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Abstract: The increasing popularity of portable smart devices has led to the emergence of vehicular
crowdsensing as a novel approach for real-time sensing and environmental data collection, garnering
significant attention across various domains. Within vehicular crowdsensing, task assignment stands
as a fundamental research challenge. As the number of vehicle users and perceived tasks grows,
the design of efficient task assignment schemes becomes crucial. However, existing research solely
focuses on task deadlines, neglecting the importance of task duration. Additionally, the majority
of privacy protection mechanisms in the current task assignment process emphasize safeguarding
user location information but overlook the protection of user-perceived duration. This lack of
protection exposes users to potential time-aware inference attacks, enabling attackers to deduce
user schedules and device information. To address these issues in opportunistic task assignment for
vehicular crowdsensing, this paper presents the minimum number of participants required under the
constraint of probability coverage and proposes the User-Based Task Assignment (UBTA) mechanism,
which selects the smallest set of participants to minimize the payment cost while measuring the
probability of accomplishing perceived tasks by user combinations. To ensure privacy protection
during opportunistic task assignment, a privacy protection method based on differential privacy is
introduced. This method fuzzifies the sensing duration of vehicle users and calculates the probability
of vehicle users completing sensing tasks, thus avoiding the exposure of users’ sensitive data while
effectively assigning tasks. The efficacy of the proposed algorithm is demonstrated through theoretical
analysis and a comprehensive set of simulation experiments.

Keywords: vehicular crowdsensing; spatio-temporal correlation; task assignment; differential privacy

1. Introduction

In recent years, the widespread adoption of portable smart IoT devices has become an
integral part of people’s lives [1,2]. These devices have evolved with the rapid advance-
ment of science and technology, now equipped with a diverse array of powerful embedded
sensors, including cameras, microphones, GPS, gyroscopes, accelerometers, and compasses.
Together, these sensors collaboratively gather extensive information about human activities
and the surrounding environment. The convergence of mobile smart terminals, featur-
ing high-performance built-in sensors, and the rapid growth of the Internet have given
rise to vehicular crowdsensing (MCS) [3,4]. This paradigm offers a novel approach for
real-time sensing and environmental data collection. Vehicular crowdsensing effectively
utilizes the mobile population to enable low-cost, real-time, large-scale, and fine-grained
data collection. It transforms vehicle users from passive data consumers into active data
providers, thereby introducing a new service mode for vast multi-source heterogeneous
data awareness in the realm of the large-scale Internet of Things [5–7]. The great potential of
vehicular crowdsensing has led to its widespread application across various fields, includ-
ing environmental monitoring, smart cities, industrial sensors, city awareness, and social
networks [8–10]. Its ability to harness the collective power of mobile users to contribute

Sensors 2023, 23, 7798. https://doi.org/10.3390/s23187798 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23187798
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s23187798
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23187798?type=check_update&version=1


Sensors 2023, 23, 7798 2 of 14

to data collection has made it instrumental in addressing diverse challenges and needs in
these domains.

Task assignment stands as a critical research aspect in the realm of vehicular crowd-
sensing [11–15]. The success of vehicular crowdsensing largely hinges on the design of
effective task assignment schemes. As the number of vehicle users and perceived tasks
in the Cluster Awareness System continues to grow rapidly, an efficient task allocation
mechanism becomes crucial to enhance user participation and achieve substantial benefits.
Recently, numerous researchers have devoted efforts to developing task allocation mecha-
nisms. Some of these works [16,17] focus on maximizing perceived quality or minimizing
incentive costs under various constraints, while some other works aim to reduce energy
consumption [18]. Additionally, there has been significant research attention directed
toward the assignment of location-dependent and time-sensitive tasks [19]. These endeav-
ors seek to address the challenges posed by task complexity and dynamic environmental
conditions, further advancing the capabilities of vehicular crowdsensing systems.

Most of the existing research [20–22] takes into account the effective time of perceived
tasks, which can be categorized as either time-sensitive tasks or delay-tolerant tasks. Time-
sensitive tasks [23] require immediate completion and demand high time-effectiveness,
typically due to emergency situations. On the other hand, delay-tolerant tasks [24] target
relatively stable perceptual activities and can be completed over an extended period.
Some delay-tolerant task assignment schemes focus on recommending appropriate routes
for vehicle users or scheduling tasks based on user interests and habits. However, the
aforementioned studies primarily focus on task deadlines while disregarding the time
required to perform each task. This oversight is particularly critical when the available
time of each vehicle user is limited, as it significantly impacts the global optimization of
task assignment. Thus, there is an urgent need to design an effective task assignment
scheme that considers the sensing duration of vehicle users in a spatio-temporal cluster-
aware system.

Privacy protection concerns in task assignment also hold significant importance [25–27].
Vehicular crowdsensing faces potential security threats due to the large volume of data
streams and the absence of robust security mechanisms. The interactions between vehicle
users, platforms, and third parties create a scenario wherein privacy breaches become a
serious issue. In vehicular crowdsensing, users are required to upload their perceived data
to the platform, which can contain sensitive information such as user identities, locations,
and other private attributes. If the platform experiences a security breach or loses trustwor-
thiness (e.g., by selling data to third parties for profit), users’ privacy will be exposed to
unauthorized entities.

Recently, researchers have proposed several methods to address user privacy protec-
tion in vehicular crowdsensing. To et al. [28] introduced a mechanism based on differential
privacy and geo-broadcasting to safeguard users’ location privacy. The approach confuses
the number of users in a particular area using a trusted third-party platform, thus prevent-
ing attackers from inferring users’ precise locations. Similarly, Wang et al. [29] explored
the issue of publishing statistical information for location-based datasets. They employed
differential privacy technology to ensure that users’ personal location information remains
uncompromised. However, the privacy protection schemes currently available are not
applicable to vehicular crowdsensing scenarios that prioritize perception duration. Cur-
rently, there is no research focusing on privacy protection concerning perception duration
in task assignment. Consequently, there is an urgent need to develop effective solutions
that cater to users’ privacy protection requirements while optimizing task assignment in
space–time-related vehicular crowdsensing. These solutions aim to prevent users’ sensitive
information from being disclosed to unauthorized entities.

To sum up, this paper focuses on the space–time characteristics of vehicular crowd-
sensing and conducts research on task allocation in this context. Additionally, it designs a
privacy protection mechanism to safeguard vehicle users’ sensitive data while ensuring
efficient task allocation. The research encompasses two main areas: probabilistic task
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assignment with a probabilistic coverage constraint in vehicular crowdsensing, and pri-
vacy protection in the task assignment process. By addressing these aspects, this study
successfully resolves the issues of ineffective task assignment caused by neglecting the
spatio-temporal characteristics of users and tasks. Moreover, it tackles the problem of
user-sensitive data leakage, resulting from the oversight of privacy protection concerning
users’ perceptual time in the task assignment process of spatio-temporal-related vehicular
crowdsensing.

2. Related Work
2.1. Task Assignment without Privacy Protection

Task assignment stands as a crucial research aspect in vehicular crowdsensing. It
involves the rational allocation of perceived tasks to vehicle users by servers, considering
system optimization objectives and real-world constraints. And the research delves into
the trade-off between cost and benefit, representing two opposing factors. Li et al. [30]
considered the problem of dynamic participant selection with heterogeneous sensing tasks,
that is, the sensing tasks come in real time and have different requirements for space–time
coverage. Its goal is to minimize the sensing cost while maintaining a certain probability
coverage level. Wang et al. [31] proposed a two-stage hybrid task assignment framework
that can be used to recruit both opportunistic and participatory users, with the goal of
maximizing the number of tasks completed under the constraints of the overall budget.
Wang et al. [32] researched the robust task allocation problem in MCS systems, aiming to
enhance the robustness of the allocation scheme and minimize the users’ detour costs.

However, the majority of existing research only focuses on the deadline of the per-
ceptual task, disregarding the working time of the vehicle user during task execution.
Furthermore, few studies take into account both the space–time constraints of vehicle users
and perceived tasks. In a cluster-aware system, vehicle users typically possess different
route budgets and time budgets. Additionally, sensory tasks are linked to specific locations
and sensing duration. As the complexity and scale of perception systems increase, the
corresponding optimization problems for task assignment is NP-hard, making it chal-
lenging to find effective optimal algorithms. In such cases, suboptimal algorithms need
to be considered. Hence, given the unique characteristics of task perception duration
and the space–time constraints of users and tasks in spatio-temporal correlated vehicular
crowdsensing, there is a critical need to thoroughly investigate the spatio-temporal-related
task assignment problem. The objective is to achieve optimal task assignment while con-
sidering the intricate real-world space–time constraints. In addition, none of the above
works take into account the protection of user privacy, which will affect the effectiveness of
task assignment.

2.2. Task Assignment with Privacy Protection

In the task assignment process of vehicular crowdsensing, vehicle users often share
data with the platform through wireless access points or cellular infrastructure, which
involves many sensitive data (such as location information, device ID, etc.). These sensitive
data may leak users’ daily travel or real identity, resulting in a significant reduction in
users’ motivation to participate in perceived tasks. In recent years, some research work has
focused on the issue of privacy protection in the process of task assignment for vehicular
crowdsensing. Zhang et al. [33] assumed that, in the absence of any trusted entity, users
were allowed to locally confuse their location using a method based on differential privacy
to reduce the risk of location privacy disclosure. This method about trusted entity [34,35]
could ensure that opponents with prior knowledge could only obtain little additional
information from the ambiguous location. Wang et al. [36] proposed a task assignment
framework for location privacy protection with geographic location confusion to minimize
the expected travel distance of selected vehicle users under the constraints of differential
privacy and distorted privacy. Xu et al. [26] proposed a privacy-preserving fine-grained task
assignment scheme for the crowdsensing system and designed a novel incentive mechanism
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based on the capabilities of workers. To be specific, a ciphertext-policy attribute-based
encryption (CP-ABE) scheme with the characteristics of hidden policy is adopted to select
workers and protect the privacy. Qian et al. [37] proposed an optimal location privacy
preserving and service quality guaranteed task allocation in vehicle-based crowdsensing
networks and utilized differential privacy to preserve participants’ location privacy, where
every participant can submit the obfuscated location to the platform instead of the real one.

The current research on privacy protection during the task assignment process for
vehicular crowdsensing is still in its early stages. While some mechanisms have been
proposed, they suffer from issues like high computational costs, vulnerability, or reliance
on trusted third-party platforms. Moreover, the existing privacy mechanisms in task as-
signment predominantly focus on safeguarding user location information, overlooking
the protection of user perceived time. However, it is crucial to consider the privacy of
user-perceived time in space–time-related cluster awareness systems since attackers can
potentially infer user schedules and device information through these data. Therefore, there
is a pressing need to delve deeper into privacy protection issues in the task assignment pro-
cess for space–time-related vehicular crowdsensing. This research aims to achieve optimal
task assignment while ensuring the fulfillment of users’ privacy protection requirements.

3. Problem Description

In this paper, we mainly focus on the spatio-temporal-related vehicular crowdsensing,
in which the perception task is not only located in a specific spatial region, but also needs a
certain amount of sensing time to complete. In this model, vehicular crowdsensing aims
to recruit vehicle users who can dedicate a specific duration to perform tasks effectively.
For instance, in application scenarios like crowd monitoring, air quality assessment, and
noise level detection, the perception tasks necessitate vehicle users to collect data (such as
congestion levels, air pollution indicators, and noise levels) within a certain time frame to
obtain sufficient and meaningful information.

The environmental department of the municipal government has planned an air
quality monitoring project to update the air quality index every hour throughout the day.
However, due to the high costs associated with deploying, maintaining, and consuming
energy for basic monitoring equipment, the municipal government decided to leverage
vehicular crowdsensing to accomplish the task. The project aims to recruit vehicle users
equipped with smartphones, who will install a specific application to perceive air quality.
To execute the project effectively, the sensing area is divided into 45 regions based on
signal tower coverage. Each day is further divided into 10 sensing cycles, spanning from
8:00 to 18:00, with each cycle lasting for 1 h. About 1000 smartphone users have agreed
to participate in the two-week air quality sensing project. Each selected vehicle user is
responsible for sensing air quality in a specific area and transmitting the collected data
through the designated signal tower. The project’s objective is to ensure that the tasks
performed by the recruited users cover at least 90% of the 45 areas in all sensing cycles.
Consequently, in each sensing cycle, no fewer than 41 air quality monitoring tasks should
be completed. To minimize the total project cost while ensuring the perceived quality, the
municipal government intends to select the minimum number of users from the pool of
1000 candidates. For this purpose, the municipal government obtained the two-week call
records of the 1000 candidates (with time stamps of the calls and communication tower
IDs, after desensitizing other information) with the assistance of telecom operators, after
obtaining the consent of users.

As shown in Figure 1, for example, vehicle user u1 is assigned a sensing task associated
with the space-time unit (x5, y27) (that is, the sensing task is in the fifth sensing cycle and
located in the 27th perception area), user u1 air quality monitoring needs to be carried
out in the space–time unit (x5, y27). Air quality monitoring is a time-dependent task in
vehicular crowdsensing, requiring vehicle users to spend a specific duration for obtaining
effective data. To ensure the successful completion of the sensing task, users are required to
upload their stay time in the sensing area during the designated sensing cycle. To protect
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users’ privacy, the stay time data will be subject to privacy protection measures. Upon
selecting the smallest vehicle user set based on users’ historical calls and mobile records,
each chosen participant will receive a fixed reward and activate the application on their
mobile phones. Throughout the entire project, when vehicle users reach a specific sensing
area within the sensing cycle, they can utilize the application on their mobile phones to
perceive and upload air quality data.

Mobile user Sensing task
Selected user and task 

matching

), 275 yx（

1u

Figure 1. An example of task assignment.

4. System Model

As can be seen from the above examples, the goal of this research work is to select
the smallest set of participants for the perception task, and ensure that in each sensing
cycle, there is a sensing area that is not lower than the predefined coverage. We propose
a vehicular crowdsensing opportunistic task allocation problem. The main goal is to
minimize the total incentive cost while satisfying the predefined coverage constraints. In
the described model, the project can exist for a period of time (for example, two weeks),
including multiple sensing cycles, such as 10 cycles per day, from 8:00 to 18:00, each cycle
of 1 h. We set that, if a vehicle user completes the sensing task in the sensing period i and
the sensing area a, it is said that the area a is covered in the cycle i. If a vehicle user goes to
multiple sensing areas and completes the sensing tasks in these areas in the sensing cycle
i, it is said that these sensing areas are covered in the sensing cycle i. Therefore, the goal
of this study is to give a group of call records and confused residence time data of vehicle
users, select the minimum number of users, and meet the space–time coverage constraint of
the specified proportion, that is, in all sensing cycles, the proportion of the covered sensing
area should be equal to or greater than the set coverage threshold.

According to the above definitions, we model the problem as follows. Given a group
of vehicle users U willing to participate in the sensing project, the divided sensing area set
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A, the call records (including call timestamp and communication tower ID), and dwell time
data of all vehicle users, we define S as the participants (S ⊂ U ) selected from the vehicle
user set U , ai(S) is the set of sensing areas covered by the participant set S in the I sensing
cycle, then the whole problem is to find a subset S of the vehicle user set U , which can be
expressed as follows:

minimize |S|,

s.t.


|ai(S)|
|A| ≥ R

0 ≤ i ≤ N

(1)

where R is the preset coverage threshold and N is the number of sensing cycles. Due to
the fact that we cannot know in advance when vehicle users will appear and in which
sensing area to perform sensing tasks (that is, when selecting the set of participants, ai(S) is
uncertain), the whole task allocation problem can be divided into two sub problems: vehicle
user mobility prediction problem and prediction-based participant selection problem. The
swarm intelligence sensing project uses a platform-centric task assignment method. The
platform collects and stores the historical call records and residence time data of vehicle
users. Before the sensing task is executed, participants are selected from all candidate
vehicle users. Only the selected participants are required to perform the task and upload
the perceived results in each sensing cycle. Considering the two sub problems of task
assignment, the mechanism we designed is divided into two stages. In the first stage,
we predict the flow of users between perceived areas based on the historical call records
and residence time data of vehicle users, and in the second stage, we select participants
according to the prediction results. The overall system framework is shown in Figure 2.

User Call History
Residence time 

data

Data Preparation/
Differential privacy 

Protection

User mobility 
analysis /

Predict
Task assignment/

Participant selection 
based on user utility

Coverage probability 
vector calculation

Stop standard

)(, uP ai

NiAaUu  0,,

The set of user 
combinations with 

maximum utility
}{uS 

NiuSCOV i 0}),{( 

Stop

Iteration

SuS }{

Output user group

S
The selected user

Figure 2. The task assignment framework.

4.1. The First Stage—Data Preparation and User Mobility Analysis

After obtaining the call records and residence time data of all candidate vehicle users,
the vehicular crowdsensing platform proceeds to calculate the mobility of each user. This
mobility metric represents the probability of each user successfully completing the sensing
task in a specific sensing area during a designated sensing cycle. The calculation process
involves two steps as follows:

(1) Calculate the probability that each user makes at least one call in a specific sensing
cycle and sensing area. First, map the historical call record of each user to n sensing cycles,
so that the parameter λu,I,a can be calculated, that is, the average number of calls made by
vehicle user u(u ∈ U ) in sensing area a(a ∈ A) in sensing cycle i(0 ≤ i < N). Get λu,I,a,
the probability P′i,a(u) that the vehicle user u makes at least one call in the sensing period i
and the sensing area a can be calculated.

(2) Calculate the probability that each user’s residence time in a specific sensing cycle
and sensing area is equal to or greater than the sensing duration required by the task.
What the vehicle user uploads is the residence time after confusion, and the sensing tasks
concerned in this paper are all time-dependent tasks (that is, the task needs a certain
perception time to be completed, and the user can obtain valid data). Therefore, it is
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necessary to calculate the probability P′′i,a(u) that the residence time of the vehicle user u in
the sensing cycle i and sensing area a is not less than the sensing duration required by the
task. Finally, the probability Pi,a(u) of each user completing the task in a specific sensing
cycle and area is the product of P

′
i,a(u) and P

′′
i,a(u).

4.2. The Second Stage—Participant Selection

According to the user mobility data obtained in the first stage, we propose a user
utility-based task assignment mechanism (UBTA), which iteratively selects participants by
calculating the utility of the user portfolio, which is divided into three steps:

(1) Select the most effective user among all candidate vehicle users, and add the user
to the recruited user set.

(2) Among the remaining non-recruited vehicle users, select the user who has the
greatest utility after combining with the recruited vehicle users, and add this user to the
recruited user set.

(3) Continue to select and add new vehicle users until the recruited user set can cover
the sensing area of the preset threshold in each sensing cycle.

5. Task Assignment Algorithm Based on User Utility

In this section, users utilize the Laplacian mechanism to add noise to their own
residence time, and then upload the confusing residence time instead of the real residence
time to the platform to protect their privacy. In this process, only the platform and the
users are aware of the privacy protection mechanism, so the attackers cannot infer from
the residence time which user completed the task. At the same time, based on the fact
that the platform is not interfered with by confusing data, the User6Based Task Allocation
(UBTA) algorithm that we propose selects the smallest set of participants to minimize the
payoff cost while measuring the probability of performing the tasks perceived by the user
combinations. Moreover, the Poisson distribution, commonly used in queuing theory, is
employed in this research. In real-life scenarios, numerous situations adhere to the Poisson
distribution, such as passengers arriving at an airport or calls received by a customer
service desk. Similarly, the Poisson distribution finds relevance in the domain of cellular
networks. For this study, we assume that the call sequence adheres to a non-homogeneous
Poisson process. Consequently, we model the probability of each vehicle user completing
each sensing task based on the Poisson distribution. In the sensing period i(0 ≤ i < N),
the probability that the vehicle user u makes n calls in the sensing area a(a ∈ A) can be
expressed as follows:

pi,a(u, n) = λn
u,i,a ∗ e−λu,i,a /n!, (2)

where λu,i,a represents Poisson strength, and its estimated value is the average number of
calls made by vehicle user u in sensing area a in sensing period i. For example, in order to
estimate λu,i,a of sensing period i from 08:00 to 09:00, we will calculate the average number
of calls made by vehicle user u in sensing area a from 08:00 to 09:00 in historical call records.
Therefore, the probability that the vehicle user u makes at least one call in the sensing area
a during the sensing period i can be calculated as follows:

P′i,a(u) =
+∞

∑
n=1

pi,a(u, n) = 1− e−λu,i,a , (3)

In this paper, the sensing time of vehicle users plays a crucial role in determining
whether a task can be successfully completed. The sensing task is considered effectively
completed only when the vehicle users reach a specific perception area and remain there
for a duration equal to or exceeding the required perception time. To facilitate accurate and
efficient task assignment, vehicle users can submit their stay time in the sensing period and
area to the platform. However, privacy concerns arise due to potential malicious attackers
who may infer daily habits, tracks, and other sensitive information from the real stay time,
leading to privacy risks. To address this issue, this paper employs the Laplacian mechanism,
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which locally confuses the residence time. Subsequently, vehicle users upload the fuzzy
residence time instead of the actual residence time to the platform, thereby safeguarding
their privacy. We use lu,i,a to represent the residence time of the vehicle user u in the
perception area a during the sensing period i, and l̃u,i,a to represent the confusing residence
time generated by adding Laplace noise to the real residence time. When lu,i,a is known, it
is easy to know whether the vehicle users have the ability to complete the sensing task or
not. However, the existing methods cannot predict the user mobility problem because the
users only upload the confused staying time, so a new solution is urgently needed.

Considering the noise added to the residence time, we transform the problem into
the probability that the fuzzy residence time is greater than the perceived duration. When
the sensing duration required to define the perception task is δ, the goal of the platform
is to obtain the probability that lu,i,a is not less than δ, which is expressed as P(lu,i,a ≥ δ).
Assume that vehicle user U adds Laplace noise to the real residence time lu,i,a by using
privacy budget parameter ε, and obtains the fuzzy residence time l̃u,i,a and uploads it to
the platform. Therefore, we can obtain:

lu,i,a = l̃u,i,a − η, η ∼ Laplace(0, 1/ε), (4)

where η is a variable that obeys Laplace distribution, and the smaller the privacy budget
parameter ε, the greater the added noise and the higher the level of privacy protection. For
P(lu,i,a ≥ δ), there is the following equation:

P(lu,i,a ≥ δ) = P
(

l̃u,i,a − η ≥ δ
)

(5)

= P
(

l̃u,i,a − δ ≥ η
)

(6)

= P
(

η ≤ l̃u,i,a − δ
)

, (7)

where L̃u,I,a − δ platform can be calculated, the above equation can be regarded as the
probability problem of continuous random variables; then, we can obtain the following
equation:

P
(

η ≤ l̃u,i,a − δ
)
=
∫ l̃u,i,a−δ

−∞
f (η)dη, (8)

where f (η) represents the probability density function of variable η:

f (η) =
ε

2
e−ε|η|. (9)

As a result, the platform can calculate the probability P′′i,a(u) of vehicle user u in
perception cycle i and perception region a not less than the sensing duration required by
the task according to the fuzzy residence time L̃u,I,a and privacy budget parameter ε.

P′′i,a(u) = P
(

η ≤ l̃u,i,a − δ
)
=
∫ l̃u,i,a−δ

−∞

ε

2
e−ε|η|dη. (10)

Based on the above calculation process, we can obtain the probability Pi,a(u) of each
user completing the sensing task in specific sensing cycle i and sensing area a, that is, the
probability that sensing area a is covered by vehicle user u in sensing cycle i. In addition,
Pi,a(u) is the product of P′i,a(u) and P′′i,a(u).

Next, we calculate the utility of users. Given all candidate mobile user set U and
selected participant set S, first combine each unselected user (∀U ∈ U \ S) with the
selected participant to generate a combinatorial set S∪ {u}. Then, calculate the utility of
each combinatorial set S∪ {u} and select the combinatorial set with the maximum utility.
Finally, utilize the result as the newly selected participant set for the next iteration. In this
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paper, the utility of user combinatorial set is defined as the expectation of sensing area
covered by S∪ {u} in all sensing cycles, and its calculation formula is as follows:

Utility(S∪ {u}) = ∑
0≤i<N

∑
a∈A

Qi,a(S∪ {u}), (11)

The task assignment mechanism based on user utility calculates the utility of each
combination set, selects the combination set with the maximum utility, and continues
the next iteration until the stop criterion is met. After obtaining the set of combinations
with maximum utility (S ∪ {u}), the algorithm computes a covering probability vector,
where each element of the vector is the probability of being covered by the combinatorial
set (S ∪ {u}) with a preset percentage (R) of the perceived region in the corresponding
perceptual cycle. The following formula gives the probability calculation formula in the
i-th perception cycle.

COVi(S∪ {u}) =
|Ac |≥τ

∑
Ac∈A

∏
∀a∈Ac

Qi,a(S∪ {u}) (12)

∗ ∏
∀a′∈A\Ac

(
1−Qi,a′(S∪ {u})

)
,

where τ = |A| ∗ R indicates the number of the minimum sensing areas that should be
covered in each sensing cycle, and Ac(|Ac| ≥ τ) is a subset of the sensing area set A,
indicating the combination of sensing areas that should be covered.

After obtaining the probability vector calculated based on the aggregation of the
maximum utility user group, the algorithm identifies the minimum probability value
within the vector. It then compares this minimum probability value with the given stop
threshold. If the minimum probability is greater than or equal to the stop threshold, the
combination set returned will be considered as the final user set selected by the algorithm.
On the other hand, if the minimum probability falls below the stop threshold, the algorithm
will use the combination set as the selected participant and initiate the next iteration. To
summarize, the algorithm iteratively repeats the process until it finds a combination set
with a minimum probability value greater than or equal to the stop threshold. This set will
then be used as the final selected user set.

Given the number of users |U |, in the worst case, the proposed algorithm UBTA runs
|U | ∗ (|U |+ 1)/2 iterations (i.e., all users are selected) to obtain the result, and in the best
case, the algorithm runs only |U | iterations (i.e., one user is selected) to obtain the result.

6. Performance Evaluation
6.1. Experiment Settings

In this section, we evaluate the proposed UBTA algorithm, first design the greedy
algorithm for comparison, then introduce the experimental settings, and finally give the
detailed experimental results between the UBTA algorithm and the comparison method.

For the task assignment problem in this chapter, we designed a greedy algorithm (GA),
whose basic idea is to select from all unselected vehicle users in each iteration the user
that covers the most perceived area in the history of call records until the set probability
threshold is reached and the cycle stops. We will compare the UBTA algorithm with the
GA algorithm in subsequent experiments.

This paper conducts an analysis and study of passenger flow patterns at various
passenger hotspots during different time periods by mining GPS historical data from taxis.
The dataset used comprises GPS historical data from 4000 taxis in Shanghai, collected over
the course of one month. To account for the distinct travel patterns of residents on working
days and weekends, the dataset is divided into two subsets: one for working days and
the other for weekends. With the massive GPS historical data available in these subsets,
this study quantifies the number of passenger-carrying events occurring at different time
periods within the passenger hot spot areas. To predict passenger flow in various regions,
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the Gaussian process regression algorithm is employed. Ultimately, these predictions aim
to enhance the efficiency of taxi passenger transportation.

The setup for our study is as follows: we set the number of perception areas, denoted
as |A|, to 45. The project involves 10 cycles, each spanning from 8:00 to 18:00, with each
cycle lasting for 1 h. The sensing duration required for each task is δ = 3 min. Additionally,
we assume that the noise added to the user dwell time data follows the standard Laplacian
distribution, with a privacy budget parameter ε = 1. In this study, we conducted a
two-week experiment using a computer-generated simulation dataset. The data from the
previous week served as the training dataset, used for task assignment. On the other hand,
the data from the following week acted as the test dataset, simulating the spatio-temporal
coverage of the selected participants. The experiment dataset comprises call records and
residence time data of 1000 vehicle users in each space-time unit. It includes user ID, signal
tower ID, the number of calls in each space–time unit, the real residence time of users, and
the residence time after adding noise. The completion of the task by vehicle users depends
on two factors: whether they make a call in a specific space–time unit and whether their
stay time is longer than the sensing duration required for the task.

6.2. Experimental Results

Table 1 shows the comparison of the number of vehicle users who are selected by the
UBTA algorithm and the GA algorithm. Evidently, the performance of the UBTA algorithm
is better than the GA algorithm. When the preset coverage value is 95%, the number of
vehicle users recruited by UBTA is 10.11–54.80% less than that recruited by GA. When the
coverage default is 85%, the number of vehicle users recruited by UBTA is 7.94–56.89% less
than the number of vehicle users recruited by GA.

Table 1. The number of vehicle users selected by UBTA and GA.

Sensing Program
R = 95% R = 85% R = 50%

UBTA GA UBTA GA UBTA GA

1 113 250 58 63 20 21

2 471 644 228 321 71 72

3 456 675 222 398 69 72

4 502 620 235 298 70 72

5 449 696 216 501 68 73

6 711 791 316 458 93 94

Average 450.33 612.67 212.5 339.83 65.17 67.33

It is worth noting that, when the coverage default is 50%, there is little difference
between the number of vehicle users recruited by the UBTA algorithm and the GA algo-
rithm. Therefore, we compared the vehicle users selected by the two algorithms when the
coverage preset was 95%, 85%, and 50%, respectively, and calculated the proportion of
common users recruited by the two algorithms (i.e., the proportion of vehicle users in the
intersection of recruitment results). As shown in Table 2, when the preset coverage value is
50%, the average proportion of common users recruited by the algorithm is 77.43%, much
higher than 54.61% and 40.82% when the preset coverage value is 95% and 85%, which
means that most users recruited by the GA algorithm in this case are also in the set of
users recruited by the UBTA algorithm. We call the users recruited by the UBTA algorithm
high-quality users (that is, those users can reach the preset coverage rate in a small number);
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therefore, the GA algorithm recruits high-quality users in the majority of selected users
when the preset coverage rate is 50%, which is also the reason why the number of users
recruited by the GA algorithm is close to the UBTA algorithm at this time.

Table 2. Percentage of shared vehicle users among UBTA and GA.

Sensing Program R = 95% R = 85% R = 50%

1 44.65% 32.00% 79.85%

2 58.85% 47.04% 77.78%

3 55.41% 39.45% 75.42%

4 66.61% 48.99% 73.61%

5 52.30% 30.74% 80.23%

6 49.86% 46.72% 77.66%

Average 54.61% 40.82% 77.43%

First, Figure 3 shows how the minimum coverage probability in all sensing cycles
varies with the number of mobile users selected. Clearly, the minimum coverage probability
of UBTA grows faster, and its curve converges to a pre-set threshold with a smaller number
of mobile users.

Figure 3. Participant selection process.

Next, we set the coverage default to 95% and compared the process of selecting vehicle
users by UBTA and GA. Figure 4 shows how the minimum coverage probability varies with
the number of selected vehicle users in all sensing cycles. Clearly, the minimum coverage
probability of UBTA grows faster and its curve converges to a pre-set threshold with a
smaller number of vehicle users.

Finally, we test the effectiveness of the two algorithms, that is, test data are used to test
whether the participants recruited by the algorithm can reach the pre-set coverage. Figure 5
shows the average percentage of the sensing area covered by the recruited participants in
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each sensing cycle. As can be seen from Figures 3 and 4, for the UBTA algorithm and the
GA algorithm, the coverage of perception area in each sensing cycle has reached the pre-set
threshold of 95% and 85%, thus demonstrating the effectiveness of the two algorithms.
Overall, the UBTA algorithm recruited fewer vehicle users to meet pre-set coverage criteria,
thereby reducing perceived costs.

Figure 4. Average coverage of sensing areas: R = 95%.

Figure 5. Average coverage of sensing areas: R = 85%

7. Conclusions

In this paper, we address the task allocation challenge in vehicular crowdsensing
through an opportunistic approach based on the real-world scenario. We propose a user
utility-based task allocation algorithm that involves several key steps. Firstly, we predict
the mobility of users to understand their movement patterns. Next, we calculate the utility
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of various user combinations to assess their effectiveness in completing tasks. Additionally,
we measure the probability of sensing task coverage for each user combination. Based
on these calculations, we determine the set of participants with the minimum number of
users required for optimal task allocation. To protect user privacy, we employ differential
privacy technology. Users upload their residence time data with Laplace noise, ensuring
that their sensitive information remains secure. The platform then analyzes user mobility
by solving the probability problem of continuous random variables, utilizing the fuzzy
residence time. The proposed algorithm is further analyzed theoretically, including time
complexity and efforts to reduce the computational complexity of the coverage probability
vector. Finally, we conduct experimental evaluations to demonstrate the effectiveness of
the proposed algorithm.
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