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Abstract: Traditional methods for obtaining soil heavy metal content are expensive, inefficient, and
limited in monitoring range. In order to meet the needs of soil environmental quality evaluation and
health status assessment, visible near-infrared spectroscopy and XRF spectroscopy for monitoring
heavy metal content in soil have attracted much attention, because of their rapid, nondestructive,
economical, and environmentally friendly features. The use of either of these spectra alone cannot
meet the accuracy requirements of traditional measurements, while the synergistic use of the two
spectra can further improve the accuracy of monitoring heavy metal lead content in soil. Therefore,
this study applied various spectral transformations and preprocessing to vis-NIR and XRF spectra;
used the whale optimization algorithm (WOA) and competitive adaptive re-weighted sampling
(CARS) algorithms to identify feature spectra; designed a combination variable model (CVM) based
on multi-layer spectral data fusion, which improved the spectral preprocessing and spectral feature
screening process to increase the efficiency of spectral fusion; and established a quantitative model
for soil Pb concentration using partial least squares regression (PLSR). The estimation performance
of three spectral fusion strategies, CVM, outer-product analysis (OPA), and Granger-Ramanathan
averaging (GRA), was discussed. The results showed that the accuracy and efficiency of the CARS
algorithm in the fused spectra estimation model were superior to those of the WOA algorithm, with
an average coefficient of determination (R2) value of 0.9226 and an average root mean square error
(RMSE) of 0.1984. The accuracy of the estimation models established, based on the different spectral
types, to predict the Pb content of the soil was ranked as follows: the CVM model > the XRF spectral
model > the vis-NIR spectral model. Within the CVM fusion strategy, the estimation model based on
CARS and PLSR (CARS_D1+D2) performed the best, with R2 and RMSE values of 0.9546 and 0.2035,
respectively. Among the three spectral fusion strategies, CVM had the highest accuracy, OPA had
the smallest errors, and GRA showed a more balanced performance. This study provides technical
means for on-site rapid estimation of Pb content based on multi-source spectral fusion and lays the
foundation for subsequent research on dynamic, real-time, and large-scale quantitative monitoring of
soil heavy metal pollution using high-spectral remote sensing images.

Keywords: soil Pb contamination; vis-NIR; XRF; feature selection; WOA; CARS; outer-product
analysis; model averaging; multi-strategy fusion

1. Introduction

Soil is an essential part of the human habitat. The abundance of metallic elements in
the soil provides energy and resources for biological growth and human production and
livelihood. However, extensive research has shown that high concentrations of Pb in the
soil can cause varying degrees of damage to animals and plants in the area [1–3]. As a result,
China has included Pb as one of the key pollutants to be focused on for prevention and
control [4,5]. Priority is given to protecting soils that have suffered from Pb contamination,
and soil Pb pollution monitoring is a prerequisite for effective governance and protection [6].
Therefore, it is crucial to accurately, rapidly, affordably, and environmentally assess the
concentration of Pb in soil.
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Traditional geochemical monitoring methods such as Inductively Coupled Plasma
Optical Emission Spectroscopy (ICP-OES) and Atomic Absorption Spectroscopy (AAS)
can accurately characterize the Pb content of soil [7,8]. However, these methods require
pre-treatment of soil samples, leading to drawbacks such as lengthy testing times, complex
experimental procedures, high experimental requirements, expensive analysis costs, and
the potential for secondary pollution, making them inadequate for soil Pb monitoring
needs [9–11]. In the case of Pb pollution in mining areas and their affected regions or river
basins, traditional monitoring methods are insufficient for studying temporal and spatial
variations. Additionally, the tracing and migration behavior of Pb are difficult to identify,
which can hinder the speed of soil Pb pollution control and remediation [12,13]. Therefore,
there is a need for convenient, accurate, and environmentally friendly spectroscopic tech-
niques to determine Pb content. In recent years, X-ray fluorescence spectroscopy (XRF) and
visible and near-infrared spectroscopy (vis-NIR) have been proven to be capable of estimat-
ing Pb content [14,15], and multifunctional mass spectrometry (MS) techniques [16] have
demonstrated a greater potential for materials testing. Moreover, the advent of portable
spectroscopic instruments has accelerated the acquisition of soil spectral information, en-
abling rapid on-site estimation of soil Pb content, reducing most of the analytical testing
procedures, and improving the efficiency of soil heavy metal monitoring work [17].

Portable X-ray fluorescence spectroscopy (pXRF) is capable of providing on-site soil Pb
content for a specific sampling point in a short amount of time. It is suitable for the real-time
field assessment of soil Pb content and represents a low-cost and user-friendly method for
monitoring soil heavy metal content [18,19]. Furthermore, when conducting soil Pb content
tests in laboratory conditions, pXRF yields more stable data and provides more accurate
data on the number of X-ray-excited electrons collected [20]. However, the results obtained
with pXRF can still be uncertain due to factors such as soil physicochemical properties,
element detection limits, interference from similar elements, and challenges in integrating
with remote sensing technology, making it difficult to carry out large-scale spatial heavy
metal pollution monitoring [21,22]. On the other hand, vis-NIR relies on the collection of
visible and near-infrared spectral range light reflected from soil when illuminated with a
halogen lamp. However, it contains limited information relevant to soil Pb, which limits
its accuracy when directly measuring soil Pb content [23,24]. To address this limitation,
the reliable estimation of soil heavy metal concentrations can be achieved based on the
relationship between the content of soil organic matter, clay minerals, or iron oxides and
vis-NIR spectra. Yet, this still requires pre-processing and quantitative testing analysis
of intermediate media in laboratory conditions, making the testing process somewhat
cumbersome [25–27]. However, vis-NIR offers greater convenience, as the spectral sensor
can be mounted on portable devices or airborne platforms for remote sensing. Its use in
watershed-scale soil heavy metal monitoring has been verified [28–30]. Vis-NIR boasts
advantages such as non-invasiveness, low cost, real-time updates, and large spatial scale
monitoring, making it highly applicable for watershed monitoring and holding immense
potential for such applications.

Currently, using XRF or vis-NIR spectra alone does not meet the accuracy requirements
for soil Pb content monitoring [23,31]. Factors such as the complexity of soil composition,
spectral noise, sensor system errors, and the detection limit of Pb elements can interfere
with the stability and accuracy of the estimation [11]. Compared to using a single spectral
model, the fusion of XRF and vis-NIR spectra can enhance soil spectral information and
improve the accuracy and efficiency of soil Pb concentration estimation models [32–34].
Among various spectral fusion strategies, outer product analysis (OPA) and Granger-
Ramanathan averaging (GRA) are widely favored high-order fusion strategies and are
commonly applied in the fusion process of XRF and vis-NIR spectra [35–38]. OPA involves
the outer product analysis of the feature spectra of two types of spectra belonging to
feature-level fusion and greatly increases the implicit information of the spectra [39,40].
On the other hand, GRA involves fitting the prediction results of the two types of spectra
again, with spectra belonging to decision-level fusion, and the multiple fitting processes
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increase the accuracy of the estimation model [41]. In addition, there are few studies on
model efficiency in soil heavy metal estimation models constructed through the strategy
of fusing OPA and GRA [11]. Xu et al. [33] fused vis-NIR and XRF spectra using OPA
and GRA, respectively, and successfully modeled the estimation of soil Cr. OPA gave the
highest prediction accuracy with a Lin’s concordance correlation coefficient (LCCC) of 0.90.
Inspired by the OPA and GRA spectral fusion strategies, we used partial least squares
regression (PLSR) to establish a combined variable model (CVM) with simple principles
and strong operability. We compared the accuracy and efficiency of the CVM, OPA, and
GRA in the estimation models for soil Pb content.

Spectral fusion significantly increases the volume of spectral data, which puts pressure
on the spectrum feature selection process [34,42]. Therefore, the application of evolutionary
algorithms such as the Whale Optimization Algorithm (WOA) and Competitive Adaptive
Reweighted Sampling (CARS) has been validated in the field of spectroscopy, as they
can select important feature spectra from the original spectra [43–45]. The WOA has the
advantages of fast convergence, ease of understanding, and simple debugging [46]. CARS
is a feature variable selection method that combines Monte Carlo sampling with PLSR.
After multiple computations, it selects the subset with the smallest root mean squared
error of the cross-validated spectra (RMSECV) as the spectrum feature [47]. In addition,
few studies have been conducted to construct soil heavy metal estimation models with
fusion spectra using the WOA and CARS algorithms [45], and it is necessary to validate the
performance of the two algorithms. Tan et al. [29] used CARS to screen the characteristic
bands of the airborne vis-NIR spectra, and constructed a model with an R2 of 0.6 for soil
Pb content estimation by combining multiple modeling methods. Simultaneously, spectral
dimensionality reduction can retain the wavelength bands with high explanatory power
for soil Pb, thus enhancing the efficiency and accuracy of spectrum feature selection [48,49].
The Pearson Correlation Coefficient (PCC) is an effective spectral dimensionality reduction
method that can be used to select wavelength bands with high correlation to soil Pb content
from the spectral data [50,51]. Therefore, using the PCC for preliminary screening of the
fused spectra can effectively reduce the algorithm’s processing time.

The purpose of this study is as follows: (1) to compare the characteristics of the
WOA and CARS algorithms in the spectrum feature selection process; (2) to utilize XRF
and vis-NIR to estimate soil Pb content; (3) to compare the accuracy and efficiency of
different spectral preprocessing methods in establishing soil Pb content estimation models;
(4) to discuss the accuracy of soil Pb content estimation models established using three
spectral fusion strategies—CVM, OPA, and GRA; and (5) to provide the technical means
for accurately, rapidly, non-destructively, and cost-effectively estimating soil Pb content
based on multi-source spectral fusion.

2. Materials and Methods
2.1. Study Area

The study area is located in Gejiu City, Honghe Hani and Yi Autonomous Prefecture,
Yunnan Province, China, covering an approximate area of 6.5237 square kilometers. Its
geographical coordinates are between 103.1900◦ and 103.2200◦ east longitude and 23.5000◦

and 23.5400◦ north latitude. The region has a subtropical plateau monsoon climate with
abundant rainfall. Within the study area, there are 965,935 square meters of construction
land and 2,609,041 square meters of farmland. Suspected sources of pollution include a
waste residue heap from non-ferrous metal smelting, industrial wastewater, and waste
residue generated during non-ferrous metal processing. Due to the combined effects of
atmospheric deposition, rainfall, and irrigation canals, Pb pollution has also been detected
in nearby farmland, and the Pb concentration has exceeded environmental standards,
posing a threat to crop production and human health [52]. A total of 121 sampling points
were arranged within a 2 km radius around the waste residue heap (see Figure 1). Given
the direct impact of soil pollution on food security on agricultural land, a larger number of
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sampling points were set up in the farmland. Figure S1 shows more information about the
study area.
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2.2. Material Collection

The material collection work includes soil sample collection and pre-treatment, the
use of chemical reagents, and the operation of experimental instruments and equipment.
Throughout the experiments, we strictly adhered to relevant specifications to ensure the
rigor of the research data.

2.2.1. Soil Sample Collection

According to the Technical Specification for Soil Environmental Monitoring (TSSEM) [53],
a total of 121 standard soil samples were collected, and the sampling point locations were
recorded using GPS as shown in Figure 1. A few sampling points were located in shrubs
around the waste residue heap, while most of them were situated in farmland surrounding
the waste residue heap, with a minimum distance of 20 m from the road. During soil
sample collection, we took precautions to avoid any contact between the soil and metal
objects. Firstly, we removed surface materials like branches and weeds from the soil.
Then, we used plastic or wooden shovels to collect the topsoil (0–5 cm). Five samples
weighing over 200 g each were collected within a 10 m area using the “X-shaped sampling
method”. These soil samples were mixed to form one composite sample. After removing
stones, plant roots, and other impurities, the mixed soil sample weighed approximately
1 kg and was sealed in polyethylene plastic bags. The dried soil samples were ground in
non-metallic grinding bowls. A 5 g portion of soil was sieved through a 100-mesh nylon
sieve (0.1500 mm) for chemical analysis, while a 150 g portion of soil was sieved through a
60-mesh nylon sieve (0.4200 mm) for spectral measurements. Soil properties and soil maps
are shown in Tables S1 and S2 and Figure S1.

2.2.2. Chemical Analysis

Firstly, 0.1000 g of the sample was weighed and placed in a Teflon digestion tank.
Then, the samples were soaked in 5 mL of nitric acid for 0.5 h to remove the organic
matter, followed by 2 mL of hydrofluoric acid and 1 mL of perchloric acid. Finally, the
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digestion tank was placed in a graphite digester and digested at 180 ◦C for 4 h. The total
concentrations of Cd in the solutions were measured using an inductively coupled plasma
emission spectrometer (ICP800DV, TMO, Waltham, MA, USA) (argon gas source valve
pressure reduced at about 550 kPa, circulating water pressure indicated between 50 and
310 kPa) for 48 samples per batch, including two blank controls [54]. All experimental
samples and the control standard for total Pb in soil were processed at the same time, and
the ratio of the measured total Pb in the samples to the standard content was between 90%
and 95%, indicating that the results were within the standard range.

2.2.3. Measurement of vis-NIR and XRF Spectra

The vis-NIR spectra were measured in a darkroom under laboratory conditions using
the Spectral Evolution PSR-2500 portable spectrometer (operating instructions are available
on the Spectral Evolution website (https://spectralevolution.com/products/software/
(accessed on 3 May 2023))) manufactured by Spectral Evolution. The spectral range covered
350–2500 nm. The soil samples were placed in culture dishes with a diameter of 10 cm and
a depth of 1 cm. Before measurement, a 100-watt halogen lamp was set as the sole light
source, and the spectrometer was preheated for 30 min. Prior to each measurement, the
spectrometer was optimized using a calibration whiteboard. The probe’s viewing angle
was set at 15◦, and the incident angle of the light source was set at 30◦. The distance from
the light source to the center of the soil surface was 50 cm, and the probe was maintained
at a distance of 15 cm from the soil surface. To minimize measurement anomalies and
instrument errors, a plastic ruler was used to level the soil surface. The container was then
divided into three directions with angles of 120◦, and five spectra were collected in each
direction. A total of 15 spectra were averaged to represent one spectrum for the sample.

The XRF spectra were measured using the Niton XL3t 950 X-ray Fluorescence Spec-
trometer, manufactured by Thermo Fisher Scientific, Waltham, MA, USA. The spectrometer
was connected to the computer via a data cable and the spectral data exported to the
computer using the NDT program, the manual for which is available on the Thermo
Fisher Scientific website (https://www.thermofisher.cn/order/catalog/product/10131166
?SID=srch-srp-10131166 (accessed on 4 May 2023)). The soil samples were further ground
through a 200-mesh nylon sieve (0.0740 mm) and placed in sample cups. The samples were
then compacted to create a flat surface and covered with a mylar film. The sample cups
were placed on the instrument’s detection platform for testing, and the XRF spectroscopy
measurement was set to “soil mode”. Each sample was scanned for 90 s, and three scans
were performed, with the average spectrum of the three scans taken as the final result.

2.3. Spectral Data Preprocessing

All data preprocessing and estimation model construction in this study were imple-
mented using the Python 3.10 programming language in the PyCharm Community Edition
2023.1.1 software.

2.3.1. Spectral Organization and Denoising

Firstly, the vis-NIR and XRF spectral data were organized in Microsoft Excel 2016
software for easy batch access by the program. To reduce the influence of edge noise
and low-energy values, we selected the numerical values in the 400–2444.9 nm wave-
length range for vis-NIR spectra and the 1.05–36 keV wavelength range for XRF spectra.
Then, the spectra were further compressed using Daubechies 8 wavelet filtering to reduce
noise [55,56]. Subsequently, spectral transformations were applied to enhance the spectral
signals [57,58]. The employed spectral transformation methods included Standard Normal
Variate (SNV), Multiplicative Scatter Correction (MSC), First Order Derivative (D1), Second
Order Derivative (D2), Continuum Removal (CR), and Logarithm Reciprocal (CL). Further,
the Savitzky-Golay (SG) algorithm with a window size of 12 and a polynomial order of
2 [59] was used to reduce noise and enhance signals. The PCC was then used to select the
wavelength bands in the vis-NIR and XRF spectra that exhibited significant correlations

https://spectralevolution.com/products/software/
https://www.thermofisher.cn/order/catalog/product/10131166?SID=srch-srp-10131166
https://www.thermofisher.cn/order/catalog/product/10131166?SID=srch-srp-10131166
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with soil Pb content. The number of wavelength bands in the vis-NIR and XRF spectra was
reduced to 400 and 600, respectively, to minimize data redundancy. Finally, all data was
standardized to have a mean of 0 and a standard deviation of 1. The preprocessing steps
are shown in Supplementary Figures S2–S5.

2.3.2. Spectral Feature Selection

The WOA [60] is a population-based intelligent optimization algorithm that imitates
the foraging behavior of humpback whales in nature to achieve optimization goals. It
has the advantages of simple principles and fewer parameter settings. The training set
is divided into a model training set and a model validation set after being input into the
WOA. The objective function is set as the root mean square error (RMSE) of the model
validation set, which makes the selected variables more representative. The iteration
number, the number of whales, and the threshold for binary encoding are set as 1000, 50,
and 0.3, respectively.

CARS [47] utilizes an adaptive sampling approach to retain spectral bands with rela-
tively larger absolute coefficients in the PLSR model. Then, the Monte Carlo cross-validation
method is used to model each subset of wavelength variables, and the optimal subset is
selected based on the RMSE in the cross-validation. The iteration number, maximum
number of principal components, and number of cross-validations are set at 100, 20, and
10, respectively.

The flowcharts of the WOA and CARS, the fitness curve of the WOA, the RMSECV
curve of the CARS, the iteration curve of the CARS, and the position of selected feature
spectra are shown in Supplementary Figures S6–S10.

2.4. Soil Pb Concentration Estimation Model Construction

We used the Kennard-Stone (KS) algorithm [61] to divide the data into training and
validation sets in a 4:1 ratio, and then built the soil Pb concentration estimation model
using PLSR.

2.4.1. PLSR

PLSR is a novel multivariate statistical analysis method that combines the advantages
of the PCC, principal component analysis (PCA), and linear regression models, making
it more conducive to distinguishing spectral information from noise [62]. Compared
to traditional linear models, PLSR features data dimension reduction and information
synthesis selection techniques, enabling the modeling of variables with multiple correla-
tions and reducing the correlations between variables [63]. The PLSRegression function
is from the Scikit-Learn package with the feature dimension of PCA set to 8 and other
parameters defaulted.

2.4.2. Model Evaluation

The accuracy of the model is evaluated using the coefficient of determination (R2) and
the RMSE. R2 reflects the stability of the model, where the closer R2 is to 1, the better the
model’s fitting effect. A smaller RMSE indicates a better predictive ability of the model.
The formulas for calculating R2 and RMSE are as follows:

R2 = ∑n
i=1(ŷi − yi)

2
/

∑n
i=1(yi − yi)

2 (1)

RMSE =

√
1
n ∑n

i=1(ŷi − yi)
2 (2)

where y is the mean value of the sample observations, ŷ is the predicted value of the sample,
and n is the number of samples to be verified.
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In order to enable the estimation model to quickly estimate soil Pb content in the field,
we recorded the computation time of the program and further compared the efficiency of
different soil Pb content estimation models.

2.5. Spectral Fusion

Spectral fusion consists of two stages: dominant model selection and feature-level
concatenation. By combining two types of spectra (vis-NIR and XRF), six spectral trans-
formation methods (SNV, MSC, D1, D2, CR, and CL), and two spectral feature selection
algorithms (WOA and CARS), we obtained a total of 24 soil Pb concentration estimation
models. These models were then categorized into four classes based on spectral types
and spectral feature selection algorithms. The models with a higher accuracy (R2 > 0.5
for vis-NIR spectra and R2 > 0.8 for XRF spectra) were selected from each class. Finally,
the selected feature spectra corresponding to each model were concatenated according to
different spectral types and the same spectral feature selection algorithm. The concatenated
spectra were further categorized into two fusion types: WOA_X+Y and CARS_X+Y (X rep-
resents the transformation method for vis-NIR spectra, and Y represents the transformation
method for XRF spectra). The fusion spectra were subjected to spectral feature selection
again using the WOA or CARS algorithms, and the CVM was established using PLSR.

To compare the accuracy and efficiency of the CVM with other spectral fusion models
such as GRA and OPA, we implemented GRA and OPA models based on the WOA and
CARS algorithms, respectively. The GRA model was established using PLSR based on
the single-spectrum model. The OPA model required reducing both types of spectra to a
unified dimension using the PCC. To avoid excessive computation time, the dimension
of vis-NIR and XRF spectra was set to 100 wavelength bands. The technical workflow
adopted in this study is shown in Figure 2.
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3. Results
3.1. Descriptive Statistical Analysis of Soil Pb Content

In order to comply with the “Technical Specifications for Soil Environmental Mon-
itoring in China” (HJ/T 166-2004), we measured the Pb content of 121 soil samples in
the study area. To better represent the actual situation of Pb content in agricultural soil
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within the influence area of the metallurgical slag site, we kept highly polluted sampling
points. As shown in Figure 3, the skewness value (3.74) and kurtosis value (20.27) indicate
that the distribution of Pb content follows a positively skewed distribution. Normally, the
frequency of element content in soil under natural background conditions conforms to a
normal or log-normal distribution. However, the Pb element content in this area exceeds
the natural background value, indicating soil pollution by Pb.
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In the agricultural soil within the influence area of the metallurgical slag site, 112 sampling
points (92.56%) exceed the screening value of the “Guideline for the Risk Control of Soil Pol-
lution in Agricultural Land” (GB15618-2018) [54], and 8 sampling points (6.62%) exceed the
control value, indicating severe Pb pollution in the study area. The coefficient of variation
(CV) reflects the degree of dispersion of sample data and is one of the indicators reflecting
the distribution of data. When the coefficient of variation is ≥1, it indicates strong vari-
ability; when 0.1 < coefficient of variation < 1, it indicates moderate variability; and when
the coefficient of variation ≤0.1, it indicates weak variability. The CV of Pb content in the
study area is 0.76, indicating that the soil Pb pollution in the study area is influenced by
human activity. Before constructing the estimation model, it is necessary to partition the
dataset into training and validation data. According to the KS algorithm, we divided the
121 sampling points into 97 training points and 24 validation points. The distribution of
the training and validation data sets is similar to that of the overall data set, indicating that
the data partitioning is representative. When the transformation methods of vis-NIR and
XRF spectra are different, the Euclidean distance in the KS algorithm will change, and the
distribution of the training and validation sets will also change, but this does not affect
their similar distribution patterns.

3.2. Soil Pb Content Estimation Models Based on a Single Spectrum

From Table 1, it can be observed that, for the vis-NIR spectra with the same spectral
transformation method, the accuracy and computation time of the soil Pb content estima-
tion model based on the WOA spectrum feature selection algorithm (WOA model) are
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generally better than those of the model constructed based on the CARS spectrum feature
selection algorithm and the PLSR method (CARS model). Among them, the models con-
structed based on five methods: WOA_D1, WOA_D2, WOA_CL, CARS_D1, and CARS_D2,
show better accuracy and efficiency with all R2 exceeding 0.5, which provides a set of
advantageous vis-NIR spectra-based soil Pb content estimation models for subsequent
spectral fusion model construction.

Table 1. Statistical table of accuracy and efficiency of single spectrum estimation model for soil
Pb content.

Spectrum Method RMSE R2 Time(s)

vis-NIR

WOA_SNV 0.5692 0.3592 410
WOA_MSC 0.3643 0.3129 229
WOA_D1 0.2319 0.6881 206
WOA_D2 0.2694 0.6589 197
WOA_CR 0.3746 0.3011 89
WOA_CL 0.6800 0.5466 242

CARS_SNV 1.0865 0.0511 416
CARS_MSC 0.3955 0.0856 200
CARS_D1 0.3482 0.5115 183
CARS_D2 0.2987 0.6668 463
CARS_CR 0.6306 0.0978 455
CARS_CL 0.5845 0.1155 410

XRF

WOA_SNV 0.8508 0.3139 238
WOA_MSC 0.8576 0.3198 397
WOA_D1 0.4342 0.8260 302
WOA_D2 0.4152 0.8169 155
WOA_CR 0.3479 0.6835 366
WOA_CL 0.3405 0.4769 357

CARS_SNV 0.8535 0.3133 513
CARS_MSC 0.6711 0.3456 310
CARS_D1 0.2143 0.8556 209
CARS_D2 0.1653 0.9244 265
CARS_CR 0.2102 0.8531 383
CARS_CL 0.4205 0.6167 172

From Table 1, it can also be observed that, for the XRF spectra with the same spectral
transformation method, the overall accuracy of the CARS models is better than that of the
WOA models, while the computation time of the WOA models and the CARS models is
similar. Among them, the models constructed based on five methods: CARS_D1, CARS_D2,
CARS_CR, WOA_D1, and WOA_D2, show better accuracy and efficiency with all R2

exceeding 0.8, which provides a set of advantageous XRF spectra-based soil Pb content
estimation models for subsequent spectral fusion model construction.

Among the soil Pb content estimation models constructed based on different spectral
transformation methods and spectrum feature selection algorithms for the vis-NIR spectra,
the model constructed using the WOA_D1 method shows the highest R2 and the smallest
RMSE, which are 0.6881 and 0.2319, respectively. For the XRF spectra, the model constructed
using the CARS_D2 method shows the highest R2 and the smallest RMSE, which are 0.9244
and 0.1653, respectively. At the same time, the accuracy of the soil Pb content estimation
models based on XRF spectra is generally better than that of those based on vis-NIR spectra.

3.3. Soil Pb Content Estimation Models Based on Spectral Fusion

From Table 2, it can be observed that the R2 of the soil Pb content estimation models
constructed based on the fusion of vis-NIR and XRF spectra are all above 0.8, indicating
high accuracy of the models constructed based on spectral fusion. Among them, the
accuracy of the models using the CARS method is better than that of the models using
the WOA method. The average R2 value (0.9226) and RMSE value (0.1984) of the CARS
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models are higher and better than those of the WOA models (R2: 0.8300, RMSE: 0.3770).
Additionally, the average computation time (428.5000 s) of the CARS models is shorter than
that of the WOA models (528.8333 s). Further, the soil Pb content estimation model based
on the CARS_D1+D2 fusion method shows relatively superior accuracy and efficiency, with
a R2 of 0.9546, a RMSE of 0.2035, and a computation time of 468 s.

Table 2. Statistical table of accuracy and efficiency of fusion spectra estimation model of soil
Pb content.

Method RMSE R2 Time(s)

WOA_D1+D1 0.1729 0.8552 560
WOA_D1+D2 0.4052 0.8233 221
WOA_D2+D1 0.3813 0.8607 437
WOA_D2+D2 0.4118 0.8189 832
WOA_CL+D1 0.4523 0.8185 216
WOA_CL+D2 0.4384 0.8031 907

CARS_D1+D1 0.2883 0.9180 132
CARS_D1+D2 0.2035 0.9546 468
CARS_D1+CR 0.1515 0.9236 522
CARS_D2+D1 0.2414 0.9396 613
CARS_D2+D2 0.1710 0.9188 734
CARS_D2+CR 0.1347 0.8810 102

We created scatter plots with the measured soil Pb content on the X-axis, the model-
estimated values on the Y-axis, and the absolute errors between the measured and estimated
values on the Z-axis. These scatter plots depict the comparison between the actual measure-
ments and the predictions made using the 12 soil Pb content estimation models constructed
using the CVM (Combination of Variables Models) strategy. The scatter plots, including
Figures 4, S11 and S12, illustrate the performance of different spectral feature selection
algorithms within the CVM strategy. In these scatter plots, the colored bands on the ground
surface represent the projection of the three-dimensional graph onto the plane. The color
bands vary from purple to red, indicating an increasing trend in absolute errors. The
intersection of the three-dimensional graph with the ground plane (the middle line of the
purple region) represents the 1:1 line, where the measured and estimated values are equal.
The closer the scatter points are to the 1:1 line, the smaller the absolute errors, and the better
the model’s accuracy. The trend of the scatter points in relation to the 1:1 line reflects the
model’s fitting accuracy.

Figure 4 specifically displays the scatter plot of the best-performing models, WOA_D2+D1
and CARS_D1+D2, based on the CVM fusion strategy. It is evident that the scatter points of
the WOA_D2+D1 model are more scattered and further away from the 1:1 line, with some
absolute errors exceeding the range of the purple region. On the other hand, the scatter points
of the CARS_D1+D2 model are more concentrated around the 1:1 line, indicating that the
estimated values are closer to the actual measurements, resulting in smaller absolute errors.
Furthermore, compared to the WOA_D2+D1 model, the CARS_D1+D2 model shows a
smaller deviation from the 1:1 line, indicating a higher level of fitting and better accuracy
for the estimation model. Based on these observations, the CARS_D1+D2 model within the
CVM strategy is identified as the optimal estimation model for soil heavy metal Pb content.

3.4. Contrastive Analysis of Estimation Model Accuracy and Efficiency

Figure 5 presents a comparative analysis of accuracy and computation time for
three categories of the 36 soil Pb content estimation models constructed using single spec-
trum and fused spectra, represented as violin plots (the outer part shows data kernel density
contours, and the inner part shows data box plots). From Figure 5, it can be observed that,
for the vis-NIR spectra-based models, the R2 box plot of the WOA models is superior to
that of the CARS models, with R2 values around 0.5 for the WOA models and in a range of
0.1–0.4 for the CARS models. However, in the case of XRF spectra and CVM-fused spectra,
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the CARS models outperform the WOA models with higher R2 values and lower RMSE
values, and the computation time for CARS models is slightly advantageous.
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Regarding the single spectrum, the R2 and RMSE contours of the WOA models exhibit
multi-modal characteristics, indicating instability and difficulty in controlling the accuracy
of the estimation models within an acceptable range. Conversely, in the CARS models,
both the single and fused spectra exhibit unimodal R2 and RMSE contours, suggesting a
more concentrated estimation accuracy. The peak positions of R2 kernel density contours
for vis-NIR spectra, XRF spectra, and CVM-fused spectra gradually shift upwards, with
CVM-fused spectra having a peak close to 1, indicating higher accuracy. Similarly, the
peak positions of RMSE kernel density contours for the three spectra types gradually shift
downward, with CVM-fused spectra having a peak close to 0.1, indicating lower error. This
suggests that the CVM-fused spectra-based soil Pb content estimation model has higher
accuracy. Moreover, the R2 and RMSE contours for vis-NIR spectra and XRF spectra are
wider and flatter (lower peak, larger width), while the CVM-fused spectra-based contour is
higher and narrower (higher peak, smaller width), indicating that the CARS models based
on CVM-fused spectra exhibit lower variability and higher stability.

In conclusion, compared to single spectrum-based soil Pb content estimation models,
the fused spectra-based models demonstrate higher accuracy and better stability. Ad-
ditionally, the CARS algorithm is more suitable for feature selection in fused spectra,
outperforming the WOA algorithm.

4. Discussion
4.1. Spectral Feature Selection Algorithms

Spectral data often have high dimensions, and previous studies have shown that not
all spectral information positively contributes to the accuracy of soil Pb content estimation
models [42,51]. Therefore, it is necessary to select spectral bands to improve the efficiency
and accuracy of estimation models. In this study, we used the WOA and CARS algorithms
to select feature spectra from vis-NIR and XRF spectra, respectively, and established soil Pb
content estimation models based on the PLSR method. The results in Table 1 show that the
choice of algorithm significantly influences the accuracy and efficiency of the estimation
models, which is consistent with the findings of Gholizadeh et al., who used a univariate
filter (UF) and genetic algorithm (GA) for spectral feature selection [31]. Similar phenomena
have been observed in other studies as well [64,65]. Therefore, spectral feature selection is
crucial in establishing the relationship between spectral data and soil heavy metal content.

Among numerous spectral feature selection algorithms, the WOA algorithm, which
simulates the foraging behavior of animals, and the CARS algorithm, which simulates the
adaptation of organisms to environmental changes, are representative approaches [45].
Although the application of the WOA algorithm in estimating soil Pb content is relatively
limited, our study shows that in the vis-NIR spectrum, the WOA model achieves the
highest R2 of 0.6881, outperforming the CARS model (Table 1 and Figure 5). Bian et al. used
the WOA algorithm to select feature spectra from near-infrared spectra and combined them
with PLSR to quantitatively predict sunflower oil in mixed oils, achieving a high prediction
R2 of 0.9635 [66]. Thus, the WOA algorithm exhibits significant advantages in near-infrared
spectral applications. Furthermore, Tan et al. employed the CARS algorithm to select
feature bands from airborne vis-NIR spectra and constructed soil Pb content estimation
models using various modeling methods, with the highest R2 of the validation set reaching
0.60 [29]. This is similar to our highest R2 value (0.6668) obtained by applying the CARS
algorithm for spectral feature selection in vis-NIR spectra combined with PLSR (Table 1).
Additionally, regardless of the spectral feature selection algorithm used, an estimation
using vis-NIR spectra for Pb content is slightly inferior to that using XRF spectra (Table 1
and Figure 5), which is consistent with previous research on soil Pb element determination
using XRF and vis-NIR spectra [67].

4.2. Spectral Fusion Strategies

Spectral fusion can be categorized into three stages: data-level fusion, feature-level
fusion, and decision-level fusion [34]. Previous studies have shown that estimation models
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constructed using feature-level fusion, represented by OPA, and decision-level fusion,
represented by GRA, outperform models based on data-level fusion [32,68–70]. OPA can
effectively utilize the different properties and complementary information of XRF and
vis-NIR spectra, thereby improving the prediction accuracy of soil heavy metal estimation
models [33]. Our study also validated this conclusion (Tables 1 and 2), and the performance
of the soil Pb content estimation model using the OPA strategy is consistent with previous
research [67] (Figure 6). Additionally, the GRA strategy is widely favored because it only
requires the addition of a simple linear regression model. Thus, we applied the GRA
strategy to fuse XRF and vis-NIR spectra, and the results were consistent with previous
studies [70] (Figure 6). Therefore, both OPA and GRA strategies provide effective methods
for using XRF and vis-NIR spectra in soil Pb content estimation.
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Inspired by the OPA and GRA spectral fusion strategies, we designed a CVM based on
a two-layer (feature-level and decision-level) fusion strategy, and compared the accuracy
and computational time of CVM, OPA, and GRA in the soil Pb content estimation model.
Figure 6 shows the comparison of accuracy and efficiency of the soil Pb concentration
estimation models under different spectral feature selection algorithms and spectral fusion
strategies using vis-NIR spectra in the D1 transformation and XRF spectra in the D2
transformation. It can be observed that the CVM (CARS) estimation model exhibits the
highest R2 (0.9643), the lowest RMSE (0.1842), and the shortest computational time (149 s).
Compared to the strategy of solely using feature-level concatenation for intermediate
spectral fusion in previous studies [67], our CVM strategy shows significant improvement
in accuracy, and the R2 of the estimation model is slightly superior to advanced fusion
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strategies (OPA and GRA) (Figure 6). Additionally, we found that after using OPA for the
feature-level fusion of spectral data, the number of bands sharply increases, leading to
longer running times. Nevertheless, the OPA (CARS) estimation model shows the smallest
RMSE (0.1661) and a relatively high R2 (0.9515), which is consistent with Xu’s research
findings [67]. On the other hand, the estimation model constructed after using GRA for the
decision-level fusion of spectral data demonstrates a more balanced accuracy, similar to the
results obtained by Shrestha et al. [71], but it requires a longer computational time (average
computational time = 331). Therefore, the CVM, OPA, and GRA spectral fusion strategies
each have their advantages in providing accurate, efficient, and stable methods for soil Pb
content estimation models.

In summary, this study performed fusion on the vis-NIR and XRF spectra that were pre-
screened by the PCC. The WOA and CARS algorithms were employed to identify feature
spectra. Among them, the CARS spectral feature selection algorithm, in combination
with the PLSR method, constructed the optimal estimation model for soil Pb content
(CARS_D1+D2), demonstrating excellent estimation accuracy and stability. These findings
provide technical means for on-site rapid estimation of soil Pb content based on multisource
spectral fusion, enriching the technical methods for monitoring soil Pb concentration using
spectral techniques [11]. Furthermore, they lay the foundation for subsequent research
on the dynamic, real-time, and large-scale quantitative monitoring of soil heavy metal
pollution based on hyperspectral remote sensing images [30,72].

5. Conclusions

In conclusion, the study successfully implemented the fusion of vis-NIR and XRF
spectra using the CVM, OPA, and GRA fusion strategies. Spectral feature selection was
performed on the single spectrum and fused spectra using the WOA and CARS algorithms,
respectively. Soil Pb content estimation models were established based on both the sin-
gle spectrum and fused spectra using the PLSR method. The comprehensive efficiency
(accuracy and computation time) ranking of the estimation models based on different
spectral types was as follows: fused spectra model > XRF spectra model > vis-NIR spectra
model. The comprehensive efficiency ranking based on different spectral feature selection
algorithms was: CARS algorithm > WOA algorithm. Lastly, the comprehensive efficiency
ranking based on different fusion strategies was: CVM strategy > OPA strategy > GRA
strategy. Importantly, among all the estimation models, the CARS_D1+D2 fused model
exhibited the highest R2, a smaller RMSE, and better stability, making it more suitable
for dynamic, real-time, and quantitative monitoring of soil heavy metal pollution. Future
work should focus on constructing estimation models that can be used for on-site rapid
and accurate estimation of soil Pb content, which is crucial for addressing the dynamic
monitoring of soil pollution and agricultural product safety, as well as the safe utilization
of cultivated land.
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