SLBRF_SE 84.2 ↓ 83.4 78.4 105.2 3723.5 113
SLBRF_CA 82.0 ↓ 82.81 77.83 105.0 3716.7 71.3

SLBRF_SimAM 84.6 ↓ 81.7 84.8 105.0 3721.0 71.3
SLBRF_CBAM(ours) 85.5 ↑ 79.73 88.02 105.0 3721.2 71.4

In Table 7, a comprehensive comparison is presented between networks utilizing different
attention mechanism modules. The metrics evaluated include mAP, precision, recall, FLOPs,
parameters (Params), and model weight size. The results demonstrate the following:

• YOLOv7 achieves an mAP of 84.8%, with a precision of 86.24% and a recall of 77.8%.
It has 105.2 billion FLOPs, 3722.3 × 104 parameters, and a model weight size of
71.4 million;

• Incorporating the SE module in YOLOv7 leads to a slight decrease in mAP (84.2%),
precision (83.4%), and recall (78.4%), while maintaining the same FLOPs and increasing
the parameters to 3723.5×104 and model weight size to 113 million;

• Utilizing the CA module in YOLOv7 results in a further decrease in mAP (82.0%), pre-
cision (82.81%), and recall (77.83%). The FLOPs remain the same, while the parameters
decrease to 3716.7×104 and the model weight size remains at 71.3 million;

• Applying the SimAM module in YOLOv7 leads to a slight improvement in mAP
(84.6%), but precision (81.7%) and recall (84.8%) show mixed changes. The FLOPs and
parameters remain consistent, and the model weight size remains at 71.3 million;

• Incorporating the CBAM module (proposed in this paper) in YOLOv7 results in the
highest mAP of 85.5% (an increase from the baseline). The precision is 79.73%, and the
recall reaches 88.02%. The FLOPs and parameters remain consistent with YOLOv7,
while the model weight size remains at 71.4 million.

In summary, the inclusion of the CBAM attention mechanism in YOLOv7 proves to be
the most effective in terms of improving recognition accuracy, surpassing other attention
mechanism modules such as SE, CA, and SimAM. It achieves the highest mAP, precision,
and recall while maintaining a comparable number of parameters, FLOPs, and model
weight size. These findings highlight the superiority of the proposed method in this paper
in terms of attention mechanisms for target recognition.

6. Conclusions

In this study, we have presented an effective student learning behavior detector based
on the YOLOv7 network, enabling accurate recognition of classroom learning behaviors.
We have addressed the challenge of limited data samples through the strategic application
of transfer learning and data augmentation techniques. Additionally, by integrating the
CBAM attention mechanism into the YOLOv7 feature detection network, we have amplified
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its ability to extract vital information about students’ learning behaviors, thereby enhancing
feature recognition accuracy in classroom settings. The experimental results substantiate
the superiority of our approach over YOLOv7-Tiny, SSD lightweight networks, and other
prominent classical networks in the context of student learning behavior recognition. We
have achieved noteworthy advancements in the precise identification and categorization of
various learning behaviors exhibited by students in the classroom.

However, it is essential to acknowledge the limitations of our study. Notably, the dataset
employed in our experiments includes behaviors that should have been more rigorously
defined and labeled. This limitation may have introduced some ambiguity and noise during
both training and evaluation. Moreover, we recognize that the current network model we
have proposed, while powerful, is relatively large, which may present performance chal-
lenges when deployed on embedded devices with limited GPU resources. To overcome this
limitation, we acknowledge the necessity of developing lightweight yet high-performing
models tailored for real-time recognition in resource-constrained settings. Our upcoming
research efforts will be directed towards substantial improvements in these areas.

In future studies, we are committed to addressing this issue by refining the dataset
and providing more precise behavior definitions, ensuring higher-quality training data.
Additionally, due to objective factors such as data acquisition equipment and acquisition
angles, the dataset we constructed is not sufficiently large, resulting in lower data resolution.
Therefore, we intend to expand a high-quality dataset for future research. In order to
enhance users’ personal privacy and data security, we plan to introduce federated learning
in future model deployments. This initiative will ensure the adequate protection of students’
personal data. Simultaneously, we will further optimize the model by moving the data
acquisition and processing phases to the client side, avoiding the transfer of students’
image data to the server side, thereby reducing the potential risk of data transmission.
This approach not only helps protect users’ personal privacy, but also reduces the need for
server-side data storage, improving the overall system security.

Introducing computer vision technology into modern education evaluation system
can provide many useful tools and methods for education and teaching staff to improve
the quality, efficiency, and fairness of education evaluation. At the same time, our results
show that the use of visual techniques has great potential for classroom analysis.
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Abbreviations
The following abbreviations are used in this manuscript:

FPN Feature Pyramid Network
PAN Path Aggregation Network
IoT Internet of Things
SOTA State-of-the-Art
CNNs Convolutional Neural Networks
CBAM Convolutional Block Attention Module
CAM Channel Attention Module
SAM Spatial Attention Module
SSD Single Shot MultiBox Detector
DBN Deep Belief Network
YOLO You Only Look Once
ViT Vision Transformer
DETR Detection Transformer
W-MSA Windowed Multihead Self-Attention
SW-MSA Sliding-Window Multihead Self-Attention
MLP Multilayer Perceptron
LN Layer Normalization
CARAFE Content-Aware Reassembly of Features
mAP Mean Average Precision
RPN Region Proposal Network
CBL Convolutional Block Layer
PAN Path Aggregation Network
ELAN Efficient Local Attention Network
CAT Category-aware Transformation
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