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Abstract: The automatic detection, visualization, and classification of plant diseases through image
datasets are key challenges for precision and smart farming. The technological solutions proposed so
far highlight the supremacy of the Internet of Things in data collection, storage, and communication,
and deep learning models in automatic feature extraction and feature selection. Therefore, the
integration of these technologies is emerging as a key tool for the monitoring, data capturing,
prediction, detection, visualization, and classification of plant diseases from crop images. This
manuscript presents a rigorous review of the Internet of Things and deep learning models employed
for plant disease monitoring and classification. The review encompasses the unique strengths and
limitations of different architectures. It highlights the research gaps identified from the related
works proposed in the literature. It also presents a comparison of the performance of different deep
learning models on publicly available datasets. The comparison gives insights into the selection of
the optimum deep learning models according to the size of the dataset, expected response time, and
resources available for computation and storage. This review is important in terms of developing
optimized and hybrid models for plant disease classification.

Keywords: deep learning; convolutional neural network; precision agriculture; disease; IoT

1. Introduction

With the increase in population, there has been a rise in the demand for agricultural
products. Approximately 75% of farmers follow the traditional techniques of farming [1].
These techniques fail to meet the demands of the increasing population worldwide. The
variations in climate and soil types in different regions affect crop productivity [1]. The
traditional approaches do not provide any system to monitor the effects of climate and soil
types. Additionally, there is no automatic mechanism for the calculation of the amount of
fertilizer or pesticide required in a particular crop. This may lead to the excessive use of
chemical fertilizers and pesticides. It increases the costs of agriculture, and the chemicals
harm the soil as well as human health. Moreover, there is no automatic mechanism available
to predict and classify plant diseases at an early stage [2]. The traditional approaches need
human experts for disease detection in crops.

The above clearly shows that the high costs, need for human intervention, low yields,
poor crop quality, and adverse effects of the excessive use of fertilizers and pesticides are
the major challenges in traditional agriculture. There is a strong requirement to address the
above-mentioned challenges. This motivated the present authors to thoroughly review the
available technological solutions proposed for agriculture.
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In recent years, great improvements have been observed in agriculture due to the
massive enthusiasm regarding the Internet of Things (IoT) and deep learning (DL) [3–6].
IoT is useful in gathering real-time information. It helps in the judicious utilization of
water, electricity, and fertilizer [7]. Further, IoT devices are efficient in monitoring visual
and non-visual symptoms of disease at an early stage [8], the requirements for herbicides
or pesticides, weed detection [9], and pest detection. IoT provides a fusion of imagery
and parametric and genomic datasets [10]. Meanwhile, DL techniques are effective in
image recognition, object detection, pattern matching, and classification [11,12]. Deep
convolutional neural networks (DCNNs) are effective in automated feature extraction
and feature selection. These are useful to extend the applications of DL techniques for plant
disease detection [13], weed detection [14], fruit counting [15], yield prediction [16,17], and the
visualization of the detected fruit, disease, or weed [15]. These techniques improve the precision
and reduce the time consumed in manual feature extraction and image recognition [18,19].

The general architecture of the IoT-enabled convolutional neural network (CNN)
architecture (IoTCNN) applied for the multi-class classification of plant diseases is shown
in Figure 1. We considered the pearl millet plant to demonstrate its architecture [20,21]. The
architecture collects the data using cameras and sensors mounted in the field. The collected
data are stored on a Raspberry Pi and a cloud server. The IoTCNN helps in data analysis
and decision making. Moreover, it is suitable for embedded systems and smartphones for
disease detection.
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Figure 1. Architecture of IoT-enabled convolutional neural network.

The IoTCNN comprises convolution, pooling, and fully connected layers. The working
mechanism of these layers is explained below.

i. Convolutional Layer
This layer receives an input image in the form of a matrix. It includes a small matrix
‘kernel’ that strides over an input image to extract features from the image without
destructing the spatial relationships between the pixels. The convolution operation
g(x, y), as defined in Equation (1), is the dot product of two functions, h(x, y) and
f (x, y). This operation is demonstrated in Figure 2.

g(x, y) = h(x, y) · (x, y) (1)

A part of an input image, as shown in Figure 2 with a square box under the brown
boundary shown from rows 1 to 3 and columns 1 to 3 of the input matrix, is connected
to a convolutional layer to perform the convolution operation. The dot product of
this part of the input image and the filter shown in Figure 2 gives a single integer of
the output volume, as shown in cell (1,1) of the matrix in Figure 2. Then, the filter is
moved over the next receptive field, as shown with the blue boundary from rows 1
to 3 and columns 2 to 4 in Figure 2, and performs the convolution operation again.
This procedure is repeated until the filter moves over the whole image and gives a
feature map, as shown in Figure 2. Different filters generate different feature maps.
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Therefore, the convolution layer acts as a feature detector.
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Feature Map
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Figure 2. Convolutional operation process: (a) input matrix, (b) kernel, (c) feature map.

ii. Pooling Layer
This layer receives the convoluted image as an input and applies the non-linear
function. In max pooling, the maximum value of the local patch is extracted as a
feature map, as shown in Figure 3. Here, 6, 7, 3, and 8 are the maximum values of
features shown in the first, second, third, and fourth quadrants, respectively, in the
matrix shown in Figure 3. Only these four numbers are considered in the feature
map for the next step of processing. In average pooling, the average value of local
patches is considered in the feature map, as shown in Figure 4. Both operations
extract the relevant features from the image. Therefore, the pooling operation reduces
the number of parameters and computations in a CNN model without losing vital
information [22].

2 4 1 7

3 6 2 0

1 2 8 3

3 0 1 7

6 7

3 8

Max Pool with 2 X 2

 filter and stride 2

Figure 3. Max pooling operation.

4 3 3 5

6 3 2 2

2 1 7 3

3 2 2 8

4 3

2 5

Max Pool with 2 X 2

 filter and stride 2

Figure 4. Average pooling operation.

iii. Fully Connected Layer
This layer follows many convolution and pooling layers. It contains connections to all
activations in the previous layer and enables the network to learn about the non-linear
combinations of features for classification. It calculates the value of the gradient of the
loss function and back-propagates it to the previous layers. Thus, there is a continuous
update in the parameters of the model. It minimizes the value of the loss function and
improves the classification accuracy.
IoT devices capture climate conditions such as cloud cover, rain, sunshine, tempera-
ture, and humidity. DL techniques can work on such real-time datasets captured by
IoT devices, while field monitoring and datasets collected by other devices, such as
drones, cameras, etc., are used to determine the health of a crop [23]. Recording and
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analyzing these conditions at an early stage is significant in preventing crop disease.
The smart integration of DL techniques with IoT is effective in automating disease
detection, the prediction of fertilizer requirements and water requirements, crop yield
prediction, etc. In this research, we provide a rigorous review of the state-of-the-art
DL and IoT techniques applied in plant disease detection and classification. We also
compare the performance of different DL models on the same dataset. Further, we
highlight the importance of employing transfer learning and optimization techniques
to achieve better performance in DL models. We also give insights for the develop-
ment of an automatic tool that encompasses IoT and DL techniques to assist farmers
in smart farming, as shown in Figure 5.

Capturing of images by drone and collection of atmospheric

parameters of various plant growth stages.

1 Seedling stage 2 Vegetative stage 3 Flowering stage
4 Fruiting stage      5 Harvesting stage

Apply selected DL model(ResNet, MobileNet, Inception-v4, or

SqueezeNet  on captured images. 

Detection of environmental imbalance if any diseased leaf,

stem, visualization of spot.

Captured data stored at the cloud database

Alert to farmers on their smartphone device.

After detecting disease update data at cloud database.
Dtabase linked to mobile device

Figure 5. Flow of the proposed system.

The rest of the paper is organized as follows. Section 2 illustrates the state-of-the-art
of various deep learning models. Section 3 presents the comparative analysis of disease
detection using IoT and DL. Section 4 includes the discussion. Section 5 concludes the
findings and gives scope for future work. The major contributions of this manuscript are
as follows:

• A rigorous review of the deep learning techniques used for the detection and classifi-
cation of diseases in plants;

• The optimization of the DL models according to the response time, size of the dataset,
and type of dataset;

• The determination of the optimum models for early disease prediction, detection, and
classification;

• The integration of IoT and hybrid DL models for plant disease detection and classification.

2. State-of-the-Art Deep Learning Models

In this section, we present the deep learning models proposed in the literature for
various applications.

2.1. AlexNet

The AlexNet model was proposed in 2012 [24] with 5-Conv and 3-FC layers. The
convolution layers Conv-1 and Conv-2 are followed by normalization and a pooling layer.
The last convolution layer, Conv-5, is followed by a single pooling layer, as shown in
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Figure 6. It introduced the use of the ReLU activation function, which improved the
performance and allowed for generalization in the DL model.
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Figure 6. AlexNet architecture.

The authors applied a variant of AlexNet on a maize dataset and achieved a top-five
test error rate of 15.3% and accuracy of 93.8% using data augmentation and regularization
methods. The model can be applied to various fields, such as plant disease detection, NLP,
and medical image processing [25].

2.2. GoogleNet/Inception

Researchers addressed the issue of poor resource utilization and a lack of parallel
processing in the AlexNet model and proposed the GoogleNet architecture in 2014 [26].
The architecture, as shown in Figure 7, has 22 layers (21-Conv and 1-FC). It has four million
trainable parameters and performs batch normalization to resolve vanishing gradients. It
employs the softmax activation function (σ(z)j), as defined in Equation (2). Here, z is the
vector of the inputs given to the output layer. For example, z will contain 10 elements of
10 output units. The index of each output unit is represented by j , which takes values from
1 to K. This function is useful for multiclass classification.

σ(z)j =
eZ

j

∑k
k=1 ezk

(2)

Input
Image

Conv1 Maxpool Conv2 Maxpool Inception 3a

Inception 4d Inception 4c Inception 4b Inception 4a Maxpool Inception 3b

Inception 4c Maxpool Inception 5a Inception 5b Avgpool Dropout 40%

Softmax

Figure 7. GoogleNet architecture.

GoogleNet improved the utilization of computing resources and showed a top-five
test error rate of 6.67% in the ILSVRC-2014 competition, 8.63% lower than AlexNet. The
model uses global average pooling instead of fully connected layers and its performance
can be improved by increasing its limit of divergence [27].

2.3. VGGNet-16 and VGGNet-19

Although GoogleNet reduced the error rate of AlexNet, there was a scope to improve
the accuracy in disease detection and classification. Researchers proposed the VGGNet-16
and VGGNet-19 models to improve the accuracy in disease detection and classification [28]
in 2014. The basic architecture of the VGG model is shown in Figure 8. These models
were submitted to the ILSVRC-2014 competition and achieved a top-five error rate of 7.5%.
The VGG model was trained in stages to overcome vanishing gradients, and the VGG-16
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model achieved 7.86% higher accuracy than AlexNet and the highest accuracy of 99.53%.
VGG-19 is the most efficient classifier among AlexNet, Inception-v1, and Inception-v3, with
accuracy of 99.67% [29] and a top-five error rate of 7.5%. However, it has high computation
complexity due to its 130 million trainable parameters. The VGG-19 model uses the max-
pooling layer to reduce the volume of the network. The authors [28] also claimed that
VGG-19 is the most efficient classifier among AlexNet, Inception-v1, and Inception-v3, with
accuracy of 99.67%. Moreover, its top-five error rate is 7.5%, which is 7.8% lower than that
of the AlexNet model. However, it has high computation complexity due to its 130 million
trainable parameters.

Figure 8. VGGNet architecture.

2.4. Inception-v3

For further improvements in the efficiency of CNN models, the authors of [30] used
the ideas of factorization and submitted the Inception-v3 model to the ILSVRC-2015 com-
petition. This model outperformed the benchmark classification models submitted to the
ILSVRC 2012 competition. Inception-v3 contains 23 million trainable parameters. The
number of parameters is smaller than that of GoogleNet, VGG-16, and VGG-19. Therefore,
it requires smaller storage space. It showed a top-five error rate of 3.58% on the validation
set. Its error rate is 22.42% and 11.72%, for AlexNet, GoogleNet, and VGG-19, respectively.
However, while Inception-v3 achieves 2.5 times higher accuracy than GoogleNet, it is
computationally expensive due to the 42 layers in the network, as shown in Figure 9.
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Figure 9. Inception-v3 architecture.

2.5. ResNet

The deeper CNNs require a huge dataset for training and are difficult to train. Moreover,
deep networks require a long time for training. To address these issues, researchers [31]
developed residual networks in 2015. ResNet is eight times deeper than VGG-19. It contains
50, 101, or 152 layers. The basic architecture of ResNet is shown in Figure 10. ResNet-50
contains 26 million, ResNet-101 contains 60 million, and ResNet-152 contains 90 million
trainable parameters. Based on the number of parameters, it is clear that ResNet-50 has
low space and time complexity, whereas ResNet-152 reports the highest space and time
complexity. The residual networks learn using residual functions rather than unreferenced
learning. Similar to the ReLu activation function, the residual connections provide a
solution for the vanishing gradient problem. The authors employed the softmax layer in
ResNet to extend its applications in plant disease identification. This model reported a low
error rate of 3.57%. Its error rate was 0.1% lower than that of Inception-v3. The authors
submitted this CNN model to the ILSVRC-2015 and COCO 2015 challenges and competed
for the first position. ResNet models require a long time for training. Thus, it becomes
difficult to apply them to solve real-time problems where a quick decision is required.
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Figure 10. ResNet architecture.

2.6. Inception-v4 and Inception-ResNet

To further minimize the error rate and accelerate the training of the network, the
authors of [32] developed a hybrid of residual and inception networks in 2016. This model
has 43 million trainable parameters, as shown in Figure 11. The hybrid developed by
ensembling three residuals and one Inception-v4 network gave the top-five error rate of
3.08%, which is 0.49% lower than the error rate reported for ResNet. Inception-v4 has
higher space and time complexity than the ResNet-50, Inception-v3, and AlexNet models.
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Figure 11. Inception-v4 and Inception-ResNet architecture.

2.7. Xception

The authors of [33] replaced the inception module of the Inception model with depth-
wise separable convolutions and developed the Xception architecture in 2016. It differs from
the Inception model in the sequence of performing the convolution operations. Moreover,
it does not employ the ReLU function for non-linearity. This model contains 23 million
trainable parameters, as shown in Figure 12. The authors [33] claimed that VGG-16 [29],
ResNet-152 [31], Inception-v3 [34], and Xception had top-five accuracies of 90.1%, 93.35%,
94.1%, 94.2%, and 94.5%, respectively. This shows that the Xception model outperforms the
VGG-16, ResNet-152, and Inception-v3 models.

Input

Point wise convolution

Depthwise convolution

Figure 12. Xception architecture.

2.8. SqueezeNet

Developing a CNN model with low computational complexity and high accuracy
has become the priority among researchers. To contribute in this direction, the authors
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of [35] proposed the SqueezeNet model in 2017. Its architecture is shown in Figure 13.
This model uses 1 × 1 filters rather than 3 × 3 filters. The SqueezeNet model consists of a
stack of fire modules and pooling layers. Each fire module contains a squeeze layer and
an expanded layer. Both layers have feature maps of the same size. The squeeze layer
reduces the depth of the network, whereas the expand layer increases it. This model has
1.25 million trainable parameters. The authors claimed that the SqueezeNet model is 50
times shallower than AlexNet. However, it reports top-five accuracy of 80.3%, which is
equivalent to the top-five accuracy of AlexNet. Further modifications in the SqueezeNet
model improved its performance. The addition of one bypass connection to the network
increased its top-one accuracy by 2.9% and top-five accuracy by 2.2% [35].
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Figure 13. SqueezeNet architecture.

2.9. DenseNet

In the ResNet model, the individual information is transferred to the next layer for
each element. This increases the computational cost of the network. To address this
challenge, researchers [36] developed the DenseNet model in 2017. Its architecture is
shown in Figure 14. DenseNet architectures with 190 layers, 250 layers, and 201 layers
contain 40 million, 15.3 million, and 20 million trainable parameters, respectively. In the
DenseNet model, the collective information of the previous layer is transferred to the next
layer. Thus, it creates direct connections among the intermediate layers and reduces the
thickness of the network. This makes DenseNet more efficient than ResNet in terms of
computational complexity and memory utilization. A comparative study presented by [37]
showed that DenseNet performed better than ResNet and VGG models. The authors [37]
claimed that the use of a customized softmax layer makes DenseNet efficient for plant
disease identification. It contains a smaller number of parameters and reports high accuracy.
It has shown error rates of 3.46% on C10+ and 17.18% on C100+. C10+ and C100+ are
augmented forms of the CIFAR-10 and CIFAR-100 [38] datasets, respectively. The error
rates were significantly lower than the error rates achieved by ResNet architectures [39].
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Figure 14. DenseNet architecture.

The above discussion shows that researchers are modifying the architectures of CNN
models to improve the performance, minimize the error rate, and reduce the computation
time. They are also working towards extending the applicability of CNN models in
different areas. They have made changes in the number of layers in the networks, activation
functions, normalization strategies, and types of connections between different layers of a
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network. They are developing customized CNN models according to the type of dataset,
size of the dataset, and nature of the problem to be solved.

Based on the discussion, it is clear that the DL models VGG [29], ResNet-01 [31],
AlexNet [24], ResNet [31], and DenseNet [36] are effective in the binary as well as multi-
class classification of diseases, objects, or digits, etc. However, the accuracy in multiclass
classification is lower than the accuracy achieved for binary classification. Further, it is
observed that the model GoogleNet is efficient in parallel computation. Therefore, it is
useful in making predictions at a lower computational cost than AlexNet. It is also observed
that XceptionNet is useful when higher computational costs can be endured for higher
accuracy. On the other hand, the model SqueezeNet is beneficial where computational and
storage resources are limited. A brief summary of the advantages and disadvantages of
various DL models is given below in Table 1.

Table 1. Advantages and disadvantages of various DL models.

DL
Model Advantage Disadvantage

AlexNet Fast training because all perceptrons are not
active together.

Shallow model that needs more time
to achieve high detection accuracy.

GoogleNet/
Inception

Efficient in utilization of computing
resources and showed low error
rate of 6.67% in the ILSVRC-2014 competition.
The error rate is 8.63% lower than that of AlexNet.

More prone to overfitting.

VGGNet-16 and
VGGNet-19 High accuracy and fast training. Prone to vanishing gradient problem.

Inception-v3
Requires smaller storage space.
Achieves 2.5 times higher accuracy than
GoogleNet.

Computationally expensive.

ResNet
Eight times deeper than VGG-19.
Solves vanishing gradient problem.
Error rate is 0.1% lower than that of Inception-v3.

Requires a long training time. Thus, it is
difficult to apply for real-time problems.

Inception-v4 and
Inception-ResNet Hybrid of residual and inception networks.

Higher space and time complexity than
ResNet-50, Inception-v3, and AlexNet
models.

Xception Inception modules replaced
with depth-wise separable convolutions. Memory- and time-intensive training.

SqueezeNet
Low computational complexity and high accuracy.
Using FIRE modules achieves
50× smaller size than AlexNet.

Lower accuracy than larger and
more complex models.

DenseNet

Collective information of the previous layer
is transferred to the next layer. Thus,
it creates direct connections among the
intermediate layers and reduces the
thickness of the layers.

Complex network models,
excessive parameters,
computationally
and storage resource-intensive.
Prone to overfitting.

3. Comparative Analysis of Related Works

In this section, we give a detailed discussion of the research works conducted on
applications of IoT and DL techniques in agriculture.

Diseased plants show visible lesions on the leaves or other aerial parts. These lesions
vary in size, location on the plant part, shape, and color. Researchers [16,18,19,21,22] have
taken advantage of the efficacy of IoT and DL techniques in pattern identification and
pattern matching for the early prediction, detection, and classification of plant diseases.
The sequence of steps followed for plant disease detection, visualization, and classification
has been optimized.

IoT systems comprise digital and drone cameras to capture images; sensors for the
monitoring of temperature, nutrients, and moisture in the soil, and humidity in the atmo-
sphere; local processing and storage devices such as a Raspberry Pi; and cloud servers.
These systems are important for the monitoring and wireless transmission of information
from fields to farmers [40]. For example, the sensors mounted in the fields record any
decrease in the humidity level and notify the farmer to take adequate action to prevent



Sensors 2023, 23, 7877 10 of 23

crop damage. Similarly, temperature sensors monitor the changes in temperature and send
alerts if the temperature changes beyond a pre-set threshold. Further, the information
accumulated in the sensors mounted for nutrient monitoring, weed detection, and pest
detection is disseminated to farmers so that they may apply an adequate amount of fertil-
izer, weedicide, or pesticide. Therefore, IoT systems predominate among the traditional
approaches to farming. IoT devices help by comparing the captured current parametric
values of the soil and plants by the sensors with healthy plants’ values [41].

With advancements in technology, researchers have devoted great efforts to developing
a complete system from data collection to plant disease prediction. The integration of IoT
and DL has proven potential in developing such systems. For example, the authors
of [42] integrated IoT and DL techniques for the optimal use of resources such as labor,
water, chemicals, fertilizers, and pesticides. They employed ten different sensors for the
monitoring of pests, soil nutrients, pH, soil air permeability, water levels, seed varieties, etc.
Then, they applied the DL model to the dataset collected from the sensors and estimated the
crop yield. The challenges, such as superfusion from seeding to production management
and the complex backgrounds of images, reduced the efficacy of their system in real-life
environments. Similarly, the authors of [43] proposed the integration of IoT and DL models
for the detection of multiple diseases in crops. They employed the Multidimensional
Feature Compensation–Residual Neural Network (MDFC-ResNet) and reported training
accuracy of 93.96%. Next, the authors of [44] proposed the system ‘FruGar’, integrated with
a web app for disease detection on coffee leaves. They employed Social IoT (SIoT) for the
fusion and easy transfer of heterogeneous data comprising environmental parameters such
as humidity, temperature, and pH, collected from sensors mounted at multiple locations,
and images captured with a camera and smartphone. They applied the MobileNetV2 model
for classification and reported accuracy of 94.58%. Then, the authors of [45,46] used sensors
for the collection of parametric data and applied knowledge-based fusion techniques
for feature extraction, data reduction, and classification. Their technique combined the
advantages of DCNN with IoT and achieved accuracy of 97.5% in disease detection.

Based on a survey of IoT and DL-based systems, the authors of [47] claimed that the
lack of sharp edges around the infected region and the impact of varying environmental
conditions on image quality are major challenges in the segmentation of ROI and hence
in disease prediction. Moreover, power consumption is a challenge in employing IoT
techniques for crop monitoring and disease detection. The authors of [48] addressed
these issues and proposed a sine cosine algorithm-based rider neural network (SCA-based
RideNN). Their system employed a routing protocol to save power while transmitting
images from the source to the sink. They removed the noise from images using a median
filter. Their system reported accuracy of 91.18% on the PlantVillage dataset [49]. This
highlights the potential to improve the accuracy of disease prediction.

Another group of researchers proposed the DL model ‘YOLOv3’ to analyze the in-
formation collected using sensors and to detect pest spots on leaves [8]. Their model also
analyzed the usage of pesticides with accuracy of 90%. This is beneficial in regulating the
amounts of pesticide required in a field in real time. Similarly, the authors of [50] proposed
the integration of IoT and DL techniques for the monitoring of the temperature, humidity,
and water supply in farms. They employed a support vector machine (SVM) and faster
recurrent convolutional neural network (Faster RCNN) for the detection and classification
of plant diseases. They applied K-means clustering on a dataset collected by sensors and
divided the crops into six categories based on the stage of disease. The algorithm achieved
accuracy of 91.5%, which is 1.15% higher than the accuracy reported in [8].

The authors in [51] explored the strengths and weaknesses of DL and IoT and assessed
their impact on various aspects of modern farming. Additionally, the study investigated
the potential synergies that can be achieved by integrating these technologies to maximize
agricultural efficiency, sustainability, and productivity. However, the major challenge
in using IoT is adverse climatic conditions and insufficient power resources for sensors.
Similarly, the authors in [41] used DL and IoT for wheat rust detection.
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The authors of [52] presented a review of image processing techniques applied for plant
leaf disease recognition. They applied ten DL models, namely AlexNet [24], GoogleNet [26],
VGG-16 [29], ResNet-101 [31], DenseNet-201 [36], Inception-v3 [30], InceptionResNet-
v2 [32], Shuffle Net, SqueezeNet [35], and Mobile-Nets [53], on the PlantVillage dataset [49].
They used 54,305 leaf images from 14 species of crops. All models were trained using the
same hyperparameters for 30 epochs. They employed the stochastic gradient descent with
momentum (SGDm) optimizer with a pre-set value of momentum of 0.9 and a learning
rate of 0.0005. The models categorized the dataset into 38 classes of diseases. A compar-
ison of the performance of the above-stated models is demonstrated in Figure 15 using
the PlantVillage data mentioned in [52]. They used a confusion matrix to evaluate the
performance of DL models, as defined in Equation (3). TP denotes true positives, which
represents the number of correctly classified instances of the healthy class. TN denotes true
negatives, which represents the number of correctly classified instances of the diseased
class. FP denotes false positives, or the number of instances of the healthy class being
misclassified as the diseased class. FN denotes false negatives, which reflects the number
of instances of the diseased class being misclassified as the healthy class.

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Figure 15. Performance comparison of deep learning models.

All models showed accuracy above 98.36%. Based on the performance, it is concluded
that deeper models such as DenseNet-201, VGG-16, and ResNet-101 are most suitable for
plant disease detection. On the other hand, ShuffleNet and SqueezeNet are efficient for
embedded applications such as real-time mobile applications. However, there is room for
improvement in the efficacy of these models for the accurate diagnosis of plant diseases in
a short computational time.

The authors of [13] used DL techniques to develop a smartphone-assisted crop disease
diagnosis system. They divided the PlantVillage dataset [49] into three sets of images:
colored, grayscale, and segmented. They performed experiments on each set of images indi-
vidually. They achieved accuracy of 99.35% by applying AlexNet [24] and GoogleNet [26]
on the Red Green Blue (RGB) images available in the PlantVillage dataset. However, the ac-
curacy was reduced by 31% when these models were evaluated on the real-life test dataset
captured in the field. To train the models, the authors considered a dataset containing one
leaf in an image. The performance of the model decreased in real life, when one image
contained multiple leaves. Moreover, the authors did not focus on the visualization of the
detected diseases.

The authors of [37] conducted a comparative study of CNN models proposed for
plant disease detection. They trained AlexNet [24], DenseNet-169 [36], Inception-v3 [34],
ResNet-34 [31], SqueezeNet-1.1 [35], and VGG-13 [29] on the PlantVillage dataset [49].
DenseNet-169 [36] and Inception-v3 [34] showed the same accuracy of 99.72%. However,
Inception-v3 required a shorter training time than DenseNet-169 [36]. They addressed the
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problem of the visualization of the diseased parts of the plant and overcame the drawbacks
identified in [13]. They used saliency maps to highlight the diseased parts of the plant. This
is useful to identify the location of diseased regions without the supervision of agriculture
experts. The authors claimed that visualization using saliency maps is superior to the
occlusion method [37]. However, they did not provide any quantitative measurement for
the visualization of the diseased parts. Moreover, saliency detection faces the issues of poor
generalization [37] and poor performance.

The authors of [54] proposed a new Self-Paced Multiple-Instance Learning (SP-MIL)
framework for co-saliency detection. The co-saliency helps in extracting the unique features
of the images. In agriculture, it helps in the detection of diseased spots on leaves.

The authors of [55] used a combination of three-dimensional deep convolutional neural
networks (3D-DCNN) and saliency maps for the early detection and clear marking of plant
diseases. They collected images of plants grown after the inoculation of the causative agent
of charcoal rot disease in the soil. They applied the combination of 3D-DCNN and saliency
maps on 1090 images of soybean stems infected with charcoal rot disease. They extracted
the spatio-temporal features from hyperspectral images with saliency mapping. These
images gave the spectrum for each pixel of the diseased leaves. Therefore, the method had
high computation complexity. The authors employed the Weighted Binary Cross-Entropy
(WBCE) loss function in the 3D-DCNN to overcome the problem of class imbalance. The
model reported the highest accuracy of 95.73%.

To achieve higher precision, researchers have developed hybrid models by combining
DCNNs with detection models such as RCNNs. For example, the authors in [56] developed
hybrid models using VGG-16 [29], ResNet-50, ResNet-101 [31], and Faster-RCNN for
the detection of plant diseases. The experimental results showed that a combination of
ResNet-101 and RCNN gave the highest average precision of 90.87% on a tomato dataset of
207 images.

From the above discussion, we conclude that the methods proposed in [8,43,50,52,54,55]
for automatic disease detection are less robust. These models have reported low accuracy
in disease detection when tested with variegated datasets collected from different sources.
The authors of [57] worked to improve the robustness of the plant disease detection system.
They developed a hybrid fully convolutional neural network (F-CNN) and segmented
convolutional neural network (S-CNN) for plant disease detection and classification. They
trained the model with complete images as well as segmented images. Based on the
analysis of the experimental results, they claimed that the S-CNN model trained using
segmented images achieved the highest accuracy of 98.6% to classify the images into ten
classes. Meanwhile, the F-CNN model trained on complete images showed accuracy of
42.3%. The hybrid model was effective in classifying complete as well as segmented images.

The researchers in [4,58] applied various ML and DL models for the early prediction,
detection, classification, and visualization of diseases in crops. They selected the model
based on the types of parameters and the size of the dataset. A comparison of the models
applied for plant disease prediction is given in Table 2.

CNN models are useful for disease detection, classification, and visualization. How-
ever, we observe that the problems of class imbalance, overfitting, underfitting, and van-
ishing gradients need to be addressed before implementing any model. The problem of
class imbalance in the dataset can be resolved by oversampling, data augmentation [59],
and assigning higher weights to the neurons for smaller samples of the dataset and lower
weights to the larger samples in the dataset. The problem of overfitting can be resolved by
employing regularization [24]. In regularization, the model adds an additional penalty to
the value of the loss function. This minimizes the probability of obtaining extreme values
of the coefficients. Hence, it controls for extreme fluctuations in the values of the loss
function. The authors of [24] added dropout layers to the AlexNet model to minimize the
problem of overfitting. The problem of underfitting arises when the network is shallow
and it fails to capture the complex patterns available in the dataset. Researchers have
increased the number of hidden layers and replaced the linear model with a non-linear
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model to overcome the problem of underfitting [37]. Moreover, authors have worked on
the integration of CNN models and IoT devices for the early detection of disease based on
parametric data sensed by IoT sensors.

Table 2. Comparison of ML and DL applied for disease detection and classification.

Crop(s) Selected Disease Detected Model Applied Highest Accuracy

Wheat plant [56].

Powdery mildew, smut,
black chaff, stripe rust,
leaf blotch, leaf rust,
healthy wheat.

VGG-FCN-VD16, VGG-FCN-S,
deep learning, and
multiple-instance learning.

VGG-FCN-VD16:
97.95%.

Rice [57].

Rice blast (RB),
rice false smut (RFS),
rice brown spot (RBS),
rice bakanae disease (RBD),
rice sheath blight (RSHB).

Gradient descent algorithm,
the softmax learning algorithm,
CNN in comparison with
standard BP algorithm,
SVM, particle swarm optimization.

Accuracy: 95.48%
using CNN.

Mango [58]. Anthracnose.
Multi-layer convolutional
neural network (MCNN),
histogram equalization.

97.13% using
MCNN.

Cucumber and apple
PlantVillage [32]. 38 classes of diseases. AlexNet, GoogleNet

Inception-v3, saliency maps.
99.67% using
Inception-v3.

Cucumber [4].
Anthracnose, downy mildew,
powdery mildew, and
target leaf spots.

DCNN, random forest,
SVM, AlexNet.

93.4% using the
DCNN.

2108 images of
citrus leaf [59]

Anthracnose, black spot,
canker, scab, greening, and
melanose.

Top-hat filter and Gaussian
function, multicast support
vector machine (M-SVM),
contrast stretching method.

M-SVM gave
accuracy of 97% on the
citrus dataset and 89% on the
combined dataset.

58 different
species of plants [23]. Not specified.

VGGNet, Overfeat,
AlexNet, AlexNetOWTBn,
GoogleNet.

99.53% using
VGGNet.

Maize [60].

Curvularia leaf spot, dwarf
mosaic, gray leaf spot,
northern leaf blight, brown spot,
round spot, rust, and southern
leaf blight.

GoogleNet, stochastic
gradient descent (SGD)
algorithm.

GoogleNet:
98.9%.

Apple plants [61].
Alternaria leaf spot,
brown spot, mosaic,
grey spot, and rust.

VGG-INCEP model,
VGGNet-16, Inception-v3,
Rainbow Single-Shot Detector,
multi-box detector.

98.80% using the
detection accuracy of
Rainbow SSD multi-box
detector.

Tea [62].
Tea red scab,
teared leaf spot,
and tea leaf blight.

Low-shot learning method,
SVM, VGG-16, Conditional Deep
Convolutional Generative Adversarial
Network (C-DCGAN).

90% using VGG-16
and C-DCGAN.

Soybean leaves [63]. Downy mildew,
spider mite.

ResNet, AlexNet,
GoogleNet.

94.63% using
ResNet.

Images of soybean
stems [49].

Charcoal rot
disease.

Saliency map,
ResNet.

95.73% using
ResNet.

Coffee, common bean, cassava,
corn, citrus, wheat, sugarcane,
passionfruit, soybean, grapevine,
cashew nut, cotton,
coconut tree, kale [64].

Multiple small or large spots,
single large spot on the leaf,
powdery spots.

GoogleNet,
transfer learning.

94% using
GoogleNet.

3.1. Transfer Learning

DL models are efficient in object detection, pattern matching, and classification. How-
ever, these models need a huge amount of data for training. It is challenging to collect a
labeled dataset of plant diseases at various stages of the plant life cycle. Further, the images
captured at different stages of the life cycle may vary in terms of the type of background,
brightness, and contrast. The differences in the quality of images may decrease the accuracy
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of these models. Therefore, a strong need arises to train the CNN model on a huge dataset
collected from various sources. Transfer learning [60] provides a solution to this problem.
In the first step, the model is trained on a large number of similar images collected from
various sources. The model learns about the low-level features of the image, such as the
intensity, contrast, and color of the pixels, organs, or parts plotted in the image. The weights
of this trained model are saved. This saved information is used for the further training of
the model. Then, the last few layers of the CNN model are trained on a dataset collected
for the detection and classification of one or more diseases in a plant. At this stage, the
model learns the high-level features, such as the differences in color, texture, and bound-
aries, distinguishing criteria between the background and the target region, etc. Based on
these high-level features, the model becomes efficient in the detection and classification
of diseases using different class labels. Thus, transfer learning is useful in automating the
process of plant disease detection and classification. It improves the precision and reduces
the training time [61].

The authors of [62] employed the concept of transfer learning for the detection of
downy mildew disease in pearl millet. They applied the VGG-16 model and reported the
highest accuracy of 95%. Similarly, the authors of [60] used four approaches of transfer
learning with base and end-to-end CNN fine-tuning, cross-dataset fine-tuning, deep feature
learning, and a convolutional neural network–recurrent neural networks (CNN-RNN)
for plant classification. They evaluated the performance of all four approaches using
AlexNet and VGG-16. They compared the performance of these models on four publicly
available datasets: Flavia [63], the Swedish dataset [64], the UCI leaf dataset (Machine
Learning Repository) [65], and the PlantVillage dataset [13]. The AlexNet and VGG-16
models reported low accuracy on the UCI leaf dataset [65] due to the small size of the
dataset. These models reported high accuracy on large datasets. This proves that DL models
require a large dataset size for training. Applying the cross-dataset approach yielded an
improvement of 4% in accuracy. The authors of [65] claimed that the end-to-end CNN
approach had the lowest accuracy when evaluated on all the datasets, namely Flavia [63],
Swedish [64], the UCI leaf dataset (Machine Learning Repository) [65], and the PlantVillage
dataset [13]. They observed an improvement in accuracy when the same models were
trained using the concept of transfer learning. Thus, the authors [60] claimed that transfer
learning is the best possible tool for prediction using DL models, even when only a small
dataset is available.

3.2. Modified or Hybrid DL Architectures for Plant Disease Detection

According to research published by [58,66–68], modifications in DL architectures have
been introduced for better accuracy in plant disease detection and classification. The
authors of [69] proposed an improvement in the GoogleNet and Cifar-10 models. They
added dropout functions, employed the ReLu activation function, and made changes in
the number and positions of pooling layers in the neural network. They achieved accuracy
of 98.9% on a dataset of 500 images taken from the PlantVillage dataset [49]. The accuracy
was higher than that of the AlexNet and VGG models.

The authors of [70] proposed a new DL model to achieve accuracy higher than that of
the SVM, AlexNet, GoogleNet, ResNet-20, and VGG-16 models for the detection of plant
diseases. They rotated the images at 90°, 180°, 270°, and mirror symmetry to make the model
robust to changes in the direction of the input image. They changed the contrast, sharpness,
and brightness of images to decrease the light sensitivity of the model. The authors
applied Gaussian noise and PCA jittering to ensure robustness against noisy datasets. In
this research, they also employed Nesterov’s Accelerated Gradient (NAG) algorithm to
optimize the model parameters of AlexNet [24]. The optimized model achieved accuracy
of 97.62% on a dataset containing 13,689 images collected from China. The authors claimed
that the optimized model yielded 10.38% higher accuracy than the AlexNet model.

Then, the authors of [71] proposed a hybrid composed of the VGG and Inception CNN
architectures. Their model, ‘VGG-Inception’, reported higher accuracy than DL models,
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namely AlexNet, GoogleNet, ResNet, and VGG, in classifying apple plants into five disease
categories. The model is useful for the clear visualization of diseases in plants. This
architecture also presented inter-class detection and activation visualization. Activation
visualization detects disease spots, such as grey and brown spots and rust, and separates
these spots from the background images. This model is useful to differentiate diseases
with a high degree of similarity in lesions. It is also efficient in the visualization of diseases
identified with different class labels.

The researchers in [72] proposed DL models termed modified MobileNet and reduced
MobileNet. They claimed that the reduced MobileNet model achieved the highest classi-
fication accuracy of 98.34% on a PlantVillage dataset of 82,161 images. Furthermore, the
model had a smaller number of parameters than the VGG architecture. Therefore, it was
successful in reducing the computational time. The architecture of the hybrid model is
shown in Figure 16.
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+
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Visualization saliency
 mapping

Figure 16. Modified architecture.

DL models are efficient in plant disease detection and classification, but the follow-
ing challenges need to be addressed for automated plant disease prediction, detection,
classification, and visualization.

• The segmentation techniques are ineffective for background removal and in accurately
extracting the ROI.

• The classifier reports low accuracy in classifying diseases with a high degree of
similarity in symptoms.

• The detection of diseases using images of stems, flowers, and fruits is difficult and
imprecise.

• The development of a a compact CNN model for mobile-embedded applications is
still an unaddressed challenge.

• The large computational time and resource requirements of DCNN models make them
less advantageous for real-life applications where a quick decision is required.

3.3. Optimizing the Deep Learning Models

The size and quality of the dataset, versatility in the dataset, randomly assigned
weights to the neurons, the learning rate of the network, the depth of the network, the filter
size selected, and the activation function are factors that greatly affect the training efficacy
of a DL model. The techniques of data augmentation [59], such as rotation, shearing, and
transfer learning [61,73], are useful in increasing the size of the dataset.

The training efficacy of the model can be improved by fine-tuning its hyperparameters.
These are configuration variables, and their values are estimated from the training dataset.
Researchers find the optimum values of these parameters by exploring the range of possible
values. The optimum values of these parameters are important in solving predictive
modeling problems.

It is clear from the above discussion that one architecture for the DL model and the
same set of parameters is not suitable for the detection and classification of plant diseases
captured in different datasets. This highlights the need to select and optimize the DL
model according to the dataset available. Based on a review of DL models [31,32,36,57],
we observe that the ResNet, Inception-v3, and DenseNet CNN models are useful for the
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classification of large datasets. A performance comparison of different DL models on
tomato crop images available in the PlantVillage dataset is shown in Figure 17.

Figure 17. Performance comparison of deep learning models applied for plant disease detection and
classification.

3.4. IoT-Enabled CNN Models Applied for Plant Disease Detection and Classification

A study of the related literature reveals that a rise in the use of DL techniques for
plant disease detection and classification has been observed since 2016. The researchers
in [13,37,52] applied different DL models to 54,306 images collected from the PlantVillage
dataset [49] and the models were employed to recognize 14 crop species and 26 disease
classes. They also used these models for the classification of images with 38 class labels. A
comparative analysis of the most popularly used DL models is shown in Figure 18.
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Figure 18. Deep learning era in plant disease research.
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The comparative analysis of different DL models showed that in AlexNet [24], the
tanh activation function was replaced with the ReLu activation function. This model was
evaluated on the publicly available ImageNet dataset [74]. In 2014, further enhancements
in DL models were achieved, and VGG-16, VGG-19, GoogleNet, and Inception-v3 were
developed. These models are suitable for parallel computation. The efficacy in pattern
matching makes these models suitable for plant disease classification. The computational
time increases with an increase in the depth of the network. Therefore, to minimize the
computational time, the DL models Inception-v3, ResNet-50, ResNet-101, and ResNet-
152 were developed in 2015. These models support residual connections, allow batch
normalization, and resolve the problem of gradient degradation.

The integration of IoT technologies in agriculture holds great promise to revolutionize
farming practices, increase productivity, and address sustainability concerns. This extensive
review aimed to offer insights into the current state of IoT applications in agriculture.
Traditionally, the IoT architecture consists of five layers: a physical layer, network layer,
middleware layer, processing layer, and application layer. By implementing an IoT layer
architecture in agriculture, farmers can enhance their decision-making processes, optimize
resource utilization, and ultimately increase productivity while being more environmentally
sustainable. A basic outline of the IoT layer architecture for agriculture is as follows.

1. Sensors and Actuators
Various types of sensors are deployed throughout the agricultural fields and facilities
to monitor different parameters. These may include soil moisture, temperature,
humidity, light intensity, weather conditions, crop health, water level, and more.
Actuators are used to control certain actions, such as turning on irrigation systems,
opening and closing valves, or adjusting greenhouse environments.

2. Connectivity
This layer handles the communication between sensors, actuators, and the central
system. It can use technologies such as WiFi, Bluetooth, Zigbee, LoRaWAN, or cellular
networks based on the range and requirements of the specific application.

3. Edge Devices/Gateways
Edge devices act as intermediaries between sensors/actuators and the cloud. They pre-
process and filter the data locally, reducing the load on the central cloud infrastructure
and enabling faster responses for critical tasks. Gateways facilitate communication
between edge devices and the central cloud platform, ensuring data transmission and
security.

4. Cloud Platform
The central cloud platform receives and stores data from multiple edge devices and
sensors. It processes and analyzes the data to generate valuable insights and actionable
information for farmers. Cloud-based services can include data analytics, machine
learning models, and historical data storage.

5. Data Analytics and Machine/Deep Learning
Advanced data analytics techniques and machine learning algorithms can be applied
to the collected data to provide predictions, identify patterns, and offer recommen-
dations to optimize agricultural practices. Examples include predictive crop yield
modeling, disease detection, and pest management strategies.

6. Mobile and Web Applications
Mobile and web applications allow farmers to access real-time data, receive alerts,
and control their agricultural systems remotely. These applications can provide
visualizations, reports, and insights based on the analyzed data.

7. Decision Support System
The decision support system utilizes the insights and recommendations generated by
the analytics and machine learning layers to help farmers to make informed decisions
about irrigation schedules, fertilizer application, crop rotation, and more.

8. Security and Privacy
As IoT systems deal with sensitive data, security measures must be in place to protect
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against unauthorized access and data breaches. Encryption, authentication, and access
control mechanisms are implemented to ensure data privacy and integrity.

This extensive review shows that by implementing an IoT layer architecture for agri-
culture, farmers can improve their decision making, optimize resource utilization, and
ultimately increase productivity. Moreover, the IoT- and DL-based techniques are more
environmentally sustainable. For example, IoT-enabled CNN systems help in water re-
source management, pre-estimating fertilizer requirements, and early disease detection [44].
The works presented in [75] highlight the importance of collecting imagery datasets. They
employed an appropriate DL model on the collected dataset for the detection and classi-
fication of plant diseases. They also focused on integrating DL models with IoT systems
comprising sensors, a drone, a camera, etc. They claimed that these integrated systems
reduce the human effort required. These systems can gather real-time information from
farms and are important in the quick processing of the collected datasets to predict plant
diseases. Similarly, Ref. [76] utilized the potential of IoT with DL. The authors implemented
DHT11 sensors to measure temperature and humidity, to spot diseases at an early stage.
These sensors were connected to a Raspberry Pi to transmit the captured information to the
cloud server. This shows that IoT-enabled CNNs help in detecting climate changes causing
sickness in crops. The importance of IoT in agricultural disease detection lies in its ability to
provide real-time data, enable precision farming practices, and support informed decision
making. By leveraging IoT technology, farmers can enhance their disease management
strategies, improve crop yields, and contribute to sustainable and efficient agricultural
practices. IoT technology allows farmers to remotely monitor their fields and livestock
through mobile applications and web platforms. This capability is especially valuable
for large-scale farms or when farmers are not physically present on the farm, enabling
them to stay updated about their farm’s condition and respond quickly to potential disease
outbreaks.

The authors in [77] proposed and implemented a framework integrating IoT and DL
for pearl millet disease detection. In this research, the authors anchored the hardware
components, such as sensors, drone cameras, and digital cameras, in the pearl millet
farmland at ICAR, Mysore, India, to collect data automatically. The ‘Custom-Net’ model
was designed as a part of this research and deployed on the cloud server. This DL model
processes the data collected by the data collector and provides real-time prediction for blast
and rust diseases.

4. Discussion

In this section, we elaborate on the analysis of the IoT and DL models applied for
plant disease detection, visualization, and classification. We observe that factors such as
the crop age, climate, and location affect the quality of the dataset and hence the accuracy
of detection, visualization, and classification.

Based on the review of related works, we observe that IoT systems are important for
the collection of real-time imagery as well as parametric datasets from fields. However,
merely using IoT systems is not sufficient to obtain intelligent predictions about the nutrient,
fertilizer, and pesticide requirements and disease detection and classification. Therefore,
the datasets collected from IoT systems must be fed to DL models for analysis and decision
making and to detect climate changes.

However, these integrated systems require improvements in terms of the linking of
drones with GPS field sensors. GPS requires a continuous power supply, which increases
the cost for farmers.

Moreover, it is observed that disruptions in the connectivity of sensors and cloud
and mobile applications decrease the reliability of the integrated systems. Data storage
and transmission via the cloud raise privacy and security issues. Such information can be
disseminated as an alert or notification to farmers on their mobile phones.

Further, deficiencies in nutrients and diseases may leave similar visual symptoms
on a crop plant. Thus, there is a need to design IoT systems that can capture even minor
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differences in texture, color, etc., in a cropped image, and the DL model should be optimized
for the precise recognition of diseases and nutrient deficiencies. The symptoms are highly
dependent on the season of growing, atmospheric conditions, and fertilization strategies.
Thus, there is a need to design intelligent systems that can accurately predict diseases even
for crops grown in variable environments.

Based on the review of DL models, we conclude that AlexNet minimizes the problem
of vanishing gradients by using the ReLu activation function. Therefore, it can be applied
for plant disease detection and classification. However, this model is inefficient in resource
utilization, and it lacks parallel processing.

The model GoogleNet overcomes this drawback and employs parallel processing for
the better utilization of resources. Moreover, it reports higher accuracy than AlexNet in
the detection and classification of plant diseases. The DL models VGG-19, ResNet, and
DenseNet report higher accuracy than GoogleNet on huge training datasets. However, these
models require large storage space for the layers of the network and trainable parameters.
Among all the models, DenseNet reports the highest accuracy in plant disease detection
and classification, but it requires a long time for training.

We also observe that the models Inception, SqueezeNet, MobileNet, and modified or
reduced MobileNet contain a smaller number of trainable parameters. These models require
less storage space and shorter computational times. Therefore, these models may prove
useful in providing mobile-based applications to assist farmers in predicting, detecting,
and classifying plant diseases.

We also conclude that the hybrid models developed by employing VGG and Inception
models or DenseNet and Inception models are storage-efficient and report high accuracy
in disease detection, even in the case of complex backgrounds in images. A complex
background refers to the presence of multiple objects, different colors, shadows, etc.

Further, we conclude that image segmentation and saliency mapping are useful for the
visualization of plant diseases. However, hallenges such as the high log-loss, low accuracy
for mobile applications, and imprecision in distinguishing diseases with similar symptoms
need to be addressed.

The selection of the model and the fine-tuning of its hyperparameters according to
the type of dataset is the key requirement in achieving the optimum performance of the
model. Employing the ReLu or softmax activation function, adding a suitable number of
dropout layers, and changing the number of layers in the neural network model according
to the size and type of the dataset are important in achieving the optimum performance of
the model. Applying pre-processing techniques such as rotation, histogram equalization,
changes in the contrast of the image, etc., improve the robustness of the model and make it
effective for datasets collected from different sources.

IoT holds the potential to revolutionize farming practices, increase productivity, en-
hance sustainability, and contribute to global food security. However, the successful
implementation of IoT in agriculture requires that data privacy and security concerns be
addressed. Moreover, we must consider the digital divide in rural areas and promote
farmer education and awareness about the benefits of IoT adoption. Nonetheless, with
ongoing technological advancements and industry collaborations, IoT is expected to play a
crucial role in shaping the future of agriculture.

5. Conclusions

In this manuscript, we have successfully completed a systematic review of the liter-
ature to showcase the role of integrating cutting-edge technologies such as IoT and DL
in automating agriculture processes. Based on the review, we conclude that the DL mod-
els VGG-19, ResNet, DenseNet, AlexNet, and GoogleNet report higher accuracy but are
storage-inefficient. Thus, they cannot be integrated with mobile applications. Other DL
models, such as Inception, SqueezeNet, MobileNet, hybrid models developed by employ-
ing VGG and Inception models, or DenseNet, require less storage without compromising
accuracy. Therefore, these can be integrated with mobile applications for disease detec-
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tion and classification. The hybrid models are also efficient in disease recognition from
images with complex backgrounds. Thus, they would be useful in real-life implementation.
Moreover, integrating IoT and DL models may prove useful in developing tools to assist
farmers to improve the productivity and quality of crop products. Thus, it may reduce the
costs of agriculture and revolutionize the area of plant disease detection, visualization, and
classification. However, while DL- and IoT-based systems are available, there is huge scope
to design power-efficient IoT devices for agriculture. Moreover, a great deal of research
is required to improve the privacy, security, and non-interrupted communication of data
between DL and IoT systems.
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based framework for disease prediction in pearl millet. Sensors 2021, 21, 5386. [CrossRef]

12. Zhang, Z.; Liu, H.; Meng, Z.; Chen, J. Deep learning-based automatic recognition network of agricultural machinery images.
Comput. Electron. Agric. 2019, 166, 104978. [CrossRef]

13. Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using deep learning for image-based plant disease detection. Front. Plant Sci. 2016,
7, 1–10. [CrossRef]

14. Fawakherji, M.; Youssef, A.; Bloisi, D.; Pretto, A.; Nardi, D. Crop and Weeds Classification for Precision Agriculture Using
Context-Independent Pixel-Wise Segmentation. In Proceedings of the 3rd IEEE International Conference on Robotic Computing,
IRC 2019, Naples, Italy, 25–27 February 2019; pp. 146–152. [CrossRef]

15. Chen, S.W.; Shivakumar, S.S.; Dcunha, S.; Das, J.; Okon, E.; Qu, C.; Taylor, C.J.; Kumar, V. Counting Apples and Oranges with
Deep Learning: A Data-Driven Approach. IEEE Robot. Autom. Lett. 2017, 2, 781–788. [CrossRef]

16. Nevavuori, P.; Narra, N.; Lipping, T. Crop yield prediction with deep convolutional neural networks. Comput. Electron. Agric.
2019, 163, 104859. [CrossRef]

17. Sinwar, D.; Dhaka, V.S.; Sharma, M.K.; Rani, G. AI-based yield prediction and smart irrigation. Internet Things Anal. Agric. 2020,
2, 155–180.

18. Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [CrossRef]
19. Dara, S.; Tumma, P. Feature Extraction By Using Deep Learning: A Survey. In Proceedings of the 2018 Second Interna-

tional Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 29–31 March 2018;
pp. 1795–1801.

20. Wiesel, D.H.H.A.T.N. Receptive Fields, Binocular Interaction and Functional Architecture in the Cat’s Visual Cortex. Diagn.
Cytopathol. 1962, 14, 106–154. [CrossRef]

21. Traore, B.B.; Kamsu-Foguem, B.; Tangara, F. Deep convolution neural network for image recognition. Ecol. Inform. 2018,
48, 257–268. [CrossRef]

22. Hijazi, S.; Kumar, R.; Rowen, C. Using Convolutional Neural Networks for Image Recognition; Cadence Design Systems Inc.: San Jose,
CA, USA, 2015; Volume 9, p. 1.

23. Patil, B.V.; Patil, P.S. Computational Method for Cotton Plant Disease Detection of Crop Management Using Deep Learning and
Internet of Things Platforms. In Proceedings of the Evolutionary Computing and Mobile Sustainable Networks; Suma, V., Bouhmala, N.,
Wang, H., Eds.; Springer Singapore: Singapore, 2021; pp. 875–885.

24. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf.
Process. Syst. 2012. [CrossRef]

25. Andrea, C.C.; Daniel, B.M.; Misael, J.B.J. Precise weed and maize classification through convolutional neuronal networks. In
Proceedings of the 2017 IEEE 2nd Ecuador Technical Chapters Meeting, ETCM 2017, Salinas, Ecuador, 16–20 October 2017;
pp. 1–6.

26. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

27. Team, O.T.R. GoogleNet. 2021. Available online: https://iq.opengenus.org/googlenet/ (accessed on 13 December 2021).
28. Ferentinos, K.P. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 2018, 145, 311–318.

[CrossRef]
29. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2015, arXiv:1409.1556.
30. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In

Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26
June–1 July 2016; pp. 2818–2826. [CrossRef]

31. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [CrossRef]

32. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, Inception-ResNet and the Impact of Residual Connections on
Learning. Pattern Recognit. Lett. 2014, 42, 11–24. [CrossRef]

33. Chollet. Xception: Deep Learning with Depthwise Separable Convolutions. SAE Int. J. Mater. Manuf. 2017, 7, 1251–1258.
[CrossRef]

34. Sik-Ho-Tsang. Review: Inception-v3—1st Runner Up (Image Classification) in ILSVRC 2015, 2018.
35. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer

parameters and< 0.5 MB model size. arXiv 2016, arXiv:1602.07360.
36. Huang, G.; Liu, Z.; Maaten, L.V.D.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the 30th

IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.
[CrossRef]

37. Brahimi, M. Deep learning for plants diseases; Springer International Publishing: Cham, Switzerland, 2018; pp. 159–175. [CrossRef]
38. Alex. Learning Multiple Layers of Features from Tiny Images. Asha 2009, 34.

http://dx.doi.org/10.3390/s21165386
http://dx.doi.org/10.1016/j.compag.2019.104978
http://dx.doi.org/10.3389/fpls.2016.01419
http://dx.doi.org/10.1109/IRC.2019.00029
http://dx.doi.org/10.1109/LRA.2017.2651944
http://dx.doi.org/10.1016/j.compag.2019.104859
http://dx.doi.org/10.1016/j.compag.2018.02.016
http://dx.doi.org/10.1002/(SICI)1097-0339(199603)14:2&lt;162::AID-DC11&gt;3.0.CO;2-K
http://dx.doi.org/10.1016/j.ecoinf.2018.10.002
http://dx.doi.org/10.1145/3065386
https://iq.opengenus.org/googlenet/
http://dx.doi.org/10.1016/j.compag.2018.01.009
http://dx.doi.org/10.1109/CVPR.2016.308
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1609/aaai.v31i1.11231
http://dx.doi.org/10.4271/2014-01-0975
http://dx.doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1007/978-3-319-90403-0


Sensors 2023, 23, 7877 22 of 23

39. Zagoruyko, S.; Komodakis, N. Wide Residual Networks. In Proceedings of the British Machine Vision Conference 2016, BMVC
2016, York, UK, 19–22 September 2016; pp. 87.1–87.12. [CrossRef]

40. Jha, K.; Doshi, A.; Patel, P.; Shah, M. A comprehensive review on automation in agriculture using artificial intelligence. Artif.
Intell. Agric. 2019, 2, 1–12. [CrossRef]

41. Shafi, U.; Mumtaz, R.; Shafaq, Z.; Zaidi, S.M.H.; Kaifi, M.O.; Mahmood, Z.; Zaidi, S.A.R. Wheat rust disease detection techniques:
a technical perspective. J. Plant Dis. Prot. 2022, 129, 489–504. [CrossRef]

42. Ayaz, M.; Ammad-Uddin, M.; Sharif, Z.; Mansour, A.; Aggoune, E.H.M. Internet-of-Things (IoT)-based smart agriculture: Toward
making the fields talk. IEEE Access 2019, 7, 129551–129583. [CrossRef]

43. Hu, W.J.; Fan, J.; Du, Y.X.; Li, B.S.; Xiong, N.; Bekkering, E. MDFC-ResNet: An Agricultural IoT System to Accurately Recognize
Crop Diseases. IEEE Access 2020, 8, 115287–115298. [CrossRef]

44. Garg, D.; Alam, M. Deep learning and IoT for agricultural applications. In Internet of Things (IoT): Concepts and Applications;
Springer: Berlin/Heidelberg, Germany, 2020; pp. 273–284. [CrossRef]

45. Zhao, Y.; Liu, L.; Xie, C.; Wang, R.; Wang, F.; Bu, Y.; Zhang, S. An effective automatic system deployed in agricultural Internet
of Things using Multi-Context Fusion Network towards crop disease recognition in the wild. Appl. Soft Comput. J. 2020, 89.
[CrossRef]

46. Zhang, J.; Pu, R.; Yuan, L.; Huang, W.; Nie, C.; Yang, G. Integrating remotely sensed and meteorological observations to forecast
wheat powdery mildew at a regional scale. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4328–4339. [CrossRef]

47. Orchi, H.; Sadik, M.; Khaldoun, M. On using artificial intelligence and the internet of things for crop disease detection:
A contemporary survey. Agriculture 2022, 12, 9. [CrossRef]

48. Mishra, M.; Choudhury, P.; Pati, B. Modified ride-NN optimizer for the IoT based plant disease detection. J. Ambient. Intell.
Humaniz. Comput. 2021, 12, 691–703. [CrossRef]

49. dataset, P. PlantVillage dataset, 2018.
50. Kitpo, N.; Kugai, Y.; Inoue, M.; Yokemura, T.; Satomura, S. Internet of Things for Greenhouse Monitoring System Using Deep

Learning and Bot Notification Services. In Proceedings of the 2019 IEEE International Conference on Consumer Electronics,
ICCE 2019, Las Vegas, NV, USA, 11–13 January 2019; pp. 1–4. [CrossRef]

51. Saranya, T.; Deisy, C.; Sridevi, S.; Anbananthen, K.S.M. A comparative study of deep learning and Internet of Things for precision
agriculture. Eng. Appl. Artif. Intell. 2023, 122, 106034. [CrossRef]

52. Ngugi, L.C.; Abelwahab, M.; Abo-Zahhad, M. Recent advances in image processing techniques for automated leaf pest and
disease recognition—A review. Inf. Process. Agric. 2020. [CrossRef]

53. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

54. Zhang, D.; Meng, D.; Han, J. Co-Saliency Detection via a Self-Paced Multiple-Instance Learning Framework. IEEE Trans. Pattern
Anal. Mach. Intell. 2017, 39, 865–878. [CrossRef]

55. Nagasubramanian, K.; Jones, S.; Singh, A.K.; Sarkar, S.; Singh, A.; Ganapathysubramanian, B. Plant disease identification using
explainable 3D deep learning on hyperspectral images. Plant Methods 2019, 15, 1–10. [CrossRef]

56. Wang, Q.; Qi, F. Tomato diseases recognition based on faster RCNN. In Proceedings of the 10th International Conference on
Information Technology in Medicine and Education, ITME 2019, Qingdao, China, 23–25 August 2019; pp. 772–776. [CrossRef]

57. Sharma, P.; Berwal, Y.P.S.; Ghai, W. Performance analysis of deep learning CNN models for disease detection in plants using
image segmentation. Inf. Process. Agric. 2019. [CrossRef]

58. Cao, X.; Tao, Z.; Zhang, B.; Fu, H.; Feng, W. Self-adaptively weighted co-saliency detection via rank constraint. IEEE Trans. Image
Process. 2014, 23, 4175–4186. [CrossRef]

59. Mikołajczyk, A.; Grochowski, M. Data augmentation for improving deep learning in image classification problem. In Proceedings
of the 2018 International Interdisciplinary PhD Workshop, IIPhDW 2018, Swinoujscie, Poland, 9–12 May 2018; pp. 117–122.
[CrossRef]

60. Kaya, A.; Seydi, A.; Catal, C.; Yalin, H.; Temucin, H. Analysis of transfer learning for deep neural network based plant
classification models. Comput. Electron. Agric. 2019, 158, 20–29. [CrossRef]

61. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [CrossRef]
62. Coulibaly, S.; Kamsu-Foguem, B.; Kamissoko, D.; Traore, D. Deep neural networks with transfer learning in millet crop images.

Comput. Ind. 2019, 108, 115–120. [CrossRef]
63. Wu, S.G.; Bao, F.S.; Xu, E.Y.; Wang, Y.X.; Chang, Y.F.; Xiang, Q.L. A leaf recognition algorithm for plant classification using

probabilistic neural network. In Proceedings of the ISSPIT 2007—2007 IEEE International Symposium on Signal Processing and
Information Technology, Giza, Egypt, 15–18 December 2007; pp. 11–16. [CrossRef]

64. Söderkvist, O. Computer vision classification of leaves from swedish trees. 2001.
65. Silva, P.F.; Marcal, A.R.; Silva, R.M.D. Evaluation of features for leaf discrimination. Lect. Notes Comput. Sci. 2013, 7950

LNCS, 197–204. [CrossRef]
66. Fu, H.; Cao, X.; Tu, Z. Cluster-Based Co-Saliency Detection. IEEE Trans. Image Process. 2013, 22, 3766–3778. [CrossRef]
67. Too, E.C.; Yujian, L.; Njuki, S.; Yingchun, L. A comparative study of fine-tuning deep learning models for plant disease

identification. Comput. Electron. Agric. 2019, 161, 272–279. [CrossRef]
68. Li, Y.; Fu, K.; Liu, Z.; Yang, J. Efficient Saliency-Model-Guided. Spl 2015, 22, 588–592.

http://dx.doi.org/10.5244/C.30.87
http://dx.doi.org/10.1016/j.aiia.2019.05.004
http://dx.doi.org/10.1007/s41348-022-00575-x
http://dx.doi.org/10.1109/ACCESS.2019.2932609
http://dx.doi.org/10.1109/ACCESS.2020.3001237
http://dx.doi.org/10.1007/978-3-030-37468-6_14
http://dx.doi.org/10.1016/j.asoc.2020.106128
http://dx.doi.org/10.1109/JSTARS.2014.2315875
http://dx.doi.org/10.3390/agriculture12010009
http://dx.doi.org/10.1007/s12652-020-02051-6
http://dx.doi.org/10.1109/ICCE.2019.8661999
http://dx.doi.org/10.1016/j.engappai.2023.106034
http://dx.doi.org/10.1016/j.inpa.2020.04.004
http://dx.doi.org/10.1109/TPAMI.2016.2567393
http://dx.doi.org/10.1186/s13007-019-0479-8
http://dx.doi.org/10.1109/ITME.2019.00176
http://dx.doi.org/10.1016/j.inpa.2019.11.001
http://dx.doi.org/10.1109/TIP.2014.2332399
http://dx.doi.org/10.1109/IIPHDW.2018.8388338
http://dx.doi.org/10.1016/j.compag.2019.01.041
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1016/j.compind.2019.02.003
http://dx.doi.org/10.1109/ISSPIT.2007.4458016
http://dx.doi.org/10.1007/978-3-642-39094-4_23
http://dx.doi.org/10.1109/TIP.2013.2260166
http://dx.doi.org/10.1016/j.compag.2018.03.032


Sensors 2023, 23, 7877 23 of 23

69. Zhang, X.; Qiao, Y.; Meng, F.; Fan, C.; Zhang, M. Identification of maize leaf diseases using improved deep convolutional neural
networks. IEEE Access 2018, 6, 30370–30377. [CrossRef]

70. Liu, B.; Zhang, Y.; He, D.J.; Li, Y. Identification of apple leaf diseases based on deep convolutional neural networks. Symmetry
2018, 10, 11. [CrossRef]

71. Jiang, P.; Chen, Y.; Liu, B.; He, D.; Liang, C. Real-Time Detection of Apple Leaf Diseases Using Deep Learning Approach Based on
Improved Convolutional Neural Networks. IEEE Access 2019, 7, 59069–59080. [CrossRef]

72. KC, K.; Yin, Z.; Wu, M.; Wu, Z. Depthwise separable convolution architectures for plant disease classification. Comput. Electron.
Agric. 2019, 165, 104948. [CrossRef]

73. Aghamaleki, J.A.; Baharlou, S.M. Transfer learning approach for classification and noise reduction on noisy web data. Expert Syst.
Appl. 2018, 105, 221–232. [CrossRef]

74. vision, S.; pronceton university Lab. ImageNet dataset, 2017.
75. Shah, J.P.; Prajapati, H.B.; Dabhi, V.K. A survey on detection and classification of rice plant diseases. In Proceedings of the 2016

IEEE International Conference on Current Trends in Advanced Computing, ICCTAC 2016, Bangalore, India, 10–11 March 2016.
[CrossRef]

76. Thorat, A.; Kumari, S.; Valakunde, N.D. An IoT based smart solution for leaf disease detection. In Proceedings of the 2017
International Conference on Big Data, IoT and Data Science, BID 2017, Pune, India, 20–22 December 2017; pp. 193–198. [CrossRef]

77. Kundu, N.; Rani, G.; Dhaka, V.S.; Gupta, K.; Nayaka, S.C.; Vocaturo, E.; Zumpano, E. Disease detection, severity prediction, and
crop loss estimation in MaizeCrop using deep learning. Artif. Intell. Agric. 2022, 6, 276–291. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2018.2844405
http://dx.doi.org/10.3390/sym10010011
http://dx.doi.org/10.1109/ACCESS.2019.2914929
http://dx.doi.org/10.1016/j.compag.2019.104948
http://dx.doi.org/10.1016/j.eswa.2018.03.042
http://dx.doi.org/10.1109/ICCTAC.2016.7567333
http://dx.doi.org/10.1109/BID.2017.8336597
http://dx.doi.org/10.1016/j.aiia.2022.11.002

	Introduction
	 State-of-the-Art Deep Learning Models
	AlexNet
	GoogleNet/Inception
	VGGNet-16 and VGGNet-19
	Inception-v3
	ResNet
	Inception-v4 and Inception-ResNet
	Xception
	SqueezeNet
	DenseNet

	Comparative Analysis of Related Works
	Transfer Learning
	Modified or Hybrid DL Architectures for Plant Disease Detection
	Optimizing the Deep Learning Models
	IoT-Enabled CNN Models Applied for Plant Disease Detection and Classification

	Discussion
	Conclusions
	References

