
Citation: Chunduri, R.K.; Perera,

D.G. Neuromorphic Sentiment

Analysis Using Spiking Neural

Networks. Sensors 2023, 23, 7701.

https://doi.org/10.3390/s23187701

Academic Editor: Stefanos Kollias

Received: 27 June 2023

Revised: 25 August 2023

Accepted: 2 September 2023

Published: 6 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Neuromorphic Sentiment Analysis Using Spiking Neural Networks
Raghavendra K. Chunduri and Darshika G. Perera *

Department of Electrical and Computer Engineering, University of Colorado Colorado Springs,
1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, USA; raghavkumar1988@gmail.com
* Correspondence: darshika.perera@uccs.edu; Tel.: +1-719-255-3404

Abstract: Over the past decade, the artificial neural networks domain has seen a considerable
embracement of deep neural networks among many applications. However, deep neural networks
are typically computationally complex and consume high power, hindering their applicability for
resource-constrained applications, such as self-driving vehicles, drones, and robotics. Spiking neural
networks, often employed to bridge the gap between machine learning and neuroscience fields,
are considered a promising solution for resource-constrained applications. Since deploying spiking
neural networks on traditional von-Newman architectures requires significant processing time and
high power, typically, neuromorphic hardware is created to execute spiking neural networks. The
objective of neuromorphic devices is to mimic the distinctive functionalities of the human brain
in terms of energy efficiency, computational power, and robust learning. Furthermore, natural
language processing, a machine learning technique, has been widely utilized to aid machines in
comprehending human language. However, natural language processing techniques cannot also be
deployed efficiently on traditional computing platforms. In this research work, we strive to enhance
the natural language processing traits/abilities by harnessing and integrating the SNNs traits, as
well as deploying the integrated solution on neuromorphic hardware, efficiently and effectively. To
facilitate this endeavor, we propose a novel, unique, and efficient sentiment analysis model created
using a large-scale SNN model on SpiNNaker neuromorphic hardware that responds to user inputs.
SpiNNaker neuromorphic hardware typically can simulate large spiking neural networks in real
time and consumes low power. We initially create an artificial neural networks model, and then
train the model using an Internet Movie Database (IMDB) dataset. Next, the pre-trained artificial
neural networks model is converted into our proposed spiking neural networks model, called a
spiking sentiment analysis (SSA) model. Our SSA model using SpiNNaker, called SSA-SpiNNaker, is
created in such a way to respond to user inputs with a positive or negative response. Our proposed
SSA-SpiNNaker model achieves 100% accuracy and only consumes 3970 Joules of energy, while
processing around 10,000 words and predicting a positive/negative review. Our experimental results
and analysis demonstrate that by leveraging the parallel and distributed capabilities of SpiNNaker,
our proposed SSA-SpiNNaker model achieves better performance compared to artificial neural
networks models. Our investigation into existing works revealed that no similar models exist in the
published literature, demonstrating the uniqueness of our proposed model. Our proposed work
would offer a synergy between SNNs and NLP within the neuromorphic computing domain, in
order to address many challenges in this domain, including computational complexity and power
consumption. Our proposed model would not only enhance the capabilities of sentiment analysis
but also contribute to the advancement of brain-inspired computing. Our proposed model could be
utilized in other resource-constrained and low-power applications, such as robotics, autonomous,
and smart systems.

Keywords: neuromorphic computing; artificial neural network; natural language processing;
sentiment analysis; spiking neural networks; SpiNNaker

Sensors 2023, 23, 7701. https://doi.org/10.3390/s23187701 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23187701
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9492-7496
https://orcid.org/0000-0001-9106-4381
https://doi.org/10.3390/s23187701
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23187701?type=check_update&version=1

Sensors 2023, 23, 7701 2 of 24

1. Introduction

In recent years, the Artificial Neural Networks (ANNs) domain has witnessed a
significant adaptation of Deep Neural Networks (DNNs) across several fields, such as
machine learning, computer vision, artificial intelligence, and natural language processing
(NLP). DNNs are capable of accurately performing a wide range of tasks by training on
massive datasets [1]. However, the energy consumption and computational cost required
for training large volumes of datasets and for deploying the resulting applications have
been of less importance; thus, they have been overlooked [2,3]. The DNNs typically
consume high power and require large data storage [4,5]. Although there have been
significant advancements in ANNs, ANNs were unable to achieve the same level of energy
efficiency and online learning ability as biological neural networks [6]. Drawing inspiration
from brain-inspired computing, one potential solution to address the issue of high-power
consumption is to use the neuromorphic hardware with Spiking Neural Networks (SNNs).
SNNs, often considered the third generation of neural networks, are emerging to bridge
the gap between fields such as machine learning and neuroscience [7].

Unlike traditional neural networks that rely on continuous-valued signals, the SNNs
work in continuous time [8]. In SNNs, the neurons communicate with each other using
discrete electrical signals called spikes. Spikes model the behavior of the neurons more
accurately and more biologically plausible than ANNs, thus making SNNs more energy
efficient and computationally powerful than ANNs [9]. The neuron models of ANNs
and SNNs differ from each other. For instance, ANNs do not have any memory and use
sigmoid, tanh, or rectified linear unit (ReLU) as computational units, whereas SNNs have
memory and use non-differentiable neuron models. Typically, large-scale SNN models
consume high power and require high execution time when utilized/executed on classical
Von Neumann architectures [10]. Hence, there is a need for high-speed and low-power
hardware for executing large-scale SNN models. In this regard, existing neuromorphic
platforms, such as SpiNNaker [11], Loihi [12], NeuroGrid [13], and TrueNorth by IBM [14],
are expected to advance the applicability of large-scale SNNs in several emerging fields by
offering energy-efficient high-speed computational solutions. SNNs have the functional
similarities to biological neural networks, allowing them to embrace the sparsity and
temporal coding found in biological systems [15]. However, SNNs are difficult to train
because of their non-differentiable neuron models. In terms of speed performance, SNNs
are inferior to DNNs. Nevertheless, due to the low power traits, SNNs are considered more
efficient than DNNs [6].

Considering the aforementioned, in this research work, we propose a novel and
unique neuromorphic NLP sentiment analysis model based on the SNNs, deployed on the
SpiNNaker neuromorphic platform. Our proposed sentiment analysis model is created in
such a way to be energy efficient and also to be faster than the ANN-based NLP models,
while predicting the sentiment. Our experimental results illustrate that our proposed model
is energy efficient and consumes low power when executed on the Internet Movie Database
(IMDB) dataset to predict the reviews based on user inputs. Our results and analysis
also demonstrate that our proposed model is more efficient and effective compared to the
existing ANN-based sentiment analysis models in the published literature. In this paper,
we make the following contributions:

• We introduce a novel, unique, and efficient sentiment analysis model for neuromorphic
hardware using SNNs. Our proposed model is highly accurate, while detecting text
and predicting the sentiment.

• Our proposed model is adaptable, energy efficient, and computationally effective.
These traits make our model well suited for areas where energy efficiency is crucial
and resources are scarce.

• We perform experiments to evaluate the feasibility and efficiency of our proposed
model. Our results and analysis demonstrate that our model is efficient and accurate
compared to the ANN-based sentiment analysis model.

Sensors 2023, 23, 7701 3 of 24

Our paper is organized as follows. Section 2 provides an overview of SNNs and their
applications in various fields. In Section 3, we discuss and present our proposed SNN model
in detail, highlighting its unique features. In Section 4, we present our experimental results
and analysis, including the comparison of speed performance and energy consumption
of our proposed SNN model with traditional existing ANN models. In Section 5, we
summarize, conclude, and discuss the potential impacts of SNNs in various fields and our
future directions.

2. Background

In this section, we provide brief descriptions of the SNNs, ANNs to SNNs conversion,
SpiNNaker computing models, and NLP sentiment analysis.

2.1. Spiking Neural Networks (SNNs)

As stated in [16], the SNNs are considered the third generation of neural networks,
which communicate through a sequence of discrete electrical events called “spikes” that
takes place at a point of time. The SNN models are generally expressed in the form of
differential equations [17]. The structure of spiking neurons in the SNN model is similar
to the structure of the ANN neuron; however, their behavior is different. SNNs are
widely used in various applications, including brain–machine interface, event detection,
forecasting, and decision making [18,19]. The difference between the SNNs and the ANNs,
in terms of various parameters, are presented in Table 1, sourced from [9].

Table 1. SNNs and ANNs comparison.

Parameters Spiking Neural Network
(SNN)

Artificial Neural Network
(ANN)

Neuron [9] Spiking Neuron Artificial Neuron

Representation of
Information [9] Spike trains Scalars

Mode of Computation [9] Differential Equations Activate function

Topology [9] RSNN, SCNN, Hopfield
network, and LSM

RNN, CNN, DBN, LSTM
and DNC

Features [9]
Real time, low power, online

learning, parallel data
processing

Online learning, moderate
parallelization

The spiking neuron models are distinguished based on the biological plausibility and
computational capabilities [20–22]. Typically, spiking neuron models are selected based
on specific user requirements. In this subsection, we briefly discuss and present the most
commonly used spiking neuron models, including Hodgkin–Huxley (HH), Integrate-and-
Fire (IF), Spike Response model, and Izhikevich model, which are prominent models that
are widely used in various applications. These models differ from each other in terms of
biological characteristics and computational complexity. Figure 1 illustrates the schematics
of a biological neural network, ANN and SNN [17].

Sensors 2023, 23, 7701 4 of 24

Sensors 2023, 23, x FOR PEER REVIEW 4 of 24

of biological characteristics and computational complexity. Figure 1 illustrates the
schematics of a biological neural network, ANN and SNN [17].

Figure 1. Schematic representations of (a) biological neural network, (b) artificial neural network,
and (c) spiking neural network.

2.1.1. Hodgkin–Huxley Model
The Hodgkin-Huxley (HH) model is the first biological model of spiking neuron

[23]. This model explains how the neuron actions are initiated and propagated. In this
model, the electric current through the membrane potential in terms of mathematical
description can be computed using Equation (1) [23]: 𝐼 = 𝐶 + 𝐺 𝑚 ℎ 𝑉 − 𝑉 + 𝐺 𝑛 𝑉 − 𝑉 + 𝐺 𝑉 − 𝑉 (1)

where I represents the external current, and C represents the capacitance of the circuit.
The parameter modelling conductance of sodium, potassium, and leakage channels

are represented as GNa, Gk and GL, respectively, whereas VNa, Vk and VL are called the
reverse potentials. The gating parameter n is used to control the potassium channel,
whereas m and h control the sodium channel. For this model, Equations (2)–(4) are used
to determine m, n, and h parameters. 𝑑𝑚𝑑𝑡 = α 𝑉 1 −𝑚 − β 𝑣 𝑚 (2)𝑑𝑛𝑑𝑡 = α 𝑉 1 − 𝑛 − β 𝑣 𝑛 (3)𝑑ℎ𝑑𝑡 = α 𝑉 1 − ℎ − β 𝑣 ℎ (4)

The HH model is computationally expensive due to the differential equations of
m, n, and h parameters. Also, the HH model requires nearly 1200 floating point
computations [23]; hence, it is not suitable for applications that require large-scale

Figure 1. Schematic representations of (a) biological neural network, (b) artificial neural network,
and (c) spiking neural network.

2.1.1. Hodgkin–Huxley Model

The Hodgkin-Huxley (HH) model is the first biological model of spiking neuron [23].
This model explains how the neuron actions are initiated and propagated. In this model,
the electric current through the membrane potential in terms of mathematical description
can be computed using Equation (1) [23]:

I = C
dv
dt

+ GNam3h(V −VNa) + Gkn4(V −Vk) + GL(V −VL) (1)

where I represents the external current, and C represents the capacitance of the circuit.
The parameter modelling conductance of sodium, potassium, and leakage channels are

represented as GNa, Gk and GL, respectively, whereas VNa, Vk and VL are called the reverse
potentials. The gating parameter n is used to control the potassium channel, whereas m
and h control the sodium channel. For this model, Equations (2)–(4) are used to determine
m, n, and h parameters.

dm
dt

= αm(V)(1−m)− βm(v)m (2)

dn
dt

= αn(V)(1− n)− βm(v)n (3)

dh
dt

= αh(V)(1− h)− βh(v)h (4)

The HH model is computationally expensive due to the differential equations of m,
n, and h parameters. Also, the HH model requires nearly 1200 floating point computa-
tions [23]; hence, it is not suitable for applications that require large-scale neural network
simulation/execution. A detailed description of the HH model and the corresponding
equations can be found in [23].

Sensors 2023, 23, 7701 5 of 24

2.1.2. Izhikevich Model

Another neuromorphic model was proposed by Izhikevich [24]. It is a two-dimensional
biologically plausible spiking neuron model which exhibits the complete behavior of
the neurons. The Izhikevich model describes the hippocampal neurons, which are suit-
able for large-scale simulations [24]. This model is represented using two differential
Equations (5) and (6), below, whereas Equation (7) is used to adjust the membrane voltage
(v) and recovery variable (u).

dv(t)
dt

= 0.04v2 + 5v + 140− u + I(t) (5)

du(t)
dt

= a(bv− u) (6)

u(vvth) = c ≈ and ≈ u(v > vth) = u + d (7)

In the above equations, the membrane potentials of the neurons are represented using
v, whereas u represents the membrane recover variable, which accounts for the iconic
current activation of K+ and inactivation of Na+. In the Izhikevich model [24], by changing
the injected stimulus and tuning the parameters, multiple spiking patterns can be produced.
A detailed description of the Izhikevich model and the corresponding equations can be
found in [24].

2.1.3. Integrate-and-Fire Model

The Integrate-and-Fire (IF) model is the simplest SNN model, which works by in-
tegrating the input spikes to the membrane portal with a predefined threshold [25]. In
this case, if the threshold is reached, an output spike is generated. The generation of the
output spike changes the membrane portal to a resting state. This model is determined by
Equation (8), as follows [25]:

Cm
dv
dt

= I(t), v← vrest ≈ when ≈ v ≥ vth (8)

where Cm is the membrane capacitance, vth is the threshold, v is the membrane potential,
and vrest is the resting potential.

The IF model consumes less power when compared to other SNN models [25]. The
Leaky Integrate-and-Fire (LIF) model is an important type of integrate–fire (IF) model with
leaks added to the membrane potential. The LIF model is defined using Equation (9) [25].

Tleak
dv
dt

= [V(t)− vrest] + rm I(t), v← vrest ≈ when ≈ v ≥ vth (9)

where Tleak = rmcm is the membrane time constant, and rm is the membrane’s resistance.
Due to the IF model’s accuracy in terms of replicating spiking behavior, as well as the

simulating speed and low computational cost, the IF model is widely used in applications
that require large-scale neural network simulations. A detailed description of the IF model
and the corresponding equations can be found in [25].

In this research work, for our proposed model we use the IF spiking neurons, mainly
because of their low computational cost and low power consumption. The IF model is one
of the most popular models utilized to understand the relationship between the variability
of inputs to the neurons, and the variability of their outputs [26]. In addition, the IF model
is used to understand the properties of large neural networks. More complex types of IF
models, such as quadratic integrate and fire, adaptive exponential integrate and fire, and
exponential integrate and fire, can be found in the literature [27–29].

Sensors 2023, 23, 7701 6 of 24

2.1.4. Spike Response Model (SRM)

The Spike Response Model (SRM) is another bio-inspired spiking neuron model, which
describes the effect of input spikes on the membrane portal more precisely [30]. Similar
to the IF model, the SRM model also generates the output spikes, whenever the threshold
of the internal membrane portal is reached. Unlike the LIF model, the SRM model uses
response kernels for voltage potential. The mathematical formula of the SRM model is
expressed in Equation (10) [31].

v(t) = η
(
t− t̂

)
+
∫ +∞

−∞
k
(
t− t̂, s

)
I(t− s)ds (10)

where v(t) is the neurons internal potential, t̂ is the emission time of the last neuron output
spike, η describes the state of action potential, k is the linear response to an input spike, and
I(t) represents the external or stimulating current. A detailed description of the SRM model
and the corresponding equations can be found in [30].

The SRM model offers low computational cost and requires 50 floating-point computa-
tions per 1 ms simulation [21]. Compared to other spiking neuron models, the SRM model
provides poor biological plausibility, and it is computationally complex when utilized in
digital system applications [21]. In Table 2, we present the comparison of various SNN
models, with respect to floating-point operations per second (FLOPS) and computational
complexity [21].

Table 2. Tabular comparison of various SNN models.

Model
Number of

Floating-Point
Operations (FLOPS)

Number of
Variables

Computational
Complexity

Integrate-and-Fire Model 5 1 Very Low

Hodgkin–Huxley Model 1200 1 High

Izhikevich Model 13 2 Very Low

Spike Response Model 50 1 Low

2.2. ANN to SNN Conversion

The ANNs are used extensively for solving several tasks in various fields, such as
machine learning and artificial intelligence. In this case, deep learning develops large
neural networks with millions of neurons that span up to thousands of layers. These large
neural networks have proven to be effective while solving several complex tasks, including
video classification, object detection and recognition, etc.; however, these networks require
massive computational resources [32–35]. The development of SNNs is mainly to address
the challenge associated with massive computational resources. The SNNs perform similar
tasks with less computational resources and with low energy consumption. In SNNs, all the
computations are event-driven, and operations are sparse. In this case, the computations
and operations are performed only when there is a significant change in the input. Typically,
training a large SNN is a difficult task; thus, an alternative approach is to take a pre-trained
ANN network and convert it into SNNs [1]. Existing ANN-to-SNN conversion methods in
the literature primarily focus on converting ReLu to IF neurons. In the proposed model,
we utilize an ANN-to-SNN conversion method proposed by [36], which uses the weights
of the ANN that replaces the analog (rate-based) neurons with integrate-and-fire spiking
neurons. For our proposed model, during the simulation, the average firing rate of SNN
neurons will gradually approximate the activations of corresponding original neurons.
Additionally, for our model, the deep SNNs have produced comparable results with ANNs
after the conversion and offer promising solutions to the energy-efficiency problems in the
ANNs during the time of deployment.

Sensors 2023, 23, 7701 7 of 24

An overview of our ANN-to-SNN conversion is illustrated in Figure 2. The process
of converting from ANN to SNN involves transferring the trained ANN settings that use
ReLU activations to an SNN with an identical structure, as depicted in Figure 2. This
approach enables the SNN to achieve exceptional performance while requiring minimal
computational resources. Initially, the ANN model is trained with the given inputs, and the
weights are saved. Typically, traditional trained ANN models are being executed on GPUs,
as illustrated in top modules in blue (in Figure 2). For our proposed model, the trained
ANN model and the weights are converted into SNN spikes and executed on neuromorphic
hardware, as demonstrated in the bottom modules in orange (in Figure 2).

Sensors 2023, 23, x FOR PEER REVIEW 7 of 24

results with ANNs after the conversion and offer promising solutions to the energy-
efficiency problems in the ANNs during the time of deployment.

An overview of our ANN-to-SNN conversion is illustrated in Figure 2. The
process of converting from ANN to SNN involves transferring the trained ANN
settings that use ReLU activations to an SNN with an identical structure, as depicted
in Figure 2. This approach enables the SNN to achieve exceptional performance while
requiring minimal computational resources. Initially, the ANN model is trained with
the given inputs, and the weights are saved. Typically, traditional trained ANN
models are being executed on GPUs, as illustrated in top modules in blue (in Figure
2). For our proposed model, the trained ANN model and the weights are converted
into SNN spikes and executed on neuromorphic hardware, as demonstrated in the
bottom modules in orange (in Figure 2).

Figure 2. Overview of our ANN-to-SNN conversion.

2.3. Neuromorphic Hardware
The neuromorphic hardware for SNNs is categorized into analog, digital, or

mixed-signal (analog/digital) designs [37]. Many neuromorphic hardware platforms
with varying configurations have emerged to manage large-scale neural networks. From
these neuromorphic platforms, fully digital and mixed-signal hardware, such as IBM
TrueNorth, NeuroGrid, BrainScaleS, Lohi, and SpiNNaker, are some of the
commonly used platforms among several applications [38]. A detailed description
of the neuromorphic hardware platforms can be found in [38].

In Table 3, we present various features/characteristics of existing neuromorphic
hardware platforms in the published literature. These details/comparisons provide
insight into different SNN architectures and learning mechanisms in the
neuromorphic computing domain. This information is relevant and important for us
to select and utilize a suitable neuromorphic platform for our current as well as future
research work. In our proposed work, we use the SpiNNaker neuromorphic
platform. Hence, a detailed description of the SpiNNaker system is discussed in the
following subsection. A more detailed description of these neuromorphic platforms
(as in Table 3) can be found in [9].

Figure 2. Overview of our ANN-to-SNN conversion.

2.3. Neuromorphic Hardware

The neuromorphic hardware for SNNs is categorized into analog, digital, or mixed-
signal (analog/digital) designs [37]. Many neuromorphic hardware platforms with varying
configurations have emerged to manage large-scale neural networks. From these neu-
romorphic platforms, fully digital and mixed-signal hardware, such as IBM TrueNorth,
NeuroGrid, BrainScaleS, Lohi, and SpiNNaker, are some of the commonly used platforms
among several applications [38]. A detailed description of the neuromorphic hardware
platforms can be found in [38].

In Table 3, we present various features/characteristics of existing neuromorphic hard-
ware platforms in the published literature. These details/comparisons provide insight into
different SNN architectures and learning mechanisms in the neuromorphic computing
domain. This information is relevant and important for us to select and utilize a suitable
neuromorphic platform for our current as well as future research work. In our proposed
work, we use the SpiNNaker neuromorphic platform. Hence, a detailed description of the
SpiNNaker system is discussed in the following subsection. A more detailed description of
these neuromorphic platforms (as in Table 3) can be found in [9].

Sensors 2023, 23, 7701 8 of 24

Table 3. Characteristics of existing neuromorphic hardware platforms.

Platform Technology
(mm) Electronics

Chip
Area

(mm2)

Neuron
Model

On-Chip
Learning

Neuron
Number
(Chip)

Synapse
Model

Synapse
Number
(Chip)

Online
Learning Power

TrueNorth
[9]

ASIC-
CMOS

28
Digital 430 LIF No 1 Million Binary 4

modulators 256 M No 65 mW
(per chip)

BrainScaleS
[9]

ASIC-
CMOS

180
Analog/Digital 50

Adaptive
exponential

IF
No 512 Spiking 4-bit

digital 100 K Yes
2 kW Per
module
(peak)

NeuroGrid
[9]

ASIC-
CMOS

180
Analog/Digital 168 Adaptive

Quadratic IF No 65,000 Shared
dendrite 100 M Yes 2.7 W

Loihi
[9]

ASIC-
CMOS
14 nm

Digital 60 LIF
Yes (with
plasticity

rule)
131,000 N/A 126 M Yes 0.45 W

SpiNNaker
[9]

ASIC-
CMOS
130 nm

Digital 102
LIF

LZH
HH

Yes
(synaptic
plasticity

rule)

16,000 Programmable 16 M Yes 1 W
(per chip)

2.4. SpiNNaker

The SpiNNaker was designed by the Advanced Processor Technologies Research
Group (APT), from the Department of Computer Science at the University of
Manchester [39]. It is composed of 57,600 processing nodes, each with 18 ARM9 pro-
cessors (specifically ARM968), 128 MB of mobile DDR-SDRAMs, totaling 1,036,800 cores,
and over 7 TB of RAM [40,41]. The SpiNNaker is an SNN architecture designed to simu-
late large-scale SNNs. The main component of the SpiNNaker system is the SpiNNaker
chip, whose main focus is to provide the required scalability and flexibility to perform
experiments with neuron models. Based on brain-inspired computing, the objective of the
SpiNNaker system is to design the neural architecture model of the human brain which is
made up of approximately 100 billion neurons connected by trillions of synapses [39]. The
SpiNNaker machine is a collection of low-power processors, which can simulate/execute
a small number of neurons and synapses in real time. In this case, all the processors
are interconnected by a high-speed network [42]. The high-speed network allows the
processors to communicate with each other, while distributing the computation load for
simulating a large neural network. The main advantage of the SpiNNaker system is its
ability to simulate large-scale neural networks using an asynchronous scheme of commu-
nication [40,43], which is essential for testing brain functions and developing new neural
network applications in areas such as robotics, machine learning, and artificial intelligence.
The SpiNNaker system is indeed an exciting creation in the field of neural networks, and it
has the potential to greatly advance the understanding of the brain and the information
processing of the brain [44,45].

2.4.1. Architecture of SpiNNaker Chip

As stated in [45], the SpiNNaker chip has 18 cores coupled with an external RAM
controller and a Network-on-Chip (NoC). Each core comprises an ARM968 processor, a
direct memory access controller, a controller for communications, a network interface
controller, and other peripherals, including a timer [45]. Every core in the SpiNNaker chip
runs given applications by simulating/executing a group of neurons at 200 MHz. Each core
also comprises 96 kB of tightly coupled memory (TCM). In order to avoid any contention
issues, this TCM is split into two: 64 kB for data (DTCM), and 32 kB for instructions
(ITCM). The DTCM consists of application data, including zero-initialized data, heap,
stack, and read/write. Each chip in the SpiNNaker system has 128 MB of shared memory
(i.e., SDRAM), which is directly accessible by all cores in the SpiNNaker chip [45]. In this
case, the memory access time varies significantly when accessing the different memories
mentioned above. Hence, the following should be considered when designing applications
for the SpiNNaker system.

Sensors 2023, 23, 7701 9 of 24

• Faster access to DTCM at ≈5 ns/word. DTCM is only limited to the local core.
• Access to SDRAM via a bridge. Accessing SDRAM could lead to a contention issue,

since more than one core in the SpiNNaker chip could attempt to access. This is a slow
process with >100 ns/word.

• As a result, each core encompasses a direct memory access (DMA) controller, which
is used to enable bulk transfer of data from the SDRAM core to DTCM efficiently.
Although the DMCA setup introduces a fixed overhead, the data are still transferred
from the processor independently at ≈10 ns/word.

The SpiNNaker is a large-scale parallel network, comprising low-power and energy-
efficient processors connected by a network. Each node in the network is responsible for
simulating/executing a small number of neurons and synapses [44]. Each node in the
network communicates with every other node to exchange information and distribute the
computation load. Each node in the network consists of processors, memory, I/O interfaces
and core. Every node in the SpiNNaker architecture is constructed from one or more
SpiNNaker boards, which are made up of SpiNNaker chips [11]. Currently, two production
versions called SpiNN-3 and SpiNN-5, each of which has 4 and 48 chips, respectively,
are available. In Table 4, we present the characteristics of various memory access of the
SpiNNaker chip sourced from [11].

Table 4. Characteristics of various memory access of SpiNNaker chip.

Memory Area Size Visibility Speed/CPU

SDRAM [11] 128 MB Node-Local 64 MBps

SRAM [11] 32 KB Node-Local 25 MBps

ITCM [11] 32 KB Node-Local 800 MBps

DTCM [11] 64 KB Node-Local 800 MBps

2.4.2. Components of SpiNNaker System

The architecture of the SpiNNaker system consists of the following four major
components [11].

Processing nodes: are the individual processors used to simulate/execute the behav-
ior of artificial neurons and synapses.

Interconnect fabric: is a high-speed network used to connect the processing nodes
together. Interconnect fabric allows efficient communication between the nodes, as well as
efficient load distribution across the network.

Host machine: is a separate master computer/processor used to configure and control
the SpiNNaker system. The host machine constantly communicates with the processing
nodes via the network interface. The host machine also provides a user interface to set up
and run the simulations.

Software stack: consists of a variety of software components that work together
to enable the simulation/execution of neural networks on the SpiNNaker system. This
software stack includes the operating system running on the processing nodes, higher-level
software libraries, and tools for configuring and running the simulations.

2.5. PyNN

In [46], the authors introduced PyNN, which is a python interface used to define the
simulations after creating the SNN model. The simulations are typically executed on the
SpiNNaker machine via an event-driven operating system [46]. Using a python script,
PyNN allows users to specify the SNN simulations for executions. In this case, NEST,
Neuron, INI, Brian, and SpiNNaker are commonly used SNN simulators. In this research
work, we use the INI and SpiNNaker simulators for our simulations. Detailed information
of SpiNNaker hardware can be found in [42].

Sensors 2023, 23, 7701 10 of 24

2.6. Sentiment Analysis Using Natural Language Processing

Sentiment analysis is a natural language processing (NLP) technique that is commonly
used to identify, extract, and quantify subjective information from text data [47]. Sentiment
analysis is mainly used to analyze the text and determine the sentiment score. The sentiment
score can range from−1 (indicating very negative sentiment) to +1 (indicating very positive
sentiment), with 0 representing the neutral sentiment [48]. Using deep-learning-based
approaches to perform sentiment analysis in NLP is a popular research area. Sentiment
analysis is widely employed across various fields, such as marketing, finance, and customer
service, to name a few [49]. Sentiment analysis can also be used to analyze financial news
and social media to predict stock prices or market trends [50]. However, with the ongoing
increase in data sizes, novel and efficient models (for sentiment analysis) are needed to
manage and process the massive amount of data [51]. Although the existing ANN models
provide the required accuracy while classifying the data, the ANN models are not efficient
in terms of energy consumption and speed-performance [52]. Therefore, in this research
work, we propose a novel, unique, and efficient SNN-based sentiment analysis model to
address the aforementioned issues.

3. Our Proposed Neuromorphic NLP Sentiment Analysis Model

In this section, we discuss and present our proposed SNN-based sentiment analysis
model deployed on the SpiNNaker neuromorphic hardware. Our proposed model is
created in such a way to perform a detailed sentiment analysis that involves evaluating the
extent of positivity/negativity associated with a phrase or a word. We name our proposed
model the Spiking Sentiment Analysis model using the SpiNNaker (SSA-SpiNNaker). For
our proposed model, initially, the ANNs neural network is created by adding the input,
hidden, and output layers, and incorporating the dropout to avoid overfitting with a
recommended rate of 50%. Then, at every layer, the dense function is utilized to connect
the units of the network fully. In the hidden layers, we utilize the rectified linear units
(RELU) to train the model, whereas in the output layer, we utilize the sigmoid activation.
In this case, the shape of the input at the input layer is defaulted to 10,000, and the shape of
the output is defaulted to 50. For our proposed model, the input is a sequence of words,
whereas the output is a binary sentiment label with either 0 or 1. In this case, the value
close to 0 is considered as a negative sentiment, and a value close to 1 is considered as a
positive statement. After creating the ANN model and testing its accuracy, we create the
SNN model based on this ANN model.

Creation of SNN Model from ANN

Typically, training a deep SNN and learning the synaptic weights is a difficult task
compared to creating a SNN model from a pre-trained ANN model. In original ANN
neural networks, the activations are real values, and the analog rate of these neurons can
easily be replaced using the integrate-and-fire spiking neurons in a SNN. We utilize the
following steps to perform the ANN-to-SNN conversion for our proposed SSA-SpiNNaker.

1. Firstly, a Keras model is created by extracting the relevant input information. This
model serves as a common abstract stage from the input.

2. Secondly, the pre-trained ANN sentiment analysis model is converted into the SNN
model using the weights of the ANN, and replaces the analog neurons by simple
integrate-and-fire spiking neurons.

3. Thirdly, once the SNN conversion is completed, the resulting spiking neural network
is exported for simulation, to a spiking simulator or to dedicated spiking neuron chips
on the neuromorphic hardware. In our case, the SSA-SpiNNaker is deployed on the
SpiNNaker hardware after the conversion.

4. Finally, our SSA-SpiNNaker model is thoroughly tested and evaluated, the accuracy is
compared with our pre-trained ANN model, and the energy consumption is recorded.

Sensors 2023, 23, 7701 11 of 24

We designed our proposed SSA-SpiNNaker model in python. The pseudocode for our
proposed SSA-SpiNNaker model is presented in Algorithm 1. As illustrated in Algorithm
1, initially, the IMDB dataset is loaded from the Keras library. This dataset is then input
to our SSA-SpiNNaker model, after importing all the necessary python modules. Then,
the input dataset is divided into two: training (80%) and testing (20%). For our design,
the ANN model is initialized as a sequential model and activated with the rectified linear
unit (RELU) activation function. Then, we create the input layer, output layer, and the
hidden layer required to train the model. Next, we compile the ANN model, train it with
the given input dataset, and save the model. This saved ANN model is then converted into
the SNN model by initializing the SNN model parameters, including time step, duration,
batch size, and the input rate. The weights of the ANN model are converted into synapses
weights. The SNN model parameters are initialized to facilitate the creation of the SNN
model architecture. Based on the weight updates and spike rate, the membrane potential
is updated; if the membrane potential reaches the threshold, spikes will be emitted and
propagated to the next layer. Once all the spikes emission is completed, the output spikes
are collected and saved as the new SNN model. Finally, we evaluate the newly created
SNN model with the user inputs, and compare the accuracy with our pre-trained ANN
model. The performance and accuracy of our proposed SSA-SpiNNaker model is discussed
in detail in Section 4.

Algorithm 1: Pseudocode for Our SSA-SpiNNaker Model/Algorithm

Data: IMDB Dataset loaded from the Keras library
Result:
Positive or Negative Review based on user inputs

Step 1:

• Import all required python modules
• Training dataset (train x, train y)
• Test Dataset (test x, test y)

Step 2:

• Initialize the ANN model as a sequential model
• Define activation function
• Add input layer
• Add input layer
• Add output layer

Step 3:

• Compile the model
• Train the model
• Save the model

Step 4:

• Convert ANN weights to synaptic weights
• Initialize the SNN model from saved ANN model
• Setup simulation environment
• Initialize simulation parameters

Step 5: foreach: Time step in the simulation duration do
Foreach: For each layer in the SNN model: do

Foreach: For each neuron in the layer: do

• Based on incoming spikes and weights update the neuron membrane potential.
• If the membrane potential exceeds firing threshold, emit a spike.
• By activating connected synapses, propagate the spike to next later.

Step 6:

• Collect output spikes
• Evaluate the performance of the model
• Test the model with user provided reviews

Sensors 2023, 23, 7701 12 of 24

In Figure 3, we demonstrate the programming model of our proposed SSA-SpiNNaker
model. As illustrated in Figure 3, initially, the IMDB dataset is loaded and trained using
the ANN model. Then the trained ANN model is converted to the SNN model. Next, the
SNN model is tested against various inputs, and the responses/results are obtained. Our
proposed SSA-SpiNNaker model is compared with our pre-trained ANN model, using
various simulators. For our proposed model and for the corresponding Algorithm 1, we
utilize several important parameters to ensure the accuracy and efficiency of our results.
The parameters used for our SSA-SpiNNaker model are as follows:

• The time step parameter represents the interval at which our proposed model processes
information utilized for time resolution of spikes in milliseconds.

• The duration parameter determines the runtime of simulation of one input in milliseconds.
• The batch size parameter specifies the number of test samples that will be simulated in

parallel. This parameter impacts both the computational efficiency and memory usage.
• The simulator runs the converted spiking network.
• The input-rate parameter dictates the frequency at which new data are fed into the

model, mirroring the pace of data arrival in real-world applications.
• The threshold in millivolts defines the voltage at which a spike is fired.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 24

• Collect output spikes
• Evaluate the performance of the model
• Test the model with user provided reviews

In Figure 3, we demonstrate the programming model of our proposed SSA-
SpiNNaker model. As illustrated in Figure 3, initially, the IMDB dataset is loaded and
trained using the ANN model. Then the trained ANN model is converted to the SNN
model. Next, the SNN model is tested against various inputs, and the responses/results
are obtained. Our proposed SSA-SpiNNaker model is compared with our pre-trained
ANN model, using various simulators. For our proposed model and for the
corresponding Algorithm 1, we utilize several important parameters to ensure the
accuracy and efficiency of our results. The parameters used for our SSA-SpiNNaker model
are as follows:
• The time step parameter represents the interval at which our proposed model

processes information utilized for time resolution of spikes in milliseconds.
• The duration parameter determines the runtime of simulation of one input in

milliseconds.
• The batch size parameter specifies the number of test samples that will be simulated

in parallel. This parameter impacts both the computational efficiency and memory
usage.

• The simulator runs the converted spiking network.
• The input-rate parameter dictates the frequency at which new data are fed into the

model, mirroring the pace of data arrival in real-world applications.
• The threshold in millivolts defines the voltage at which a spike is fired.

By meticulously configuring and tuning these parameters, we strive to balance the
tradeoff between precision and computational efficiency. This, in turn, will enable us to
extract meaningful insights and to derive appropriate conclusions from our experiments,
as presented in Section 4.

Figure 3. Programming model demonstrating the execution flow of our SSA-SpiNNaker model.

Figure 3. Programming model demonstrating the execution flow of our SSA-SpiNNaker model.

By meticulously configuring and tuning these parameters, we strive to balance the
tradeoff between precision and computational efficiency. This, in turn, will enable us to
extract meaningful insights and to derive appropriate conclusions from our experiments,
as presented in Section 4.

4. Experimental Results and Analysis

We perform experiments to evaluate the feasibility and efficiency of our proposed SSA-
SpiNNaker model, especially in terms of energy consumption, and accuracy. We deploy
our proposed SSA-SpiNNaker model on the SpiNNaker hardware. After deployment, a
large number of spiking neurons are generated, using various simulation modes, which are
supported by the SpiNNaker hardware. Then, we compute the accuracy of our proposed

Sensors 2023, 23, 7701 13 of 24

SSA-SpiNNaker model with each simulation mode and compare the accuracy results with
that of our pre-trained ANN sentiment analysis model. Detailed experimental results
and analysis on the above performance metrics are presented in subsequent sections. In
addition, from our investigation on existing works, we could not find any models in the
published literature that provided an SSA-SpiNNaker model similar to ours. Hence, in this
paper, we do not report any direct performance comparisons with the existing models.

4.1. Dataset Description and Usage

For our experiments, we use the Internet Movie Database (IMDB) dataset that contains
movie reviews together with the binary sentiment polarity labels associated with every
movie [53]. This IMDB dataset was created by a Stanford researcher, has the typical accuracy
of 88.89%, and is widely used for several applications. The IMDB dataset used for the
sentiment classification consists of 50,000 movie reviews from the users of IMDB. Every
user labeled the review as either positive (represented by 1) or negative (represented by
0). Each review undergoes preprocessing and is encoded into a sequence of integer word
indexes. The words in the reviews are usually indexed using the overall frequency of the
word within the dataset. For instance, the integer ”3” encodes the third most frequent word
in the data. Out of the 50,000 reviews, the data are divided into 25,000 reviews for training
and 25,000 reviews for testing. The Keras model provides access to the IMDB dataset by
default; thus, there is no need to download it separately for experiments. The method
keras.datasets.imdb.load data () is used to load the data from IMDB in the format that is
required to train the neural network models.

4.2. Model Execution

After loading the IMDB movie review dataset, the ANN model is created, then trained
and compiled. From the ANN model, the SNN model is created using various SpiNNaker
simulators. In this case, using the INI simulator, we observe better results, especially in
terms of accuracy, compared to other simulators. As a result, for all of our experiments we
used the INI simulator as our default simulator. The SNN model used for our proposed
SSA-SpiNNaker model is loaded with a total of 505,201 trainable parameters, and 0 non-
trainable parameters. Then, the parsed SNN model is compiled. The details of our SNN
model are presented in Table 5.

Table 5. Details of the SNN.

Number of Operations Number of Neurons Number of Synapses

1,010,251 151 505,050

In our proposed SSA-SpiNNaker model, a total of 1,010,251 operations are performed
for both the training and inference, by using 151 neurons and 505,050 synapses, with an
average spike rate of 0.0091 spikes per simulation time step. In this case, five test samples
are taken to evaluate the parsed model, where the top-1 and top-5 accuracies are observed
as 100%. These top-1 and top-5 are standard accuracy matrices utilized to evaluate the
performance of classification models. Typically, top-1 accuracy provides insight into the
precision of the model, whereas top-5 accuracy provides insight into the model’s ability
to handle uncertainty and diverse possibilities. Using the INI simulator, in general, our
SNN model achieves 100% accuracy on five test samples, whereas our pre-trained ANN
model only achieves 90% accuracy. In Table 6, we present the network summary of the
SNN created for our proposed SSA-SpiNNaker model.

Sensors 2023, 23, 7701 14 of 24

Table 6. Network summary table of the SSA-SpiNNaker SNN model.

Layer (Type) Output Shape Param #

input (Input Layer) (5, 10,000) 0

0Dense 50 (Dense) (5, 50) 500,050

1Dense 50 (Dense) (5, 50) 2550

2Dense 50 (Dense) (5, 50) 2550

3Dense 1 (Dense) (5, 1) 51

For our proposed SNN model, the input layer represents the shape of the input,
whereas the dense layers are fully connected layers with neurons connecting to every
neuron in the previous layer.

4.3. Testing Our SSA-SpiNNaker Model

We tested our proposed SNN model utilizing different user review inputs. In this case,
our SNN model achieves 100% accuracy. Figure 4 illustrates the accuracy of our pre-trained
ANN model and our proposed SNN model for top-5 samples. These accuracy results are
obtained using the INI simulator. As illustrated in Figure 4, for top-5 samples, our SNN
model achieves 100% accuracy, whereas our pre-trained ANN model achieves 90% accuracy.
The reason for utilizing top-5 samples for our proposed model is mainly because top-5
accuracy is considered as the correct prediction, if the true label is among the model’s top-5
predicted sentiments. In general, top-5 accuracy is utilized when managing diverse and
complex datasets comprising multiple valid input classes. Although top-5 samples accuracy
is typically considered to be sufficient to obtain the accuracy of the model. As future work,
we will explore ways to obtain general accuracy by adopting statistical measures, such as
top-N, where N is generic, in order to further enhance our proposed model.

Sensors 2023, 23, x FOR PEER REVIEW 14 of 24

model only achieves 90% accuracy. In Table 6, we present the network summary of the
SNN created for our proposed SSA-SpiNNaker model.

Table 6. Network summary table of the SSA-SpiNNaker SNN model.

Layer (Type) Output Shape Param #
input (Input Layer) (5, 10,000) 0
0Dense 50 (Dense) (5, 50) 500,050
1Dense 50 (Dense) (5, 50) 2550
2Dense 50 (Dense) (5, 50) 2550
3Dense 1 (Dense) (5, 1) 51

For our proposed SNN model, the input layer represents the shape of the input,
whereas the dense layers are fully connected layers with neurons connecting to every
neuron in the previous layer.

4.3. Testing Our SSA-SpiNNaker Model
We tested our proposed SNN model utilizing different user review inputs. In this

case, our SNN model achieves 100% accuracy. Figure 4 illustrates the accuracy of our pre-
trained ANN model and our proposed SNN model for top-5 samples. These accuracy
results are obtained using the INI simulator. As illustrated in Figure 4, for top-5 samples,
our SNN model achieves 100% accuracy, whereas our pre-trained ANN model achieves
90% accuracy. The reason for utilizing top-5 samples for our proposed model is mainly
because top-5 accuracy is considered as the correct prediction, if the true label is among
the model’s top-5 predicted sentiments. In general, top-5 accuracy is utilized when
managing diverse and complex datasets comprising multiple valid input classes.
Although top-5 samples accuracy is typically considered to be sufficient to obtain the
accuracy of the model. As future work, we will explore ways to obtain general accuracy
by adopting statistical measures, such as top-N, where N is generic, in order to further
enhance our proposed model.

Figure 4. Accuracy of our proposed SNN vs. ANN for top-5 samples.

In Figure 5, we present the response of our SSA-SpiNNaker model for various user
inputs, especially for the worst-case and best-case inputs. As depicted, based on the user
input words, for instance, for the worst-case (i.e., terrible…) and for the best-case (i.e.,

Figure 4. Accuracy of our proposed SNN vs. ANN for top-5 samples.

In Figure 5, we present the response of our SSA-SpiNNaker model for various user
inputs, especially for the worst-case and best-case inputs. As depicted, based on the
user input words, for instance, for the worst-case (i.e., terrible. . .) and for the best-case
(i.e., amazing. . .) inputs, our proposed model predicts the sentiment as a negative review
and as a positive review, respectively.

Sensors 2023, 23, 7701 15 of 24

Sensors 2023, 23, x FOR PEER REVIEW 15 of 24

amazing…) inputs, our proposed model predicts the sentiment as a negative review and
as a positive review, respectively.

Figure 5. Response of our SSA-SpiNNaker model during testing phase on SpiNNaker hardware: for
worst-case and best-case user inputs; in here, 1.2217864e-14 = 1.2217864 × 10−14.

We also tested our proposed SNN model for the average user inputs/review. As
demonstrated in Figure 6, since the average review is not negative, our SSA-SpiNNaker
model considers this average input as a positive review.

Figure 6. Response of our SSA-SpiNNaker model during testing phase on SpiNNaker hardware: for
average user inputs.

4.4. Evaluating Our SSA-SNN Model
In this subsection, we present the evaluation of our proposed SSA-SNN model using

important characteristics. In our research work, we mainly focus on analyzing the neurons
membrane potential in “0Dense 50 layer” of the SSA-SNN model. In this case, the
membrane potential refers to the electrical potential difference across the cell membrane
of neurons in “0Dense 50 layer”. The overall information processing of our SSA-SNN
model neural network is determined by performing computations based on the activation
function, with the inputs received from the previous layer neurons. Figure 7 demonstrates
the membrane potential graphs for “0Dense 50 layer” and “1Dense 50 layer”, which
explains the connectivity and activation patterns of the neurons. The blue scattered line
(on the bottom) and red scattered line (on the top) in these graphs represent the reset (or
resting) potential and firing threshold potential, respectively. Once a neuron reaches the
firing threshold, it will automatically be set to the resting potential. At the resting
potential, the neuron will reset, recover, and prepare for future firing. When the
membrane potential of the neuron is at its threshold, it indicates that the neuron has
received sufficient input and is ready for transmitting an electrical signal to its
downstream connections. The firing threshold hold also determines when a neuron
becomes active and initiates the output signal. The neurons voltage trajectory under
different stamps is shown in the graphs (in Figure 7). The various points in the graph that
lie between the reset potential and the firing threshold indicate that the neurons have not
received enough input activation and are waiting for an opportunity to reach the firing
threshold potential.

Similar graphs (as in Figure 7) are generated and depicted in Figure 8 for the
membrane potential for 2Dense 50 layer, and 3Dense 1 layer. As depicted in Figure 8b, the
single neuron present in the 3Dense 1 layer is below the reset potential, which indicates
that the neuron just finished firing a spike during the refractory period and is unable to

Figure 5. Response of our SSA-SpiNNaker model during testing phase on SpiNNaker hardware: for
worst-case and best-case user inputs; in here, 1.2217864e-14 = 1.2217864 × 10−14.

We also tested our proposed SNN model for the average user inputs/review. As
demonstrated in Figure 6, since the average review is not negative, our SSA-SpiNNaker
model considers this average input as a positive review.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 24

amazing…) inputs, our proposed model predicts the sentiment as a negative review and
as a positive review, respectively.

Figure 5. Response of our SSA-SpiNNaker model during testing phase on SpiNNaker hardware: for
worst-case and best-case user inputs; in here, 1.2217864e-14 = 1.2217864 × 10−14.

We also tested our proposed SNN model for the average user inputs/review. As
demonstrated in Figure 6, since the average review is not negative, our SSA-SpiNNaker
model considers this average input as a positive review.

Figure 6. Response of our SSA-SpiNNaker model during testing phase on SpiNNaker hardware: for
average user inputs.

4.4. Evaluating Our SSA-SNN Model
In this subsection, we present the evaluation of our proposed SSA-SNN model using

important characteristics. In our research work, we mainly focus on analyzing the neurons
membrane potential in “0Dense 50 layer” of the SSA-SNN model. In this case, the
membrane potential refers to the electrical potential difference across the cell membrane
of neurons in “0Dense 50 layer”. The overall information processing of our SSA-SNN
model neural network is determined by performing computations based on the activation
function, with the inputs received from the previous layer neurons. Figure 7 demonstrates
the membrane potential graphs for “0Dense 50 layer” and “1Dense 50 layer”, which
explains the connectivity and activation patterns of the neurons. The blue scattered line
(on the bottom) and red scattered line (on the top) in these graphs represent the reset (or
resting) potential and firing threshold potential, respectively. Once a neuron reaches the
firing threshold, it will automatically be set to the resting potential. At the resting
potential, the neuron will reset, recover, and prepare for future firing. When the
membrane potential of the neuron is at its threshold, it indicates that the neuron has
received sufficient input and is ready for transmitting an electrical signal to its
downstream connections. The firing threshold hold also determines when a neuron
becomes active and initiates the output signal. The neurons voltage trajectory under
different stamps is shown in the graphs (in Figure 7). The various points in the graph that
lie between the reset potential and the firing threshold indicate that the neurons have not
received enough input activation and are waiting for an opportunity to reach the firing
threshold potential.

Similar graphs (as in Figure 7) are generated and depicted in Figure 8 for the
membrane potential for 2Dense 50 layer, and 3Dense 1 layer. As depicted in Figure 8b, the
single neuron present in the 3Dense 1 layer is below the reset potential, which indicates
that the neuron just finished firing a spike during the refractory period and is unable to

Figure 6. Response of our SSA-SpiNNaker model during testing phase on SpiNNaker hardware: for
average user inputs.

4.4. Evaluating Our SSA-SNN Model

In this subsection, we present the evaluation of our proposed SSA-SNN model using
important characteristics. In our research work, we mainly focus on analyzing the neu-
rons membrane potential in “0Dense 50 layer” of the SSA-SNN model. In this case, the
membrane potential refers to the electrical potential difference across the cell membrane of
neurons in “0Dense 50 layer”. The overall information processing of our SSA-SNN model
neural network is determined by performing computations based on the activation func-
tion, with the inputs received from the previous layer neurons. Figure 7 demonstrates the
membrane potential graphs for “0Dense 50 layer” and “1Dense 50 layer”, which explains
the connectivity and activation patterns of the neurons. The blue scattered line (on the
bottom) and red scattered line (on the top) in these graphs represent the reset (or resting)
potential and firing threshold potential, respectively. Once a neuron reaches the firing
threshold, it will automatically be set to the resting potential. At the resting potential, the
neuron will reset, recover, and prepare for future firing. When the membrane potential
of the neuron is at its threshold, it indicates that the neuron has received sufficient input
and is ready for transmitting an electrical signal to its downstream connections. The firing
threshold hold also determines when a neuron becomes active and initiates the output
signal. The neurons voltage trajectory under different stamps is shown in the graphs (in
Figure 7). The various points in the graph that lie between the reset potential and the firing
threshold indicate that the neurons have not received enough input activation and are
waiting for an opportunity to reach the firing threshold potential.

Sensors 2023, 23, 7701 16 of 24

Sensors 2023, 23, x FOR PEER REVIEW 16 of 24

fire a spike at that specific time. From the graph in Figure 8b, it is evident that only one
neuron and the membrane potential refer to the single neuron.

Figure 7. Membrane potential of neurons in SSA-SNN model at (a) 0Dense 50 layer and (b) 1Dense
50 layer.

Figure 8. Membrane potential of neurons in SSA-SNN model at (a) 2Dense 50 layer and (b) 3Dense
1 layer.

Figure 9 shows the Activation map values of 50 neurons at “0Dense 50 layer” while
processing input data. Visualization of the activation map will provide insight into the
internal representations for specific input for each of the layers in the model. The values
0.00, 0.25, and 0.50 in Figure 9 represent the activation values. As shown in each layer, the
activation values are represented with various colors. The activation values at layer 0 (in
green) show the moderate activation values, and signify a moderately strong activation

Figure 7. Membrane potential of neurons in SSA-SNN model at (a) 0Dense 50 layer and (b) 1Dense
50 layer.

Similar graphs (as in Figure 7) are generated and depicted in Figure 8 for the membrane
potential for 2Dense 50 layer, and 3Dense 1 layer. As depicted in Figure 8b, the single
neuron present in the 3Dense 1 layer is below the reset potential, which indicates that the
neuron just finished firing a spike during the refractory period and is unable to fire a spike
at that specific time. From the graph in Figure 8b, it is evident that only one neuron and the
membrane potential refer to the single neuron.

Sensors 2023, 23, x FOR PEER REVIEW 16 of 24

fire a spike at that specific time. From the graph in Figure 8b, it is evident that only one
neuron and the membrane potential refer to the single neuron.

Figure 7. Membrane potential of neurons in SSA-SNN model at (a) 0Dense 50 layer and (b) 1Dense
50 layer.

Figure 8. Membrane potential of neurons in SSA-SNN model at (a) 2Dense 50 layer and (b) 3Dense
1 layer.

Figure 9 shows the Activation map values of 50 neurons at “0Dense 50 layer” while
processing input data. Visualization of the activation map will provide insight into the
internal representations for specific input for each of the layers in the model. The values
0.00, 0.25, and 0.50 in Figure 9 represent the activation values. As shown in each layer, the
activation values are represented with various colors. The activation values at layer 0 (in
green) show the moderate activation values, and signify a moderately strong activation

Figure 8. Membrane potential of neurons in SSA-SNN model at (a) 2Dense 50 layer and (b) 3Dense
1 layer.

Sensors 2023, 23, 7701 17 of 24

Figure 9 shows the Activation map values of 50 neurons at “0Dense 50 layer” while
processing input data. Visualization of the activation map will provide insight into the
internal representations for specific input for each of the layers in the model. The values
0.00, 0.25, and 0.50 in Figure 9 represent the activation values. As shown in each layer,
the activation values are represented with various colors. The activation values at layer 0
(in green) show the moderate activation values, and signify a moderately strong activation
within the activation map. The activation values at layer 10 (in yellow) represent the high
activation values and indicate that the neurons at layer 10 have strong activation. Similarly,
the activations at layer 20 (in blue) indicate the lower activation values. The high, moderate,
and low activations at various layers indicate how the neurons are activated at a particular
layer, having a significant influence on the network output. The graph in Figure 10 shows
the activation values of the single neuron at “3Dense 1 layer”. In this case, there is only one
neuron in the layer with moderate activation values.

Sensors 2023, 23, x FOR PEER REVIEW 17 of 24

within the activation map. The activation values at layer 10 (in yellow) represent the high
activation values and indicate that the neurons at layer 10 have strong activation.
Similarly, the activations at layer 20 (in blue) indicate the lower activation values. The
high, moderate, and low activations at various layers indicate how the neurons are
activated at a particular layer, having a significant influence on the network output. The
graph in Figure 10 shows the activation values of the single neuron at “3Dense 1 layer”.
In this case, there is only one neuron in the layer with moderate activation values.

Figure 9. Activation values of the 50 neurons belonging to 0Dense 50 layer.

Figure 10. Activation values of the single neuron belonging to 3Dense 1 layer.

The spike rate distributions at 0Dense 50 layer and 3Dense 1 layer are illustrated in
Figure 11. These graphs (in Figure 11) demonstrate how the spike rates are distributed
within the dense layer, under different frequencies (in Hz) (in y-axis) as well as at different
activation values (in x-axis). The frequency of spike rates is usually represented in the
powers of 10; for instance, the frequency 1.2 × 100 is usually read as 1.2 Hz. As depicted in
Figure 11b, the single neuron in the 3Dense 1 layer is activated with the activation value
0.0, indicating that the neurons activation value is at its lowest at a spike rate frequency of
2 Hz.

Figure 9. Activation values of the 50 neurons belonging to 0Dense 50 layer.

Sensors 2023, 23, x FOR PEER REVIEW 17 of 24

within the activation map. The activation values at layer 10 (in yellow) represent the high
activation values and indicate that the neurons at layer 10 have strong activation.
Similarly, the activations at layer 20 (in blue) indicate the lower activation values. The
high, moderate, and low activations at various layers indicate how the neurons are
activated at a particular layer, having a significant influence on the network output. The
graph in Figure 10 shows the activation values of the single neuron at “3Dense 1 layer”.
In this case, there is only one neuron in the layer with moderate activation values.

Figure 9. Activation values of the 50 neurons belonging to 0Dense 50 layer.

Figure 10. Activation values of the single neuron belonging to 3Dense 1 layer.

The spike rate distributions at 0Dense 50 layer and 3Dense 1 layer are illustrated in
Figure 11. These graphs (in Figure 11) demonstrate how the spike rates are distributed
within the dense layer, under different frequencies (in Hz) (in y-axis) as well as at different
activation values (in x-axis). The frequency of spike rates is usually represented in the
powers of 10; for instance, the frequency 1.2 × 100 is usually read as 1.2 Hz. As depicted in
Figure 11b, the single neuron in the 3Dense 1 layer is activated with the activation value
0.0, indicating that the neurons activation value is at its lowest at a spike rate frequency of
2 Hz.

Figure 10. Activation values of the single neuron belonging to 3Dense 1 layer.

The spike rate distributions at 0Dense 50 layer and 3Dense 1 layer are illustrated in
Figure 11. These graphs (in Figure 11) demonstrate how the spike rates are distributed
within the dense layer, under different frequencies (in Hz) (in y-axis) as well as at different
activation values (in x-axis). The frequency of spike rates is usually represented in the
powers of 10; for instance, the frequency 1.2 × 100 is usually read as 1.2 Hz. As depicted in
Figure 11b, the single neuron in the 3Dense 1 layer is activated with the activation value 0.0,
indicating that the neurons activation value is at its lowest at a spike rate frequency of 2 Hz.

Sensors 2023, 23, 7701 18 of 24Sensors 2023, 23, x FOR PEER REVIEW 18 of 24

Figure 11. Spike rate distribution of neurons at (a) 0Dense 50 layer and (b) 3Dense 1 layer.

In Figure 12, the graph demonstrates the comparison of ANN activations versus the
SNN spike rates at 0Dense 50 layer. This graph (in Figure 12) shows the representations
associated with the dense layers of ANN and SNN networks. It also illustrates the
correlation between the SNN spike rates and ANN activations averaged over one sample.
In Figure 12, the data points in graph represent the correlation values between the ANN
and SNN outputs, used to indicate the similarity between the ANN and SNN. In this case,
the clustered blue dots suggest a strong correlation between ANN and SNN outputs,
whereas the scattered data points represent a weaker correlation. The graph in Figure 13
depicts the activity distribution of ANN activations and SNN spike rates distributions
across various dense layers. In Figure 13, the x-axis represents the 0, 1, and 2 Dense layers,
and the y-axis represents the frequency. From this graph (in Figure 13), it is evident that
at the 0Dense 50 layer, the spike rates (represented in orange lines) are more compared to
the ANN activations (represented in blue lines). This is mainly because at the 0Dense
layer, the input is converted into spikes, in order to be processed by the neurons in SNNs.

Figure 12. Correlation between ANN activations vs. SNN spike rates.

Figure 11. Spike rate distribution of neurons at (a) 0Dense 50 layer and (b) 3Dense 1 layer.

In Figure 12, the graph demonstrates the comparison of ANN activations versus the
SNN spike rates at 0Dense 50 layer. This graph (in Figure 12) shows the representations
associated with the dense layers of ANN and SNN networks. It also illustrates the corre-
lation between the SNN spike rates and ANN activations averaged over one sample. In
Figure 12, the data points in graph represent the correlation values between the ANN and
SNN outputs, used to indicate the similarity between the ANN and SNN. In this case, the
clustered blue dots suggest a strong correlation between ANN and SNN outputs, whereas
the scattered data points represent a weaker correlation. The graph in Figure 13 depicts the
activity distribution of ANN activations and SNN spike rates distributions across various
dense layers. In Figure 13, the x-axis represents the 0, 1, and 2 Dense layers, and the y-axis
represents the frequency. From this graph (in Figure 13), it is evident that at the 0Dense
50 layer, the spike rates (represented in orange lines) are more compared to the ANN
activations (represented in blue lines). This is mainly because at the 0Dense layer, the input
is converted into spikes, in order to be processed by the neurons in SNNs.

Sensors 2023, 23, x FOR PEER REVIEW 18 of 24

Figure 11. Spike rate distribution of neurons at (a) 0Dense 50 layer and (b) 3Dense 1 layer.

In Figure 12, the graph demonstrates the comparison of ANN activations versus the
SNN spike rates at 0Dense 50 layer. This graph (in Figure 12) shows the representations
associated with the dense layers of ANN and SNN networks. It also illustrates the
correlation between the SNN spike rates and ANN activations averaged over one sample.
In Figure 12, the data points in graph represent the correlation values between the ANN
and SNN outputs, used to indicate the similarity between the ANN and SNN. In this case,
the clustered blue dots suggest a strong correlation between ANN and SNN outputs,
whereas the scattered data points represent a weaker correlation. The graph in Figure 13
depicts the activity distribution of ANN activations and SNN spike rates distributions
across various dense layers. In Figure 13, the x-axis represents the 0, 1, and 2 Dense layers,
and the y-axis represents the frequency. From this graph (in Figure 13), it is evident that
at the 0Dense 50 layer, the spike rates (represented in orange lines) are more compared to
the ANN activations (represented in blue lines). This is mainly because at the 0Dense
layer, the input is converted into spikes, in order to be processed by the neurons in SNNs.

Figure 12. Correlation between ANN activations vs. SNN spike rates. Figure 12. Correlation between ANN activations vs. SNN spike rates.

Sensors 2023, 23, 7701 19 of 24Sensors 2023, 23, x FOR PEER REVIEW 19 of 24

Figure 13. Activity distribution of ANN activations and SNN spike rates.

In Figure 14a,b, the graphs demonstrate the total number of SNN operations and the
spike counts, respectively, which take place over a 0.1 ms time step. The graph (in Figure
14a) depicts the number of spikes generated at various time stamps, whereas the graph
(in Figure 14b) shows the number of SNN operations created under various times stamps
during the execution of our proposed SSA-SNN SpiNNaker model.

Figure 14. (a) SNN spike count for a time step of 0.1 ms; in here, # spikes means number of spikes,
and 1e2 = 1 × 102; (b) Total number of SNN operations for a time step of 0.1 ms.

Figure 13. Activity distribution of ANN activations and SNN spike rates.

In Figure 14a,b, the graphs demonstrate the total number of SNN operations and
the spike counts, respectively, which take place over a 0.1 ms time step. The graph (in
Figure 14a) depicts the number of spikes generated at various time stamps, whereas the
graph (in Figure 14b) shows the number of SNN operations created under various times
stamps during the execution of our proposed SSA-SNN SpiNNaker model.

Sensors 2023, 23, x FOR PEER REVIEW 19 of 24

Figure 13. Activity distribution of ANN activations and SNN spike rates.

In Figure 14a,b, the graphs demonstrate the total number of SNN operations and the
spike counts, respectively, which take place over a 0.1 ms time step. The graph (in Figure
14a) depicts the number of spikes generated at various time stamps, whereas the graph
(in Figure 14b) shows the number of SNN operations created under various times stamps
during the execution of our proposed SSA-SNN SpiNNaker model.

Figure 14. (a) SNN spike count for a time step of 0.1 ms; in here, # spikes means number of spikes,
and 1e2 = 1 × 102; (b) Total number of SNN operations for a time step of 0.1 ms.

Figure 14. (a) SNN spike count for a time step of 0.1 ms; in here, # spikes means number of spikes,
and 1e2 = 1 × 102; (b) Total number of SNN operations for a time step of 0.1 ms.

Sensors 2023, 23, 7701 20 of 24

4.5. Energy Consumption

Energy consumption is also an important performance metric utilized to evaluate our
proposed SNN model. Due to the computational resource limitation, the energy consump-
tion for our pre-trained ANN model is not calculated. However, from our investigation on
the existing works on ANNs and SNNs, it was revealed that SNNs consume less energy
than ANNs.

The detailed energy consumption report as well as the summary report, during the
execution of our proposed SSA-SpiNNaker model, are presented in Figures 15 and 16,
respectively. As demonstrated in both figures, our proposed SSA-SpiNNaker model con-
sumes energy in various ways while being executed. These two figures illustrate how
energy is utilized by different parts of the SpiNNaker platform for different tasks when
executing our proposed SSA-SpiNNaker model. For instance, the chip as well as the routers
consume energy during runtime. The loading process has the highest energy consumption.
Furthermore, as in Figure 16, the mapping, data packet transmission, and data generation
processes also consume energy, whereas the data extraction process does not consume any
energy. In total, our proposed SSA-SpiNNaker model consumes 3970 Joules of energy,
while processing around 10,000 words and predicting either a positive or a negative review.

Sensors 2023, 23, x FOR PEER REVIEW 20 of 24

4.5. Energy Consumption
Energy consumption is also an important performance metric utilized to evaluate our

proposed SNN model. Due to the computational resource limitation, the energy
consumption for our pre-trained ANN model is not calculated. However, from our
investigation on the existing works on ANNs and SNNs, it was revealed that SNNs
consume less energy than ANNs.

The detailed energy consumption report as well as the summary report, during the
execution of our proposed SSA-SpiNNaker model, are presented in Figures 15 and 16,
respectively. As demonstrated in both figures, our proposed SSA-SpiNNaker model
consumes energy in various ways while being executed. These two figures illustrate how
energy is utilized by different parts of the SpiNNaker platform for different tasks when
executing our proposed SSA-SpiNNaker model. For instance, the chip as well as the
routers consume energy during runtime. The loading process has the highest energy
consumption. Furthermore, as in Figure 16, the mapping, data packet transmission, and
data generation processes also consume energy, whereas the data extraction process does
not consume any energy. In total, our proposed SSA-SpiNNaker model consumes 3970
Joules of energy, while processing around 10,000 words and predicting either a positive
or a negative review.

Figure 15. Energy consumption report during the execution of our SSA-SpiNNaker model.

Figure 16. Energy consumption summary report during the execution of our SSA-SpiNNaker
model.

5. Conclusions and Future Work
In this paper, we introduced a novel, unique, and efficient neuromorphic NLP

sentiment analysis model based on the SNNs, deployed on the SpiNNaker
neuromorphic platform. Our goal was to enhance the NLP traits/abilities, by harnessing
and integrating the SNNs traits, as well as deploying the integrated solution on

Figure 15. Energy consumption report during the execution of our SSA-SpiNNaker model.

Sensors 2023, 23, x FOR PEER REVIEW 20 of 24

4.5. Energy Consumption
Energy consumption is also an important performance metric utilized to evaluate our

proposed SNN model. Due to the computational resource limitation, the energy
consumption for our pre-trained ANN model is not calculated. However, from our
investigation on the existing works on ANNs and SNNs, it was revealed that SNNs
consume less energy than ANNs.

The detailed energy consumption report as well as the summary report, during the
execution of our proposed SSA-SpiNNaker model, are presented in Figures 15 and 16,
respectively. As demonstrated in both figures, our proposed SSA-SpiNNaker model
consumes energy in various ways while being executed. These two figures illustrate how
energy is utilized by different parts of the SpiNNaker platform for different tasks when
executing our proposed SSA-SpiNNaker model. For instance, the chip as well as the
routers consume energy during runtime. The loading process has the highest energy
consumption. Furthermore, as in Figure 16, the mapping, data packet transmission, and
data generation processes also consume energy, whereas the data extraction process does
not consume any energy. In total, our proposed SSA-SpiNNaker model consumes 3970
Joules of energy, while processing around 10,000 words and predicting either a positive
or a negative review.

Figure 15. Energy consumption report during the execution of our SSA-SpiNNaker model.

Figure 16. Energy consumption summary report during the execution of our SSA-SpiNNaker
model.

5. Conclusions and Future Work
In this paper, we introduced a novel, unique, and efficient neuromorphic NLP

sentiment analysis model based on the SNNs, deployed on the SpiNNaker
neuromorphic platform. Our goal was to enhance the NLP traits/abilities, by harnessing
and integrating the SNNs traits, as well as deploying the integrated solution on

Figure 16. Energy consumption summary report during the execution of our SSA-SpiNNaker model.

Sensors 2023, 23, 7701 21 of 24

5. Conclusions and Future Work

In this paper, we introduced a novel, unique, and efficient neuromorphic NLP sen-
timent analysis model based on the SNNs, deployed on the SpiNNaker neuromorphic
platform. Our goal was to enhance the NLP traits/abilities, by harnessing and integrating
the SNNs traits, as well as deploying the integrated solution on neuromorphic hardware.
Our proposed SNN-based sentiment analysis model was created in such a way: to be
energy efficient and also to be faster than the ANN-based NLP models, while predicting
the sentiment. Our proposed SNN model, converted from our ANN model, is trained and
deployed on the SpiNNaker hardware, which enables leveraging energy efficiency, and
inherent parallelism of SNNs.

Our proposed SSA-SpiNNaker model achieved 100% accuracy, and only consumed
3970 Joules of energy, while processing around 10,000 words and predicting a posi-
tive/negative review. From these results and analysis, it is evident that parallel processing
capabilities and low energy consumption, associated with our proposed SNN model, are
indeed a promising avenue for NLP tasks, compared to the traditional ANN-based NLP
models. Our research also clarifies the importance of our proposed SNN model by consid-
ering the neural dynamics and demonstrates that the spike-based computations impact
the effectiveness of the overall NLP tasks. Furthermore, from our investigation on existing
works, we could not find any models in the published literature that provided an SSA-
SpiNNaker model similar to ours, demonstrating the uniqueness of our proposed model.

As future work, we will further enhance our proposed SNN model and explore the
applicability of SNNs to various NLP tasks, such as neural embeddings, as well as to tasks
that are beyond sentiment analysis. Also, as future work, we are planning to introduce
field programmable gate arrays (FPGAs)-based hardware architectures for our proposed
models. This is mainly because our previous work and analysis ([54–58]) demonstrate
that FPGAs are one of the best avenues to deploy/execute compute and data-intensive
applications, such as SNNs, on resources-constrained devices. We will also incorporate
dynamic reconfiguration techniques [59,60] to create dynamic reconfigurable architectures
(similar to [61–63]) to integrate adaptability traits to our proposed models.

Author Contributions: Conceptualization, R.K.C. and D.G.P.; data curation, R.K.C.; formal analysis,
R.K.C. and D.G.P.; funding acquisition, D.G.P.; investigation, R.K.C.; methodology, R.K.C.; project
administration, D.G.P.; resources, D.G.P.; software, R.K.C.; supervision, D.G.P.; validation, R.K.C.;
visualization, R.K.C.; writing—original draft, R.K.C.; writing—review and editing, D.G.P. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Andrew Rowley, Research Fellow for Human
Brain Project, in the School of Computer Science, at the University of Manchester, for his guidance
while resolving technical issues in SpiNNaker environment. The authors would also like to thank
Aswani Kumar Cherukuri in the School of Information Technology and Engineering, at VIT University,
India, for his invaluable guidance, and continuous support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rueckauer, B.; Lungu, I.A.; Hu, Y.; Pfeiffer, M.; Liu, S.C. Conversion of Continuous-Valued Deep Networks to Efficient Event-

Driven Networks for Image Classification. Front. Neurosci. 2017, 11, 682. [CrossRef]
2. Soman, S.; jayadeva; Suri, M. Recent trends in neuromorphic engineering. Big Data Anal. 2016, 1, 15. [CrossRef]
3. Chandarana, P.; Mohammadi, M.; Seekings, J.; Zand, R. Energy-Efficient Deployment of Machine Learning Workloads on

Neuromorphic Hardware. In Proceedings of the 2022 IEEE13th International Green and Sustainable Computing Conference
(IGSC), Los Alamitos, CA, USA, 24–25 October 2022; pp. 1–7. [CrossRef]

https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1186/s41044-016-0013-1
https://doi.org/10.1109/IGSC55832.2022.9969357

Sensors 2023, 23, 7701 22 of 24

4. Han, S.; Mao, H.; Dally, W.J. Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and
Huffman Coding. In Proceedings of the 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, 2–4 May 2016; Conference Track Proceedings. Bengio, Y., LeCun, Y., Eds.; ICLR: San Juan, Puerto Rico, 2016.

5. Strubell, E.; Ganesh, A.; McCallum, A. Energy and Policy Considerations for Modern Deep Learning Research. Proc. AAAI Conf.
Artif. Intell. 2020, 34, 13693–13696. [CrossRef]

6. Deng, L.; Wu, X.; Liang, L.; Ding, Y.; Li, G.; Zhao, G.; Li, P.; Xie, Y. Rethinking the performance comparison between SNNS and
ANNS. Neural Netw. 2019, 121, 294–307. [CrossRef]

7. Diehl, P.U.; Cook, M. Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front. Comput. Neurosci.
2015, 9, 99. [CrossRef]

8. Jang, H.; Simeone, O.; Gardner, B.; Gruning, A. An Introduction to Probabilistic Spiking Neural Networks: Probabilistic Models,
Learning Rules, and Applications. IEEE Signal Process. Mag. 2019, 36, 64–77. [CrossRef]

9. Javanshir, A.; Nguyen, T.T.; Mahmud, M.A.P.; Kouzani, A.Z. Advancements in Algorithms and Neuromorphic Hardware for
Spiking Neural Networks. Neural Comput. 2022, 34, 1289–1328. [CrossRef]

10. Furber, S.B.; Galluppi, F.; Temple, S.; Plana, L.A. The SpiNNaker Project. Proc. IEEE 2014, 102, 652–665. [CrossRef]
11. Furber, S.B.; Lester, D.R.; Plana, L.A.; Garside, J.D.; Painkras, E.; Temple, S.; Brown, A.D. Overview of the SpiNNaker System

Architecture. IEEE Trans. Comput. 2013, 62, 2454–2467. [CrossRef]
12. Davies, M.; Srinivasa, N.; Lin, T.H.; Chinya, G.; Cao, Y.; Choday, S.H.; Dimou, G.; Joshi, P.; Imam, N.; Jain, S.; et al. Loihi: A

Neuromorphic Manycore Processor with On-Chip Learning. IEEE Micro 2018, 38, 82–99. [CrossRef]
13. Benjamin, B.V.; Gao, P.; McQuinn, E.; Choudhary, S.; Chandrasekaran, A.R.; Bussat, J.M.; Alvarez-Icaza, R.; Arthur, J.V.; Merolla,

P.A.; Boahen, K. Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations. Proc. IEEE 2014, 102,
699–716. [CrossRef]

14. Diehl, P.U.; Pedroni, B.U.; Cassidy, A.; Merolla, P.; Neftci, E.; Zarrella, G. TrueHappiness: Neuromorphic emotion recognition on
TrueNorth. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada,
24–29 July 2016; pp. 4278–4285. [CrossRef]

15. Kasabov, N.K. Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence; Springer: Berlin/Heidelberg, Germany,
2019; pp. 431–456.

16. Maass, W. Networks of spiking neurons: The third generation of neural network models. Neural Netw. 1997, 10, 1659–1671.
[CrossRef]

17. Yamazaki, K.; Vo-Ho, V.K.; Bulsara, D.; Le, N. Spiking Neural Networks and Their Applications: A Review. Brain Sci. 2022, 12,
863. [CrossRef] [PubMed]

18. Mead, C. Neuromorphic electronic systems. Proc. IEEE 1990, 78, 1629–1636. [CrossRef]
19. Calimera, A.; Macii, E.; Poncino, M. The Human Brain Project and neuromorphic computing. Funct. Neurol. 2013, 28, 191–196.
20. Izhikevich, E. Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 2004, 15, 1063–1070. [CrossRef]
21. Abusnaina, A.; Abdullah, R. Spiking Neuron Models: A Review. Int. J. Digit. Content Technol. Its Appl. 2014, 8, 14–21.
22. Amunts, K.; Ebell, C.; Muller, J.; Telefont, M.; Knoll, A.; Lippert, T. The Human Brain Project: Creating a European Research

Infrastructure to Decode the Human Brain. Neuron 2016, 92, 574–581. [CrossRef]
23. Hodgkin, A.L.; Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in

nerve. J. Physiol. 1952, 117, 500–544. [CrossRef]
24. Izhikevich, E. Simple model of spiking neurons. IEEE Trans. Neural Netw. 2003, 14, 1569–1572. [CrossRef]
25. Liu, Y.H.; Wang, X.J. Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron. J. Comput. Neurosci.

2001, 10, 25–45. [CrossRef]
26. Feng, J. Is the integrate-and-fire model good enough?—A review. Neural Netw. 2001, 14, 955–975. [CrossRef]
27. Borst, A.; Theunissen, F.E. Information theory and neural coding. Nat. Neurosci. 1999, 2, 947–957. [CrossRef]
28. Burkitt, A.N. A review of the integrate-and-fire neuron model: I. homogeneous synaptic input. Biol. Cybern. 2006, 95, 1–19.

[CrossRef]
29. Smith, G.D.; Cox, C.L.; Sherman, S.M.; Rinzel, J. Fourier analysis of sinusoidally driven thalamocortical relay neurons and a

minimal integrate-and-fire-or-burst model. J. Neurophysiol. 2000, 83, 588–610. [CrossRef] [PubMed]
30. Jolivet, R.; Gerstner, W.T.J. The spike response model: A framework to predict neuronal spike trains. In Artificial Neural Networks

and Neural Information Processing—ICANN/ICONIP; Kaynak, O., Alpaydin, E., Oja, E., Xu, L., Eds.; Springer: Berlin/Heidelberg,
Germany, 2003; pp. 846–853.

31. Gerstner, W.; Kistler, W.M. Spiking Neuron Models: Single Neurons, Populations, Plasticity; Cambridge University Press: New York,
NY, USA, 2002. [CrossRef]

32. Rueckauer, B.; Liu, S.C. Conversion of analog to spiking neural networks using sparse temporal coding. In Proceedings of the
2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–5.

33. Diehl, P.U.; Neil, D.; Binas, J.; Cook, M.; Liu, S.C.; Pfeiffer, M. Fast-classifying, high-accuracy spiking deep networks through
weight and threshold balancing. In Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN), Killarney,
Ireland, 12–17 July 2015; pp. 1–8.

34. Sengupta, A.; Ye, Y.; Wang, R.; Liu, C.; Roy, K. Going deeper in spiking neural networks: VGG and residual architectures. Front.
Neurosci. 2019, 13, 95. [CrossRef]

https://doi.org/10.1609/aaai.v34i09.7123
https://doi.org/10.1016/j.neunet.2019.09.005
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1109/MSP.2019.2935234
https://doi.org/10.1162/neco_a_01499
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1109/TC.2012.142
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.1109/IJCNN.2016.7727758
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.3390/brainsci12070863
https://www.ncbi.nlm.nih.gov/pubmed/35884670
https://doi.org/10.1109/5.58356
https://doi.org/10.1109/TNN.2004.832719
https://doi.org/10.1016/j.neuron.2016.10.046
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1023/A:1008916026143
https://doi.org/10.1016/S0893-6080(01)00074-0
https://doi.org/10.1038/14731
https://doi.org/10.1007/s00422-006-0068-6
https://doi.org/10.1152/jn.2000.83.1.588
https://www.ncbi.nlm.nih.gov/pubmed/10634897
https://doi.org/10.1017/CBO9780511815706
https://doi.org/10.3389/fnins.2019.00095

Sensors 2023, 23, 7701 23 of 24

35. Patel, K.; Hunsberger, E.; Batir, S.; Eliasmith, C. A spiking neural network for image segmentation. arXiv 2021, arXiv:2106.08921.
36. Rueckauer, B.; Liu, S.C. Temporal Pattern Coding in Deep Spiking Neural Networks. In Proceedings of the 2021 International

Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18–22 July 2021; pp. 1–8. [CrossRef]
37. Neil, D.; Liu, S.C. Effective sensor fusion with event-based sensors and deep network architectures. In Proceedings of the 2016

IEEE International Symposium on Circuits and Systems (ISCAS), Montréal, QC, Canada, 22–25 May 2016; pp. 2282–2285.
38. Camuñas-Mesa, L.A.; Linares-Barranco, B.; Serrano-Gotarredona, T. Neuromorphic Spiking Neural Networks and Their

Memristor-CMOS Hardware Implementations. Materials 2019, 12, 2745. [CrossRef] [PubMed]
39. Fonseca Guerra, G.A.; Furber, S.B. Using Stochastic Spiking Neural Networks on SpiNNaker to Solve Constraint Satisfaction

Problems. Front. Neurosci. 2017, 11, 714. [CrossRef]
40. Furber S Large-scale neuromorphic computing systems. J. Neural Eng. 2016, 13, 051001. [CrossRef]
41. Jin, X.; Galluppi, F.; Patterson, C.; Rast, A.; Davies, S.; Temple, S.; Furber, S. Algorithm and software for simulation of spiking

neural networks on the multi-chip spinnaker system. In Proceedings of the 2010 International Joint Conference on Neural
Networks (IJCNN), Barcelona, Spain, 12–23 July 2010; pp. 1–8.

42. Brown, A.D.; Furber, S.B.; Reeve, J.S.; Garside, J.D.; Dugan, K.J.; Plana, L.A.; Temple, S. Spinnaker—Programming model. IEEE
Trans. Comput. 2015, 64, 1769–1782.

43. Rowley, A.G.D.; Brenninkmeijer, C.; Davidson, S.; Fellows, D.; Gait, A.; Lester, D.R.; Plana, L.A.; Rhodes, O.; Stokes, A.B.;
Furber, S.B. Spinntools: The execution engine for the spinnaker platform. Front. Neurosci. 2019, 13, 231. Available online:
https://www.frontiersin.org/articles/10.3389/fnins.2019.00231 (accessed on 20 May 2023). [CrossRef] [PubMed]

44. Sen-Bhattacharya, B.; James, S.; Rhodes, O.; Sugiarto, I.; Rowley, A.; Stokes, A.B.; Gurney, K.; Furber, S.B. Building a spiking
neural network model of the basal ganglia on spinnaker. IEEE Trans. Cogn. Dev. Syst. 2018, 10, 823–836. [CrossRef]

45. Rhodes, O.; Bogdan, P.A.; Brenninkmeijer, C.; Davidson, S.; Fellows, D.; Gait, A.; Lester, D.R.; Mikaitis, M.; Plana, L.A.; Rowley,
A.G.D.; et al. Spynnaker: A software package for running pynn simulations on spinnaker. Front. Neurosci. 2018, 12, 816. Available
online: https://www.frontiersin.org/articles/10.3389/fnins.2018.00816 (accessed on 20 May 2023). [CrossRef]

46. Davison, A.; Bru¨derle, D.; Eppler, J.; Kremkow, J.; Muller, E.; Pecevski, D.; Perrinet, L.; Yger, P. Pynn: A common interface for
neuronal network simulators. Front. Neurosci. 2009, 2, 11. Available online: https://www.frontiersin.org/articles/10.3389/neuro.
11.011.2008 (accessed on 20 May 2023). [CrossRef]

47. Nagarhalli, T.P.; Mhatre, S.; Patil, S.; Patil, P. The review of natural language processing applications with emphasis on machine
learning implementations. In Proceedings of the 2022 International Conference on Electronics and Renewable Systems (ICEARS),
Tuticorin, India, 6–8 March 2022; pp. 1353–1358.

48. Dang, N.C.; Moreno-García, M.N.; De la Prieta, F. Sentiment analysis based on deep learning: A comparative study. Electronics
2020, 9, 483. [CrossRef]

49. Shafin, M.A.; Hasan, M.M.; Alam, M.R.; Mithu, M.A.; Nur, A.U.; Faruk, M.O. Product review sentiment analysis by using nlp and
machine learning in bangla language. In Proceedings of the 2020 23rd International Conference on Computer and Information
Technology (ICCIT), Dhaka, Bangladesh, 19–21 December 2020; pp. 1–5.

50. Chen, C.-H.; Chen, P.-Y.; Lin, J.C.-W. An Ensemble Classifier for Stock Trend Prediction Using Sentence-Level Chinese News
Sentiment and Technical Indicators. Int. J. Interact. Multimed. Artif. Intell. 2022, 7, 53–64. [CrossRef]

51. Chunduri, R.K.; Cherukuri, A.K. Big Data Processing Frameworks and Architectures: A Survey in Hand Book of Big Data Analytics; IET
Digital Library: Stevenage, UK, 2021; Volume 1, pp. 37–104. Available online: https://digital-library.theiet.org/content/books/
10.1049/pbpc037fch2 (accessed on 15 May 2023).

52. Ricketts, J.; Barry, D.; Guo, W.; Pelham, J. A scoping literature review of natural language processing application to safety
occurrence reports. Safety 2023, 9, 22. [CrossRef]

53. Mass, A.L.; Daly, R.E.; Pham, P.T.; Huang, D.; Andrew, Y.; Potts, C. Learning Word Vectors for Sentiment Analysis. In Proceedings
of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Portland, OR,
USA, 19–24 June 2011; Association for Computational Linguistics: Toronto, ON, Canada, 2011; pp. 142–150.

54. Alkamil, A.; Perera, D.G. Efficient FPGA-Based Reconfigurable Accelerators for SIMON Cryptographic Algorithm on Embedded
Platforms. In Proceedings of the IEEE International Conferences on Reconfigurable Computing and FPGAs, (ReConFig’19),
Cancun, Mexico, 9–11 December 2019; pp. 1–8.

55. Ramadurgam, S.; Perera, D.G. An Efficient FPGA-Based Hardware Accelerator for Convex Optimization-Based SVM Classifier
for Machine Learning on Embedded Platforms. Electronics 2021, 10, 1323. [CrossRef]

56. Perera, D.G.; Li, K.F. Analysis of Single-Chip Hardware Support for Mobile and Embedded Applications. In Proceedings of the
IEEE Pacific Rim International Conference on Communication, Computers, and Signal Processing, (PacRim’13), Victoria, BC,
Canada, 21–23 August 2013; pp. 369–376.

57. Madsen, A.K.; Trimboli, M.S.; Perera, D.G. An Optimized FPGA-Based Hardware Accelerator for Physics-Based EKF for Battery
Cell Management. In Proceedings of the IEEE International Symposium on Circuits and Systems, (ISCAS’20), Seville, Spain,
17–20 May 2020; pp. 1–5.

58. Mohsin, M.A.; Perera, D.G. An FPGA-Based Hardware Accelerator for K-Nearest Neighbor Classification for Machine Learning on
Mobile Devices. In Proceedings of the IEEE/ACM International Symposium on Highly Efficient Accelerators and Reconfigurable
Technologies, (HEART’18), Toronto, ON, Canada, 20–22 June 2018; pp. 1–6.

https://doi.org/10.1109/IJCNN52387.2021.9533837
https://doi.org/10.3390/ma12172745
https://www.ncbi.nlm.nih.gov/pubmed/31461877
https://doi.org/10.3389/fnins.2017.00714
https://doi.org/10.1088/1741-2560/13/5/051001
https://www.frontiersin.org/articles/10.3389/fnins.2019.00231
https://doi.org/10.3389/fnins.2019.00231
https://www.ncbi.nlm.nih.gov/pubmed/30971873
https://doi.org/10.1109/TCDS.2018.2797426
https://www.frontiersin.org/articles/10.3389/fnins.2018.00816
https://doi.org/10.3389/fnins.2018.00816
https://www.frontiersin.org/articles/10.3389/neuro.11.011.2008
https://www.frontiersin.org/articles/10.3389/neuro.11.011.2008
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.3390/electronics9030483
https://doi.org/10.9781/ijimai.2022.02.004
https://digital-library.theiet.org/content/books/10.1049/pbpc037fch2
https://digital-library.theiet.org/content/books/10.1049/pbpc037fch2
https://doi.org/10.3390/safety9020022
https://doi.org/10.3390/electronics10111323

Sensors 2023, 23, 7701 24 of 24

59. Perera, D.G. Analysis of FPGA-Based Reconfiguration Methods for Mobile and Embedded Applications. In Proceedings of the
12th ACM FPGAWorld International Conference, (FPGAWorld’15), Stockholm, Sweden, 8–10 September 2015; pp. 15–20.

60. Perera, D.G.; Li, K.F. A Design Methodology for Mobile and Embedded Applications on FPGA-Based Dynamic Reconfigurable
Hardware. Int. J. Embed. Syst. 2019, 11, 661–677. [CrossRef]

61. Alkamil, A.; Perera, D.G. Towards Dynamic and Partial Reconfigurable Hardware Architectures for Cryptographic Algorithms
on Embedded Devices. IEEE Access 2020, 8, 221720–221742. [CrossRef]

62. Shahrouzi, S.N.; Perera, D.G. Dynamic Partial Reconfigurable Hardware Architecture for Principal Component Analysis on
Mobile and Embedded Devices. EURASIP J. Embed. Syst. 2017, 2017, 25. [CrossRef]

63. Perera, D.G.; Li, K.F. FPGA-Based Reconfigurable Hardware for Compute Intensive Data Mining Applications. In Proceedings of
the 6th IEEE International Conference on P2P, Parallel, Grid, Cloud, and Internet Computing, (3PGCIC’11), Barcelona, Spain,
26–28 October 2011; pp. 100–108.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1504/IJES.2019.102416
https://doi.org/10.1109/ACCESS.2020.3043750
https://doi.org/10.1186/s13639-017-0074-x

	Introduction
	Background
	Spiking Neural Networks (SNNs)
	Hodgkin–Huxley Model
	Izhikevich Model
	Integrate-and-Fire Model
	Spike Response Model (SRM)

	ANN to SNN Conversion
	Neuromorphic Hardware
	SpiNNaker
	Architecture of SpiNNaker Chip
	Components of SpiNNaker System

	PyNN
	Sentiment Analysis Using Natural Language Processing

	Our Proposed Neuromorphic NLP Sentiment Analysis Model
	Experimental Results and Analysis
	Dataset Description and Usage
	Model Execution
	Testing Our SSA-SpiNNaker Model
	Evaluating Our SSA-SNN Model
	Energy Consumption

	Conclusions and Future Work
	References

