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Abstract: Continual semantic segmentation (CSS) aims to learn new tasks sequentially and extract
object(s) and stuff represented by pixel-level maps of new categories while preserving the original
segmentation capabilities even when the old class data is absent. Current CSS methods typically
preserve the capacities of segmenting old classes via knowledge distillation, which encounters the
limitations of insufficient utilization of the semantic knowledge, i.e., only distilling the last layer of the
feature encoder, and the semantic shift of background caused by directly distilling the entire feature
map of the decoder. In this paper, we propose a novel CCS method based on scale-hybrid distillation
and knowledge disentangling to address these limitations. Firstly, we propose a scale-hybrid group
semantic distillation (SGD) method for encoding, which transfers the multi-scale knowledge from the
old model’s feature encoder with group pooling refinement to improve the stability of new models.
Then, the knowledge disentangling distillation (KDD) method for decoding is proposed to distillate
feature maps with the guidance of the old class regions and reduce incorrect guides from old models
towards better plasticity. Extensive experiments are conducted on the Pascal VOC and ADE20K
datasets. Competitive performance compared with other state-of-the-art methods demonstrates the
effectiveness of our proposed method.

Keywords: continual semantic segmentation; knowledge distillation; scale-hybrid group semantic
distillation

1. Introduction

Semantic segmentation [1,2] is a fundamental task in the field of computer vision
that aims to assign a category to each pixel in an image. With the help of Convolutional
Neural Networks (CNNs), semantic segmentation methods have achieved significant
progress under the condition of all of the fixed classes that have been given. However,
the main challenge in the real-world lies in the constantly changing environment (i.e., the
new classes are generated progressively), which means a semantic segmentation model
needs to continually learn from newly emerged classes while preserving the learned
knowledge from old classes without retraining from scratch. Such a learning process is
called Continual Semantic Segmentation (CSS), which has gained widespread interest from
researchers and plays an important role in wide potential applications in dynamically
changing environments, such as automatic driving, medical imaging, robotics, augmented
reality, and so on.

A straightforward solution is to fine tune [3] the trained old model on data from
the new class to adjust the parameters to fit the distribution of the new class without
using the old class of data. Nevertheless, the model suffers from a catastrophic forgetting
problem [4,5] when it is updated incrementally by a gradient-based update method, which
will directly lead to rapid degradation of the model performance, i.e., the model will forget
how to solve the old classes after learning the new classes due to the interference caused
by the parameter updation. To alleviate the problem, some researchers have attempted
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to adopt the knowledge distillation strategy [6–11], which transfers knowledge from the
old class to the new class of models to preserve the model’s original capacity. Despite
the success of the knowledge distillation-based method for CSS, two common limitations
remain. The first limitation is inadequate distillation. Specifically, only the knowledge of
the last layer of the encoder is transferred by simply pooling the feature map, which fails
to leverage the richer knowledge of the old model such as multi-scale object information,
spatial position, and channel semantics. The second limitation is the semantic shift [12]:
the old CSS models consider all data that is not the current class as background, which
may contain non-background information in the new task. However, existing CSS methods
force distill the entire feature map from the old task decoder to the new task, which may
disturb the learning of new classes since some new classes are mistakenly considered as
background by the old model.

To address the aforementioned problems, we propose a novel scale-hybrid group
distillation with the knowledge disentangling continual semantic segmentation method.
In particular, a scale-hybrid group distillation for encoding is proposed for transferring
richer semantic knowledge from the feature encoder of the old model to avoid inadequate
distillation. On the one hand, we perform multi-scale distillation of the encoder to preserve
comprehensive semantic information. On the other hand, we design a group pooling
strategy to retain the spatial position and channel semantic knowledge. In addition, we
propose the knowledge disentangling distillation method composed of old class distillation
and new class learning for decoding to reduce the semantic shift of the background class.
Unlike previous indiscriminate distillation, we utilize the old model to generate pseudo
labels for the current task, and then only focus on the knowledge transfer from the old non-
background classes to avoid the semantic shift where the class is considered as background
in the old task and foreground in the new task. Additionally, the new class learning is
supervised by the cross entropy loss function in order to enhance the plasticity of the model.

The main contributions can be summarized as follows:

• We propose a scale-hybrid group distillation (SGD) for encoding to transfer richer
semantic knowledge from the old model’s feature encoder in different scales in a novel
group pooling manner to preserve comprehensive knowledge without the catastrophic
forgetting problem.

• We propose a knowledge disentangling distillation (KDD) for decoding to decompose
the learning of old and new knowledge based on the corresponding model. This
approach can reduce the interference of incorrect guides from old models for the
new knowledge.

• Extensive experiments on Pascal VOC and ADE20k datasets are conducted on the
typical continual semantic segmentation settings, and the results demonstrate the
effectiveness of our proposed method.

2. Related Work

In this section, we firstly make a overview of two important research fields: semantic
segmentation and continual learning. Then, we further make an in-depth exploration of
recent advancements in continual semantic segmentation field.

2.1. Semantic Segmentation

In recent years, significant progress has been made in the field of semantic segmen-
tation benefit from the availability of large datasets [13–16] and advancements [1,2] in
deep convolutional neural networks. Long et al. [1] proposed an end-to-end architecture
for semantic segmentation called fully convolutional networks (FCN), which can output
pixel-wise prediction of the object class. However, FCN suffers from the loss of spatial
information and insufficient contextual information. Chen et al. [17–19] proposed the
Deeplab series to capture more spatial information through atrous convolutions. Some
works [2,20–22] have adopted an encoder-decoder structure for retaining spatial infor-
mation. In order to capture contextual information in images, some works [23–27] have
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adopted an attention mechanism to build up connections between image contexts. Recently,
semantic segmentation approaches based on the transformer architecture have had a great
deal of success [28–32], mainly in their ability to capture long-range dependencies in images.
Despite the remarkable achievement of the semantic segmentation field, these methods are
not capable of dealing with the new emerging classes of continual learning, which are more
applicable to real-world scenarios.

2.2. Continual Learning

Continual learning aims to adapt and learn from new data while retaining knowledge
acquired from previous data. However, catastrophic forgetting of old knowledge is a major
challenge when learning new knowledge. To address this issue, some approaches have been
proposed for continual learning, including replay-based methods [33–38], regularization-
based methods, and architecture-based methods. Replay-based methods solve the catas-
trophic forgetting problems by retaining the old knowledge in the learning of new data. The
stored old knowledge can be divided into many types, including partial raw data [33,36],
synthetic data [34,35], and prototype information [37,38]. Without the need of storing old
data, regularization-based methods adopt regularization techniques to encourage the model
to retain previous knowledge, including the knowledge distillation [39–43], adversarial
learning [44,45], and vanilla regularization methods [46–48]. Besides, the architecture-
based approaches [49–51] dynamically adjust the network architecture to preserve the
learned knowledge from the old task while acquiring new information from the current
task. Recently, continual learning techniques have been applied to a series of computer
vision tasks, including object detection [52,53], semantic segmentation [6,7,12], and instance
segmentation [54,55].

2.3. Continual Semantic Segmentation

Continual semantic segmentation (CSS)[6,7,11,12,56,57] is a very challenging task in
computer vision, which aims to solve the catastrophic forgetting [46] in semantic segmen-
tation. ILT [6] first proposed the continual semantic segmentation task and a Deeplab-
based [18] CSS framework. Cermelli et al. [12] further built unbiased knowledge distillation
to avoid catastrophic forgetting.

In recent years, more CSS methods [7–11,56–58] have been proposed. SDR [8] made
full use of the prototype matching to reduce forgetting and improve the representation
ability of new classes. PLOP [7] extracted multi-scale features in intermediate layers for
knowledge distillation. Replay-based RECALL [9] hoped to add extra data of old classes
and the background class from the online website or by using the GAN network. Taking
into account the influence of class similarities, REMINDER [57] built different weights
during the processing of distillation. Architectural-based RCN [10] creatively designed two
parallel network branches for storing old knowledge and learning new categories to avoid
forgetting problems. RBC [11] believed that the background of old classes in the new image
is more similar to the old image, which can significantly exacerbate the old class forgetting
and the new level of learning. So a biased-context-rectified CSS framework was proposed,
which decoupled different classes by using context-rectified image-duplet learning.

However, the above existing methods directly utilize the knowledge of old models
by merely distilling the last layer of the feature encoder and simply pooling the feature
map for distillation without paying attention to the different impacts of backgrounds and
old classes.

3. Method

The overall framework of our method is shown in Figure 1. Given an image, we first
input the image into the old model in the last step to predict the segmentation masks of
the old classes learned in the previous step. Then, the predicted masks are used as pseudo-
labels of the old classes, and they are combined with the ground truth of the new classes
to train the current model. Next, to prevent catastrophic forgetting, we propose scale-
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hybrid group distillation (SGD) for the encoder and knowledge disentangling distillation
(KDD) for the decoder. In the following sections, we first introduce the basic settings and
preliminaries of continual semantic segmentation in Section 3.1. The framework of our
method is then illustrated in Section 3.2. Moreover, we present the proposed scale-hybrid
group distillation in Section 3.3 and knowledge disentangling distillation in Section 3.4.

Old Model

Encoder

Encoder Decoder

Decoder Pseudo-label

Image

Ground Truth

New Model

output

ℒ𝑠𝑠𝑒𝑒𝑒𝑒

ASPP

ASPP

Scale-hybrid Group 
Distillation ℒdis

Knowledge 
Disentangling 
Distillation ℒdis_𝑜𝑜𝑜𝑜𝑜𝑜

𝐴𝐴𝐴𝐴𝐴𝐴_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝐴𝐴𝐴𝐴𝐴𝐴_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

Figure 1. An overview of our method. Our method consists of the Scale-hybrid Group Distillation
in the encoder and the Knowledge Disentangling Distillation in the decoder. For the encoder, we
propose group distillation for feature layers with different scales to preserve the old knowledge
more adequately. For the decoder, we distill the output feature map of Atrous Spatial Pyramid
Pooling (ASPP) module. Specifically, we disentangle the old and new classes and only distill the
old class features, so as to alleviate the catastrophic forgetting background caused by the semantic
shift problem.

3.1. Preliminaries

Compared with traditional semantic segmentation with all classes of labels available,
the continual semantic segmentation (CSS) task divides the dataset into multiple subsets
based on classes, each of which only contains a part of the class labels. The model learns
one subset at each learning step without labels from previous subsets, and there is no class
intersection between different subsets.

Given a multi-step dataset D = {D1,D2, . . . ,DT}, and the corresponding classes
C = {C1, C2, . . . , CT} contained in each subset of D, where T is the total learning steps.
The subset Dt contains a series of sample pairs {I t

i ,G t
i }, where I t

i ∈ R3×H×W is the input
images and G t

i is the corresponding ground truth, H and W are the height and width of the
input images, and the subscript i means the i-th sample pair. We denote |Dt| as the number
of subset Dt, and |C t| as the number of classes contained in subset Dt. Only the subset Dt

is available and the labels of class C t are contained in G t during the t-th learning step, while
the previously learned classes C1:t−1 is regarded as the background class C0. Due to the
disjointness of classes contained in distinct subsets, then C1:t−1 ∩ C t = ∅. After the learning
step t, the labels of C t are no longer available, and the classes C t in the t-th step are regarded
as the background in the current subset Dt+1 during the learning step t + 1. Therefore,
learning new classes and maintaining the segmentation capacity of the old classes is a
challenging research topic in recent years.

There are two main issues with the CSS task. On the one hand, if the old model is
directly fine-tuned on the new data with the unavailable labels of the old class, the model
will quickly forget the learned knowledge, which will lead to a sharp performance decline
for the old tasks, i.e., catastrophic forgetting.

On the other hand, in the CSS task, the forthcoming classes are considered as the
background in the old task, while when learning new classes, the old classes are considered
as the background because the corresponding labels are not available. Therefore, the seman-
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tics of the background changes with the different learning steps—the so-called background
semantic shift [12] problem. Once the model is supervised directly by the labels of data
from the new step, the background semantic shift will constrain the model to reclassify
the old classes as the background to aggravate catastrophic forgetting. The details of our
method for alleviating the two problems are illustrated as follows:

3.2. Basic Framework

We first introduce the basic framework of continual semantic segmentation. We build
our method on a fully convolutional neural network M consisting of a convolutional
encoder Enc and a decoder, where the decoder consists of a decoding network Dec and an
output layer O. In the learning step t, given an image I t, we first input it into the encoder
Enct to get the deep feature map of the image F t ∈ RC× H

16×
W
16 , then feed it into the decoding

network Dect to get the decoded feature map F t
o . Finally, the feature map F t

o ∈ RCo× H
16×

W
16

is fed into the output layer Ot to get the final segmentation result S t ∈ R|C0:t |×H×W . Our
framework is formulated as:

F t = Enct(I t); F t
o = Dect(F t)

S t = Ot(F t
o)

(1)

In the new learning step t + 1, we first initialize the current model Mt+1 using the old
model Mt obtained from the last training step t. To prevent the model from catastrophic
forgetting during the learning process of new classes, we use the old model Mt in the
last step to perform knowledge distillation on the current model Mt+1 to maintain the
knowledge of the old classes learned by the model and we perform novel knowledge
distillation methods for the encoder and decoder of the model respectively to improve the
stability of the model for old classes and the plasticity for new classes.

For the encoder, we focus on the comprehensive distillation of semantic information
from multiple feature layers and propose the scale-hybrid group encoder semantic distil-
lation (SGD). For the decoder, we propose a knowledge disentangling distillation (KDD)
method that disentangles the old and new classes in the image and distills the old class
features. In the following subsections, we will introduce our proposed distillation method
in detail.

3.3. Scale-Hybrid Group Distillation

To mitigate catastrophic forgetting in continual semantic segmentation, most studies
adopt the technique of knowledge distillation [7,8,10], which minimizes dissimilarities
between features of the teacher and features of the student [59]. We denote the intermediate
features of l-th layer in the encoder as Fl , the distillation loss between the old model and
the current model defined by L2 norm is as follows:

Ldis
l =

1
HW

HW

∑
i=1
‖ f t

l,i − f t−1
l,i ‖

2 (2)

where f t−1
l,i are the features of Fl at position i in the old model and f t

l,i are the features of
the current model. However, simply applying vanilla L2 norm to measure dissimilarities
between features commonly can not achieve ideal performance, due to the lack of utilization
of the richer semantic knowledge of the old model, including multi-scale object information,
spatial position, and channel semantics. If we regularize Ldis

l too much, it will constrain the
features of the current model close to the old features, and damage the process of learning
the new tasks. If we loosen Ldis

l too much, it will make the model ignore the semantic
knowledge of old tasks and lead to catastrophic forgetting. Therefore, adaptively distilling
the important semantic features of the previous tasks and leaving more plasticity for the
new tasks is vital for improving the performance.



Sensors 2023, 23, 7820 6 of 19

POD [43] distills pooled features at different layers between the old model and the new
model to alleviate catastrophic forgetting. However, semantic segmentation requires more
fine-grained information than the task of classification. We devise a novel Scale-hybrid
Group Distillation method to distill features within each small cuboid of features, as shown
in Figure 2. Specifically, we first divide features F ∈ RC×H×W into G2 ∗ K groups. For each
group, the features can be represented as:

F̃i,j,k = F [
kC
K

:
(k + 1)C

K
,

iH
G

:
(i + 1)H

G
jW
G

:
(j + 1)W

G
]

(3)

where i, j = 1, . . . , G and k = 1, . . . , K. Then, we apply the average pooling on each fi,j,k:

f̄i,j,k = AvgPool(F̃i,j,k) (4)

We concatenate the pooled results of these cubes and obtain the final features for
distillation:

f̄ = [ f̄1,1,1‖, . . . ‖, f̄G,G,K] (5)

The process of the proposed group-wise distillation measuring the dissimilarities by
the pooled features is formulated as follows:

Ldis
l = ‖ f̄ t

l − f̄ t−1
l ‖2 (6)

To further keep the consistency of different scales between the old and current models,
an average loss over multi-scale features of different layers is constructed:

Ldis =
1
L

L

∑
l=1
Ldis

l (7)

where L is the total amount of layers we distill. Through this scale-hybrid group distillation,
we can effectively and comprehensively reserve the semantic knowledge of previous tasks
and continually learn new tasks.

Block 1 Block 2 ……

Block 1 Block 2 ……

Group Pooling

Group Pooling Group Pooling

Group Pooling

Features ℱ1𝑡𝑡

Distillation Loss ℒ1𝑑𝑑𝑑𝑑𝑑𝑑 Distillation Loss ℒ2𝑑𝑑𝑑𝑑𝑑𝑑

Features ℱ2𝑡𝑡

Features ℱ1𝑡𝑡−1 Features ℱ2𝑡𝑡−1

Encoder of 
Old Model

Encoder of 
New Model

Image

Figure 2. Illustration of scale-hybrid group distillation.
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3.4. Knowledge Disentangling Distillation

In the process of distilling the features generated by the encoder, the feature map
is considered as a whole, without distinguishing between different classes. However,
an image often contains both new and old classes simultaneously and the background
semantic shift problem makes the definition of background dynamically change over time,
i.e., the foreground classes in the current task are regarded as the background in the old task.
If the entire feature map is indiscriminately distilled using the old model, the semantic shift
of the old model to the background will mislead the current model and limit the plasticity
of the model. At the same time, the old model has a richer knowledge of identifying old
classes and a stronger ability to represent the features of the old classes, which is also the
most desired knowledge to be preserved during the distillation process. Therefore, in order
to further explore the distillation of old classes by old models, we propose a knowledge
disentangling distillation method to disentangle old and new classes and use the old model
to distill the old class features more intently while reducing the interference in learning the
new classes.

Specifically, our method disentangles the old and new classes and consists of three
parts. First, we use the segmentation masks predicted by the old model in the last step as
the pseudo-labels of the old classes. These pseudo-labels are used for capturing regions
of the old classes and supervising the current segmentation results. Second, based on the
spatial regions corresponding to the old classes in the pseudo-labels, the class-specific
features are captured by the current model, and they are distilled by the old model. Finally,
the ground truths of the current new classes are combined with the pseudo-labels of the
old classes for the supervision of the output results of the current model.

3.4.1. Pseudo-Label Generation

During different learning steps, old classes are annotated as background since their
labels are not available. Therefore, the model cannot perceive the region corresponding
to the old classes, and it is difficult to use the old model to distill the features of the old
class regions generated by the current model. Moreover, the background semantic shift
caused by the background semantics is constantly changing in different learning steps,
which aggravates the catastrophic forgetting of the model.

To address this problem, since the old model has a stronger segmentation ability
for the learned old classes, following Ref. [7], we leverage the old model to generate
pseudo-labels for the old classes. In learning step t, given an image I t in the current dataset
Dt, we first feed I t into the old model Mt−1 in the last step to generate segmentation
predictions S t−1 for the old classes. However, the segmentation mask S t−1 of the old
classes generated by the old model is not completely accurate. If the regions of old classes
are captured completely according to S t−1, many features of the non-old classes will also
be included. To reduce these noises and interference, we use the median of the entropy of
the old model’s prediction probabilities for each class in the current dataset as the threshold
for determining the confidence of the model’s prediction. For position i, when the entropy
of the probability of class c predicted by the old model is less than the threshold τc, it
means that the prediction confidence of position i is higher, and it is set as the foreground,
otherwise the position is ignored. The updated pseudo-label S̃ t−1 is formulated as:

S̃ t−1
i =

{
S t−1

i , i f entropy(S t−1
i ) < τc

µ, otherwise
(8)

where µ denotes the position that is ignored and not calculated. Based on the obtained
pseudo-labels S̃ t−1, we further perform the distillation of old class features and supervision
of the segmentation results.

3.4.2. Distillation of Old Class

Since the features of different classes are not distinguished, the incorrect recognition
of the new classes by the old model will mislead the learning processing, and it also
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causes difficulties in distilling the knowledge of the old classes. To enhance the old classes
distillation, after obtaining accurate old class pseudo-label S̃ t−1, we generate class region
masks M corresponding to different old classes according to S̃ t−1, and distill the old
class-specific features. In learning step t, given an image I t, we first generate an output
feature map F t−1

o and F t
o through the old and new models. For the old class c, we first

obtain the area corresponding to c in the pseudo-label S̃ t−1, and get the area maskMc of
class c.

Then we conduct element-wise multiplication of Mc with F t−1
o and F t

o and use
average pooling to fuse the features in the c-th class region to obtain the embedding
features of class c generated by the old and new models. The equations are formulated as:

f t−1
c = AvgPool(Mc · F t−1

o )

f t
c = AvgPool(Mc · F t

o)
(9)

Following the above approach, we disentangle the old and new classes and obtain the
embedding features of the old classes generated by the old and the current model. Next,
we perform distillation exclusively on old class features. Specifically, we constrain the
embedding features of each old class generated by the current model to be similar to those
generated by the old model, to more intently distill the old knowledge learned and reduce
the interference of the current model to learn new classes. The equation for distillation loss
is formulated as:

Ldist_old =
1

|C1:t−1|

|C1:t−1|

∑
c=1

|| f t
c − f t−1

c ||2 (10)

3.4.3. Learning of New Class

While maintaining the knowledge of old classes, the current models need to further
learn new classes. To prevent catastrophic forgetting due to background semantic shift and
supervise the predictions of new classes, we combine the pseudo-label of the old classes
S̃ t−1 with the ground truth G t of the current new classes as the supervision of the current
model. The combined label Ĝ t is formulated as:

Ĝ t
i =


G t

i , G t
i ∈ C t

S̃ t−1
i , S̃ t−1

i ∈ C1:t−1 and G t
i = 0

0, otherwise
(11)

where we replace the background of G t with the pseudo-labels of the old classes of S̃ t−1.
We utilize the obtained combined labels for training to get the segmentation predictions

generated by the current model. The segmentation loss is:

Lseg =
1

HW

HW

∑
i=1

∑
c∈C0:t

Ĝ t
c,ilogS t

c,i (12)

4. Experiments

In this section, we evaluate the performance of our method on the Pascal VOC
dataset [13] and ADE20K dataset [15].

4.1. Datasets, Protocols, and Metrics
4.1.1. Datasets

The Pascal VOC dataset [13,60] is a mainstream benchmark dataset for object detection
and semantic segmentation tasks in computer vision, which contains 20 different semantic
classes with 10,582 images for training and 1449 images for testing.

The ADE20K dataset [15] is a large-scale scene understanding dataset, which contains
150 semantic classes, with 20,210 fully annotated images for the training process and
2000 fully annotated images for validation.
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4.1.2. Protocols

There are two different settings for continual learning for semantic segmentation:
Overlapped and Disjoint. For overlapped setting, the data of each step further contains
future classes, which is more consistent with realistic scenes. For disjoint setting, the data
in each step only contains old classes C0:t−1 learned in the previous steps and the current
classes C t, without the future classes, while old classes are labeled as the background.

Following existing methods [7,11], for Pascal VOC dataset [13], we evaluate our
method on traditional continual semantic segmentation protocols, including VOC-19-1
(2 steps, first training on 19 classes, and then on 1 new class), VOC-15-5 (2 steps, first
training on 15 classes, and then on 5 new classes), and VOC-15-1 (6 steps, first training on
15 classes, and then on 1 new class in each of the next 5 steps).

For ADE20K dataset [15], we evaluate on our method with similarly continual semantic
segmentation protocols, including 100-50 (2 steps, first training on 100 classes, and then
on 50 new classes), 50-50 (3 steps, first training on 50 classes, and then on 50 new classes
in each of the next 2 steps) and 100-10 (6 steps, first training on 100 classes, and then on
10 new classes in each of the next 5 steps).

4.1.3. Metrics

We use mean Intersection over Union (mIoU) as metrics to evaluate the performance
of our method. This is a widely used evaluation metric in the field of semantic segmen-
tation [1], which measures the accuracy of a segmentation algorithm by comparing the
overlap between predicted and ground truth regions in an image. Specifically, we compute
mIoU after the last step T for the initial classes C1, for the incremented classes C2, and for all
classes CT . These metrics represent the stability (the robustness to catastrophic forgetting),
the plasticity (capacity to learn new classes), and the overall performance of the proposed
model, respectively.

4.1.4. Implementation Details

We utilized the Deeplab-V3 [18] architecture with ResNet-101 [61] as the backbone
following current popular continual semantic segmentation methods [7,8,12]. The output
stride of Deeplab-V3 is set to 16, and the in-place activated batch normalization [62] is
applied in the backbone, which is pre-trained on the ImageNet [63].

We train the model on the Pascal VOC dataset for 30 epochs for every continual
semantic segmentation step and the ADE20K dataset for 60 epochs for every continual
semantic segmentation step, where the initial learning rate is 2× 10−2 for the first step
and 10−3 for all of the remaining steps and the batch size is set to 24 for both datasets.
The learning rate is reduced exponentially with a decay rate of 0.9. We use the SGD opti-
mizer with a momentum of 0.9 and weight decay rate of 10−4 during training. The feature
maps used in our method are applied before ReLU with squared pixel values. During the
process of continuous learning, we use the loss function proposed by MiB [12] following
RCN [10]. Adhering to the definition of incremental learning, the task ID during inference
is not accessible by the model, which needs to predict the target class in the set of all the
seen classes.

4.2. Main Results
4.2.1. Pascal VOC

As we can see in Table 1, we first compare our method with the current state-of-the-
art continual semantic segmentation methods on the Pascal VOC dataset [13] under the
overlapped settings. Our method is evaluated on different continual learning tasks, namely
19-1, 15-5, and 15-1, and shows consistent improvements over current popular methods.
Compared with the most recent method GSC [64], our method achieves competitive perfor-
mance under setting of 19-1, and outperforms it by 0.83% and 2.28% under settings of 15-5
and 15-1 for all classes respectively.
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Under the disjoint settings, as shown in Table 2, our method still achieves significant
performance improvements. Especially under the setting of long learning steps 15–1, our
method outperforms GSC [64] by 1.58%, which has the best performance previously except
for introducing additional data of RECALL [9]. Our method reduces the forgetting of old
classes while improving the learning ability of new classes, and the model’s stability and
plasticity are enhanced.

Table 1. Continual semantic segmentation results under the Overlapped settings of VOC-19-1, VOC-
15-5, and VOC-15-1 benchmarks. Best in bold.

Method
19-1 (2 Steps) 15-5 (2 Steps) 15-1 (6 Steps)

0–19 20 All 0–15 16–20 All 0–15 16–20 All

ILT [6] 67.75 10.88 65.05 67.08 39.23 60.45 8.75 7.99 8.56
MiB [12] 71.43 23.59 69.15 76.37 49.97 70.08 34.22 13.50 29.29
SDR [8] 69.10 32.60 67.40 75.40 52.60 69.90 44.70 21.80 39.20
PLOP [7] 75.35 37.35 73.54 75.73 51.71 70.09 65.12 21.11 54.64
RECALL [9] 67.90 53.50 68.40 66.60 50.90 64.00 65.70 47.80 62.70
UCD [65] 71.40 47.30 70.00 77.50 53.10 71.30 49.00 19.50 41.90
CAF [66] 75.50 34.80 73.40 77.20 49.90 70.40 55.70 14.10 45.30
RCN [10] - - - 78.80 52.00 72.40 70.60 23.70 59.40
RBC [11] 77.26 55.60 76.23 76.59 52.78 70.92 69.54 38.44 62.14
SPPFA [67] 76.50 36.20 74.60 78.10 52.90 72.10 66.20 23.30 56.00
AWT [68] - - - 77.30 52.90 71.50 59.10 17.20 49.10
GSC [64] 76.90 42.70 75.30 78.30 54.20 72.60 72.10 24.40 60.80
Ours 77.01 39.97 75.25 78.82 56.16 73.43 73.92 28.37 63.08

Joint 77.40 78.00 77.40 79.10 72.56 77.39 79.10 72.56 77.39

Table 2. Continual semantic segmentation results under the Disjoint settings of VOC-19-1, VOC-15-5,
and VOC-15-1 benchmarks. Best in bold.

Method
19-1 (2 Steps) 15-5 (2 Steps) 15-1 (6 Steps)

0–19 20 All 0–15 16–20 All 0–15 16–20 All

ILT [6] 69.10 16.40 66.40 63.20 39.50 57.30 3.70 5.70 4.20
MiB [12] 69.60 25.60 67.40 71.80 43.30 64.70 46.20 12.90 37.90
SDR [8] 69.90 37.30 68.40 73.50 47.30 67.20 59.20 12.90 48.10
PLOP [7] 75.37 38.89 73.64 71.00 42.82 64.29 57.86 13.67 46.48
RECALL [9] 65.20 50.10 65.80 66.30 49.80 63.50 66.00 44.90 62.10
UCD [65] 73.40 33.70 71.50 71.90 49.50 66.20 53.10 13.00 42.90
CAF [66] 75.50 30.80 73.30 72.90 42.10 65.20 57.20 15.50 46.70
RCN [10] - - - 75.00 42.80 67.30 66.10 18.20 54.70
RBC [11] 76.43 45.79 75.01 75.12 49.71 69.89 61.68 19.52 51.60
SPPFA [67] 75.50 38.00 73.70 75.30 48.70 69.00 59.60 15.60 49.10
GSC [64] 75.90 31.00 74.00 74.40 45.80 67.60 67.20 19.20 55.80
Ours 77.10 39.91 75.33 75.42 44.84 68.14 69.38 19.00 57.38

Joint 77.40 78.00 77.40 79.10 72.56 77.39 79.10 72.56 77.39

4.2.2. ADE20K

In this part, we conduct experiments on the most challenging ADE20K dataset [15] for
semantic segmentation to verify the effectiveness of the proposed method. The quantitative
results are shown in Table 3. Our method is evaluated on multiple continual learning tasks,
i.e., 100-50, 100-10, and 50-50, and it outperforms the current popular continual semantic
segmentation methods.
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Table 3. Continual semantic segmentation results under the Overlapped settings of ADE-100-50,
ADE50-50, and ADE-100-10 benchmarks. Best in bold.

Method
100-50 (2 Steps) 50-50 (3 Steps) 100-10 (6 Steps)

0–100 101–150 All 0–50 51–150 All 0–100 101–150 All

ILT [6] 18.29 14.40 17.00 3.53 12.85 9.70 0.11 3.06 1.09
MiB [12] 40.52 17.17 32.79 45.57 21.01 29.31 38.21 11.12 29.24
PLOP [7] 41.87 14.89 32.94 48.83 20.99 30.40 40.48 13.61 31.59
UCD [65] 42.12 15.84 33.31 47.12 24.12 31.79 40.80 15.23 32.29
RCN [10] 42.30 18.80 34.50 48.30 25.00 32.50 39.30 17.60 32.10
RBC [11] 42.90 21.49 35.81 49.59 26.32 34.18 39.01 21.67 33.27
SPPFA [67] 42.90 19.90 35.20 49.80 23.90 32.50 41.00 12.50 31.50
AWT [68] 40.90 24.70 35.60 46.60 26.85 33.50 39.10 21.28 33.20
GSC [64] 42.40 19.20 34.80 46.20 26.20 33.00 40.80 17.60 32.60
Ours 42.32 22.38 35.72 48.71 25.18 33.22 43.23 20.83 35.14

Joint 43.90 27.20 38.30 50.90 32.10 38.30 43.90 27.20 38.30

ILT [6] builds a bridge between continual learning and semantic segmentation with
weak effectiveness. Our method outperforms it by a large margin of 18.72%, 23.52%,
and 34.05% under the 100-50, 100-10, and 50-50 settings, respectively. MiB [12] aims
to address the background class shift problem, while our method proposes knowledge
disentangling distillation to achieve higher performance, i.e., our method outperforms
it by 2.93%, 3.91%, and 5.9% under settings of 100-50, 100-10, and 50-50, respectively.
PLOP [7] extracts features in intermediate layers to make knowledge distillation in order to
alleviate the issue of catastrophic forgetting, while our method proposes scale-hybrid group
distillation to obtain greater improvement, e.g., our method outperforms it by 2.78%, 2.82%,
and 3.55% under settings of 100-50, 100-10, and 50-50, respectively. Architectural-based
RCN [10] designs two parallel network branches for storing previous information and
learning new categories to avoid catastrophic forgetting, while our method obtains greater
improvement, e.g., our method outperforms it by 1.22%, 0.72%, and 3.04% under settings of
100-50, 100-10, and 50-50, respectively. In addition, because the proposed method can retain
most of the information from previous tasks, it has achieved greater improvement in more
challenging experimental settings (6 steps) and obtains a 1.87% improvement compared
with the second place overall.

4.3. Ablation Study

In this section, we conduct a set of ablation experiments to analyze the effectiveness of
the different components of our proposed method.

4.3.1. Distillation Mechanism

We conduct ablation experiments under the overlapped setting of 15-1 on the Pascal
VOC dataset. As shown in Table 4, the different components of our method achieve con-
siderable improvements. PLOP [7] extracts features in intermediate layers, and RCN [10]
designs two parallel network branches for storing previous information and learning new
categories to alleviate the issue of catastrophic forgetting caused by knowledge distilla-
tion, respectively. The proposed scale-hybrid group distillation (SGD) brings performance
improvement for both PLOP and RCN. At the same time, knowledge disentangling distilla-
tion (KDD) obtains consistent improvements both in combination with PLOP and RCN.
In our method, both SGD and KDD have their own improvements. When combining SGD
and KDD, it achieves the state-of-the-art performance of 63.08%, which demonstrates the
effectiveness of the proposed method.
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Table 4. The final mIoU (%) of the ablation study of our method. SGD denotes Scale-hybrid Group
Distillation and KDD denotes Knowledge Disentangling Distillation. All experiments are conducted
under the overlapped setting of 15-1 on Pascal VOC dataset.

PLOP [7] RCN [10] SGD KDD 15-1 (6 Steps)

X 58.32
X 59.64

X 62.03
X X 62.17

X X 62.81
X X 63.08

4.3.2. Different Group Pooling Kernel Sizes

In this part, we conduct ablation experiments under the overlapped setting of 15-1 on
the Pascal VOC dataset. As shown in Table 5, the different group pooling kernel sizes play
an important role in the proposed scale-hybrid group distillation (SGD) method. In practice,
we set the group pooling kernel as a cube and divide the intermediate feature maps of
ResNet [61] into three stages (C2C3, C4, C5). The performances of five different kernel
sizes combinations of the three stages are compared. From the Table, the kernel size (8,8,8)
achieves the worst performance, with one of the reasons being that the huge kernel size leads
the network to ignore some detailed information. With the kernel size decreasing, e.g., (8,8,8)
to (4,4,4), (4,4,4) to (2,2,2), the performance becomes better, where the kernel size (2,2,2)
achieves a performance of 63.02% and outperforms the kernel size (8,8,8) by 13.12% mIoU.
In addition, we conduct the experiments with mixed kernel size combinations, e.g., (2,4,8)
and (8,4,2). Finally, the kernel size (8,4,2) achieves the best performance of 63.08%.

Table 5. The final mIoU (%) of the ablation study about different group pooling kernel sizes. The
numbers in brackets denote the pooling kernel sizes of three stages in sequence. All experiments are
conducted under the overlapped setting of 15-1 on Pascal VOC dataset.

Kernel Sizes 15-1 (6 Steps)

(8,8,8) 49.90
(4,4,4) 58.96
(2,2,2) 63.02
(2,4,8) 49.97
(8,4,2) 63.08

4.3.3. Different Pooling Methods

In this part, we conduct ablation experiments under the overlapped setting of 15-1
on the Pascal VOC dataset. As shown in Table 6, we compared five pooling methods
of knowledge distillation. It can be observed that the proposed group pooling method
preserves more semantic information compared with other pooling methods and achieves
the best performance.

Table 6. The final mIoU (%) of the ablation study about different pooling methods. All experiments
are conducted under the overlapped setting of 15-1 on Pascal VOC dataset.

Method 15-1 (6 Steps)

Strip Pooling 62.17
Spatial Pooling 48.55
Channel Pooling 44.12
Spatial and Channel Pooling 62.81
Max Pooling 62.42
Group Pooling 63.08



Sensors 2023, 23, 7820 13 of 19

4.4. Visualization

In this section, we provide several visualization examples of the typical PLOP [7] and
our method for qualitative comparison, as shown in Figures 3 and 4. The visualization
results demonstrate that the proposed method is significantly improved compared with
PLOP. Some old categories are forgotten and not segmented well by PLOP, but our method
makes an accurate segmentation. Besides, regarding the results shown in Figures 5 and 6,
while mIoU for PLOP deteriorates after only a handful of steps, our method’s mIoU
remains very high throughout, indicating improved resilience to catastrophic forgetting and
background semantic shift. In addition, we present two typical failure examples in Figure 7.
The first row represents the problem of category confusion caused by catastrophic forgetting
of the old categories, while the second row represents the challenge of segmentation for
hard samples of new categories due to background semantic shift. In future work, we
will employ more powerful feature extraction networks such as a transformer to further
address these challenges.

IMAGE GTPLOP OURS

Figure 3. Visualization of PLOP [7] and our predictions on Pascal VOC dataset [13]. ‘Image’ denotes
the original image, and ‘GT’ denotes the ground truth.
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IMAGE GTPLOP OURS

Figure 4. Visualization of PLOP [7] and our predictions on the ADE20K dataset [15]. ‘Image’ denotes
the original image, and ‘GT’ denotes the ground truth.
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Figure 5. mIoU evaluation under the overlapped setting of 15-1 on the Pascal VOC dataset.
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Figure 6. mIoU evaluation under the overlapped setting of 100-10 on ADE20K dataset.

IMAGE Ours GT
Figure 7. Visualization of two typical failure examples. ‘Image’ denotes the original image, and ‘GT’
denotes the ground truth.

5. Conclusions

In this paper, we propose a novel continual semantic segmentation method that
utilizes two key components: the scale-hybrid group distillation for the encoder and the
knowledge disentangling distillation for the decoder. Our scale-hybrid group distillation
facilitates knowledge transfer from the feature encoder of the old to the new model at
different scales through group pooling refinement so that the new model can preserve
the old model’s abundant semantic information. Moreover, the knowledge disentangling
distillation prevents the semantic shift of the background by focusing on the regions of old
classes and reducing incorrect guidance from the old model. We evaluated our method on
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two challenging continual semantic segmentation datasets: the Pascal VOC and ADE20K
datasets. The results demonstrate the effectiveness of our method and its superiority over
other state-of-the-art methods.
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