
Citation: Żyliński, M.; Nassibi, A.;

Mandic, D.P. Design and

Implementation of an Atrial

Fibrillation Detection Algorithm on

the ARM Cortex-M4 Microcontroller.

Sensors 2023, 23, 7521. https://

doi.org/10.3390/s23177521

Academic Editor: Ismaeel Al

Ridhawi and Ali Karime

Received: 21 July 2023

Revised: 25 August 2023

Accepted: 26 August 2023

Published: 30 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Design and Implementation of an Atrial Fibrillation Detection
Algorithm on the ARM Cortex-M4 Microcontroller
Marek Żyliński ∗ , Amir Nassibi and Danilo P. Mandic

Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK;
a.nassibi15@imperial.ac.uk (A.N.); d.mandic@imperial.ac.uk (D.P.M.)
* Correspondence: m.zylinski@imperial.ac.uk

Abstract: At present, a medium-level microcontroller is capable of performing edge computing
and can handle the computation of neural network kernel functions. This makes it possible to
implement a complete end-to-end solution incorporating signal acquisition, digital signal processing,
and machine learning for the classification of cardiac arrhythmias on a small wearable device. In
this work, we describe the design and implementation of several classifiers for atrial fibrillation
detection on a general-purpose ARM Cortex-M4 microcontroller. We used the CMSIS-DSP library,
which supports Naïve Bayes and Support Vector Machine classifiers, with different kernel functions.
We also developed Python scripts to automatically transfer the Python model (trained in Scikit-
learn) to the C environment. To train and evaluate the models, we used part of the data from
the PhysioNet/Computing in Cardiology Challenge 2020 and performed simple classification of
atrial fibrillation based on heart-rate irregularity. The performance of the classifiers was tested on a
general-purpose ARM Cortex-M4 microcontroller (STM32WB55RG). Our study reveals that among
the tested classifiers, the SVM classifier with RBF kernel function achieves the highest accuracy of
96.9%, sensitivity of 98.4%, and specificity of 95.8%. The execution time of this classifier was 720 µs
per recording. We also discuss the advantages of moving computing tasks to edge devices, including
increased power efficiency of the system, improved patient data privacy and security, and reduced
overall system operation costs. In addition, we highlight a problem with false-positive detection and
unclear significance of device-detected atrial fibrillation.

Keywords: edge computing; machine learning; wearable devices; atrial fibrillation detection

1. Introduction

Wearable devices have significantly transformed the way we approach health moni-
toring, as they have allowed individuals to track their health outside of traditional medical
settings. Unobtrusive and user-friendly devices have made it possible to predict health
events and monitor, among other items, movement disorders, heart rhythm, blood oxygen
saturation, cardiovascular function, sleep patterns, neurological disorders, and mental
health issues [1,2]. Applications also include fitness tracking, which has become popular
for promoting a healthier lifestyle. To this end, processing and analysis of a given continu-
ous stream of real-time physiological data generated by wearables needs to be increasingly
performed within wearable devices [3].

Currently, IoT healthcare systems operate on a cloud-based architecture, where data
from the devices are sent to a cloud infrastructure for processing and storage. Some of
the major limitations with existing systems are security issues, high power consumption,
and limited availability of computation power and data transfer bandwidth [4]. Another
concern is related to the quality of remotely acquired data, which can be susceptible
to corruption by issues related to the hardware, software, device connectivity, and user
errors [5]. To ensure accurate and reliable insights within the rapidly growing landscape

Sensors 2023, 23, 7521. https://doi.org/10.3390/s23177521 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23177521
https://doi.org/10.3390/s23177521
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5565-0479
https://orcid.org/0000-0002-2929-0246
https://orcid.org/0000-0001-8432-3963
https://doi.org/10.3390/s23177521
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23177521?type=check_update&version=1


Sensors 2023, 23, 7521 2 of 12

of complex health care data, data quality assessment and anomaly detection methods are
employed [6].

In addition, the exchange of substantial amount of information amongst billions of
devices creates a massive energy consumption [7]. One of the energy efficient strategies is
edge computing, where data are processed on microcontrollers within the wearable devices.
Edge computing also saves time, improves privacy, and reduces network traffic [8].

AF is as the most prevalent arrhythmia and significantly contributes to cardiac mor-
bidity and mortality [9]. It is characterized by irregular atrium activation, with a higher
activation rate than in normal sinus rhythm which disturbs normal atrial contraction. Atrial
fibrillation, occasional anomaly, is difficult to be detected. For reliable diagnosis long-term
high-quality recording is required [10].

The two most common recording techniques for detecting arrhythmias in smart wear-
able devices, such as smartwatches, are the photoplethysmography (PPG) and electrocar-
diography ECG [11]. PPG-based AF detection proves to be more intricate compared to ECG-
based methods. However, it offers extended monitoring durations and comes at a lower
cost compared to ECG-based approaches [12]. In a meta-analysis by Hermans et al. [13],
PPG-based devices demonstrated a sensitivity range of 91.5% to 98.5% and specificity rang-
ing from 91.4% to 100%. For ECG-based devices, the reported sensitivity ranged from 94.0%
to 98.0%, and specificity spanned from 76.0% to 95%. Wearable technologies represent a
significant frontier in health assessment [14].

In this study, we have designed and evaluated the implementation of several clas-
sifiers aimed at detecting Atrial fibrillation (AF) on a general-purpose ARM Cortex M4
microcontroller (STM32WB55RG). We compare the performance metrics and computation
complexity of different classifiers available in the CMSIS-DSP library (naïve Bayes and
SVM classifiers, with different kernel functions).

We have developed a code that simplifies the utilization of this workflow; our script
automatically trains chosen classifier and generates a C-header file that can be directly
used in a C project. The code is publicly available in the GitHub repository: https://
github.com/Marower/Transfer-scikit-learn-models-to-CMSIS-DSP-library (accessed on
25 August 2023). In addition, the scripts to transfer users’ Python model (trained in Scikit-
learn) to C environment have been developed and are available in the repository. The
microcontroller and Python code for this study can also be find in the repository.

Our aim was to implement these classifiers on our own hearable device, which acquires
ECG signals via electrodes positioned inside the ears [15]. To this end, we set out to
integrate the classifier with a real-time R-peaks detection algorithm, such as the Deep
Matched Filter [16]. This amalgamation aims to enhance the accuracy and reliability of our
AF detection system within the context of the hearable device.

The contributions of this work are presented as follows:

• Design and evaluation of machine learning methods for AF detection. These methods
include Support Vector Machine classifiers with different kernel functions: linear,
polynomial, radial basis function (RBF), and sigmoid, as well as a Naïve Gaussian
Bayesian estimator. The evaluation was performed on a general-purpose ARM Cortex-
M4 microcontroller.

• Our findings indicate that the SVM with RBF kernel function offers the optimal
combination of accuracy, memory consumption, and computation time among the
tested methods.

• An open-source pipeline for deploying machine learning methods (SVM and Naive
Bayes) on ARM microcontrollers using the CMSIS-DSP library.

2. Related Works

Randazzo et al. [10] developed a wearable device specifically designed for ECG
acquisition and Atrial Fibrillation (AF) detection. Their approach employed of a simple em-
bedded algorithm whereby R-peaks were initially extracted employing the Pan-Tompkins

https://github.com/Marower/Transfer-scikit-learn-models-to-CMSIS-DSP-library
https://github.com/Marower/Transfer-scikit-learn-models-to-CMSIS-DSP-library


Sensors 2023, 23, 7521 3 of 12

algorithm. Subsequently, if rhythm fluctuations surpassed predetermined thresholds over
time, the recording was categorized as indicative of AF.

Atrial Fibrillation (AF) detection can be achieved by assessing the variability of R-R
intervals through machine learning classifiers. Patel et al. [17], for instance, employed a
set of 21 features derived from RR intervals. They evaluated 11 distinct machine learning
classifiers including Logistic Regression, Linear Discriminant Analysis, Quadratic Discrim-
inant Analysis, K-Nearest Neighbors, and decision tree classifiers trained with various
algorithms. Notably, their findings highlighted that the highest accuracy was attained
by the model trained using the Extreme Gradient Boosting method, reaching an accuracy
of 96.3%.

Neural network models offer a robust means of accurately identifying Atrial Fibril-
lation (AF) in ECGs captured by portable devices. Marinucci et al. [18] conducted an
assessment of a neural model constructed using fully connected dense layers and incorpo-
rating 19 features. These features encompassed 4 derived from RR variability, 11 from mean
heartbeat ECG morphology, and 4 based on the F wave. Their evaluation was centered
around the area under the curve (AUC), revealing that the AUC for the testing dataset
stood at 90.8% (with a confidence interval of 88.1–93.5%).

Deep neural networks have found utility in classifying arrhythmias within embedded
wearable devices [19]. Nevertheless, a key challenge with deep neural network models
lies in their memory footprint, which often surpasses the capabilities of compact wearable
devices. To address this, Lee et al. [20] employed ResNet and MobileNet models. To
make them compatible with embedded devices, they executed model compression through
TensorFlow Lite. This process reduced the model size from an initial 743 MB to a mere
76 KB. Notably, their reported accuracies were impressive, with 98.2% for ResNet and
97.9% for MobileNet when applied to ECG signals sampled at a frequency of 100 Hz.

3. Edge Computing

At present, a medium-level microcontroller based on the ARM Cortex-M4 architecture
can perform advanced digital signal processing and edge computing. The ARM Cortex-
M4 is a low-cost, high-performance embedded processor with floating-point unit (FPU)
and digital signal processing (DSP) blocks [21,22]. The scalability and power efficiency
of a microcontroller built on the Cortex-M4 architecture make it an excellent choice for
wearable applications.

ARM developed the CMSIS DSP Software Library that provides several digital signal
processing functions such as signal filtering with finite impulse response and infinite im-
pulse response filters, matrix operations, and statistical and even quaternion functions [23].
The Cortex-M4 is used in several microcontrollers and systems-on-chip (SoCs) with Blue-
tooth Low Energy technology, such as STM32WB (STMicroelectronics) and NRF52 (Nordic
Semiconductors). These microcontrollers and SoCs are formidable options for robust wear-
able systems. Moreover, microcontrollers with ARM Cortex-M4 cores have the capability
to efficiently execute neural network kernel functions [24]. At present, it is becoming viable
to integrate low-cost general-purpose microcontrollers and SoCs within a small form factor,
such as a smart watch, to achieve a complete end-to-end solution: from signal acquisition
through digital signal processing to a detector for cardiac arrhythmias [25].

Mainstream microcontrollers are capable enough to perform machine learning classifi-
cation [26] or even run deep neural network models; for example a Convolutional Neural
Network (CNN) model trained with TensorFlow can be deployed on the Cortex-M4 micro-
controller. Sailesh et al. [27] provided a framework that automates code generation for a
CNN model on a microcontroller. However, the limited memory on IoT devices restricts
the utilization of CNNs in the IoT. Deep neural network models usually require megabytes,
while microcontrollers provide kilobytes of memory [28]. For instance, the STM32WB55RG
microcontroller, which was used in our study, has up to 256 KB of SRAM. Although it is
possible to extend the memory using additional integrated circuits, this would result in
increased device size and power consumption.



Sensors 2023, 23, 7521 4 of 12

There are several viable strategies for optimization of deep learning models to run on
edge devices [29]:

• Factorization—adding a new layer and splitting the original weight matrix into two
lower-rank weight matrices. This results in reduced memory usage but increases
computation cost.

• Pruning—removing small-weight connections (below an arbitrary threshold). This
method is supported by TensorFlow, but it increases training time and results in a
sparse matrix.

• Quantization—reducing the size of the weights. For example, the AlexNet reduction
in the size of weights in CNN layers from standard 32-bits to 8-bits and to 5-bits in
dense layers did not change the accuracy of the model [30].

In addition, different optimization methods can be combined. These strategies aim to
reduce memory consumption but at the cost of code complexity and increased computation
time. The optimization of the deep neural network architecture is crucial, as increasing the
depth of the network significantly increases the number of operations, computation time,
number of network parameters, and demand for microcontroller memory [31].

4. Method

We trained five classifiers using Python and Scikit-learn, including four different Sup-
port Vector Machine (SVM) classifiers with different kernel functions (linear, polynomial,
RBF, and sigmoid) and a Naïve Gaussian Bayesian estimator. The SVM classification is
based on a hyperplane, built using the kernel function, that maximizing the margin between
classes [32]. The Naïve Bayesian method classifies an observation based on a probability
calculated using Bayes’ theorem [33]. The parameters of trained models were saved as C
header files and utilized to initialize CMSIS-DCP classifiers.

To train and evaluate the models, we used part of the data from the PhysioNet/Computing
in Cardiology Challenge 2020 [34]. We used the data set provided in the first step of the
challenge, which contains recordings of a 12-ECG lasting from 6 s to 60 s. Recordings
are from 6877 subjects (male: 3699; female: 3178) with a sampling frequency of 500 Hz.
Recordings are annotated as: normal, AF, first-degree atrioventricular block, left bundle
branch block, right bundle branch block, premature atrial contraction, premature ventric-
ular contraction, and ST-segment depression or ST-segment elevated. One recording can
have multiple labels. In this paper, we only used recordings annotated as: AF or normal
rhythm (2139 subjects).

We conducted a classification of AF based on heart-rate irregularity. In each recording,
we extracted seven features based on RR intervals (time elapsed between two successive
R-point detections) [35,36]:

• Min, max, mean, median, and standard deviation of RR intervals in recordings;
• The rMSSD—root mean square of successive difference, given by:

rMSSD =

√√√√N−1

∑
i=1

(RR i − RRi+1)
2 (1)

• The pNN50—number of successive differences in RR intervals exceeding 50 ms in
a recording.

Our data set was split into a training set (first 1500 subjects) and a test set (last
639 subjects). The training set was used to train the classifiers, and the test set was used to
validate the performance of the classifiers on the microcontroller.

The performance metrics of the classifiers were tested on the STM32 Nucleo-64 devel-
opment board with a STM32WB55RG microcontroller. The test part of the data set was
stored in the microcontroller memory. During validation, each classifier was employed to
classify every sample, and the results were transmitted for validation against true labels.



Sensors 2023, 23, 7521 5 of 12

The execution time of 10 iterations of the AF classifier on the test data set (6390 recordings)
on the STM32WB55RB was measured. We used a built-in 32-bit microcontroller timer with
a 1MHz clock source to measure the execution time.

The used methodology is summarized in the workflow diagram shown in Figure 1.

Figure 1. Workflow diagram depicting the estimation of a set of features from a portion of the
data from the PhysioNet/Computing in Cardiology Challenge 2020. The selected machine learning
models were trained in the Scikit-Learn Python environment, and using our automatic scripts, we
deployed the models into the STM project. We validated the models for accuracy, execution time, and
memory usage on the ARM Cortex-M4 microcontroller.

We performed a comparison of classification execution times on different systems.
We performed the described measurement of classifier execution times on a tablet, a
desktop PC, and Imperial College High Performance Computing (HPC) clusters (https:
//www.imperial.ac.uk/computational-methods/hpc/) (accessed on 25 August 2023). The
same Python code was executed on every system. We used an 11-inch iPad Pro tablet with
an M1 chip and ran the code as a local Jupyter notebook in the Carnets Plus application
(https://apps.apple.com/in/app/carnets-jupyter/id1450994949) (accessed on 25 August
2023). For the desktop PC, we utilized an Intel Core i7-4790 CPU and the code was executed
in the PyCharm Community Edition 2022.1.3 application. To run the code on the HPC, we
used the Imperial College JupyterHub, and the code was executed in a single-core job with
8 GB RAM.

5. Results

The confusion matrices for each of the classifiers on the test data set are shown in
Figure 2. Among the classifiers, the SVM classifier with a sigmoid function exhibited the
lowest accuracy (92.0%). The Naïve Bayes classifier achieved an accuracy of 94.1%. The
highest accuracy was observed with the SVM classifier using the RBF function (96.9%). It
should be mentioned that the SVM RBF classifier produced 4 false negative and 16 false
positive classifications.

https://www.imperial.ac.uk/computational-methods/hpc/
https://www.imperial.ac.uk/computational-methods/hpc/
https://apps.apple.com/in/app/carnets-jupyter/id1450994949


Sensors 2023, 23, 7521 6 of 12

The execution times required to complete the classification of the test data set
(10 × 639 recordings) by each classifier on the STM32WB55RB are summarized in Table 1.
The Naïve Bayes classifier showed the fastest performance with an execution time of 0.417 s,
with each recording classified within 65 microseconds. Conversely, the SVM classifier
with the sigmoid function proved to be the slowest, requiring 11.966 s. The SVM classifier
employing the RBF function exhibited the fastest execution time among the SVM classifiers,
completing classification in 4.602 s.

Figure 2. Confusion matrices for the considered classifiers: (A) Naïve Bayes classifier, (B) SVM Linear
classifier, (C) SVM Polynomial classifier, (D) SVM RBF classifier, and (E) SVM Sigmoid classifier.

Table 1. The execution times of 6390 recordings (10 times the test data set) on STM32WB55RB for
AF classifiers.

Classifier Execution Time (s) Classification Time of
One Recording (µs)

Naïve Bayes 0.417 65
SVM Linear 5.684 890
SVM Polynomial 5.578 873
SVM RBF 4.603 720
SVM Sigmoid 11.966 1873

The results of the classification execution time per one recording are summarized
in Table 2. The execution time comparison is conducted between a compiled native (C)
implementation on the Cortex-M4 and a partly interpreted implementation (Python 3.9
64-bit) on the other devices. The classification performed on the tablet was between
113 to 527 times faster (respectively, for Naïve Bayes and SVM Sigmoid classifier) compared
to the ARM Cortex-M4.



Sensors 2023, 23, 7521 7 of 12

Table 2. Execution times for the classification of one recording (µs) on different systems.

Classifier

ARM
Cortex-M4

(STM32WB55RG)
@ 64 MHz

Tablet iPad Pro
11 in M1 Chip @

3.2 GHz

Desktop PC
Intel Core

i7-4790
@ 3.6 GHz

Imperial
College HPC

Cluster

Naïve Bayes 65.26 0.58 1.09 0.92
SVM Linear 889.51 2.11 3.91 6.15
SVM Polynomial 872.93 1.87 3.28 5.31
SVM RBF 720.34 2.85 7.66 4.98
SVM Sigmoid 1872.61 3.55 9.85 13.29

Table 3 summarizes memory usage of different classifiers. The Naïve Bayes classi-
fier required only 31 floating-type parameters, while the SVM RBF classifier employed
642 parameters. Notably, the SVM sigmoid classifier exhibited the highest parameter count,
reaching 1827. Memory usage is strongly correlated with the computation time of the
classifiers but not with their accuracy. Among the tested SVM classifiers, the SVM RBF
classifier exhibited the highest accuracy, lowest memory usage, and shortest computation
time. Conversely, the Naïve Bayes classifier exhibited the fastest performance, required
the least memory, and achieved a moderate level of accuracy compared to the other
classifiers assessed.

Table 3. Memory usage of different classifiers.

Classifier Number of Floating
Parameters Memory Size (Bytes)

Naïve Bayes 31 124
SVM Linear 1569 6276
SVM Polynomial 1212 4848
SVM RBF 642 2568
SVM Sigmoid 1827 7308

6. Discussion

In our study, the SVM classifier with RBF kernel function exhibited the highest accu-
racy, with a sensitivity of 98.4% and specificity of 95.8%. These findings are aligned with
those previously mentioned in the literature (Table 4). However, it should be noted that
direct comparison of results should be avoided due to the fact that classifiers were tested
on different data sets. It is also important to note that Tuboly et al. [37] and Tateno and
Glass [38] used publicly available data sets, while Tison et al. [39] performed a clinical
study to validate a commercially available smartwatch in AF prediction. In their three
papers [37–39], classification was based on RR intervals, Petmezas et al. [40] conducted
classification based on the raw ECG signal, employing a CNN-LSTM Network for the
classification process.

Table 4. The sensitivity and specificity of the SVM RBF classifiers compared with those reported in
the literature.

Classifier Sensitivity Se = TP
TP+FN Specificity Sp = TN

TN+FP

SVM RBF (described in this
paper) 98.4% 95.8%

Tuboly et al. [37] 97.6% 93.0%
Tison et al. [39] 98.0% 90.2%
Tateno and Glass [38] 93.2% 96.7%
Petmezas et al. [40] 97.9% 99.3%



Sensors 2023, 23, 7521 8 of 12

Our implementation of machine learning models, without any optimization, required
only a few kilobytes (KB) of memory (Table 3); the largest SVM sigmoid classifier utilized
only 7.14 KB. Hence, simple machine learning models are a viable option for deployment
on edge devices.For the purpose of AF detection, deep neural network models constructed
using ResNet and MobileNet architectures demonstrated a remarkably compact size of
76 KB [20].

We demonstrated that the tested classifiers exhibited low computation time based
on extracted features, with an average of 65 µs for the Naïve Bayes classifier, 720 µs for
SVM RBF, and 1873 µs for SVM with a sigmoid kernel function, for a single recording. This
favorable computation time makes the application of the AF classifier on an edge device
viable for real-life scenarios. It is worth noting that the R-peak detection in ECG signals is
not a computationally demanding task [41]. Nonetheless, transitioning the classification
task to more potent devices can lead to a marginal reduction in computation time, as
demonstrated in Table 2. For instance, an 11-inch iPad Pro equipped with the M1 chip
completes classification utilizing SVM with RBF kernel approximately 253 times faster
compared to the ARM Cortex M4 chip.

It is a given that executing tasks as quickly as possible is an energy-efficient strat-
egy [42]. In battery-powered devices, minimizing power consumption is of paramount
importance. Swift task execution allows the microcontroller to spend more time in a
low-energy sleep state, leading to a reduction in overall energy consumption.

Ensuring fast performance necessitates careful optimization. Different imple-
mentations of classifier algorithms exhibited varying performances on edge devices.
Profentzas et al. [28] discovered that the CMSIS framework generates the fastest and most
energy-efficient code, although it is also the most challenging to employ. In this present
study, our Python scripts bridge this gap by providing a user-friendly solution; they
generate the C code that is compatible with the CMSIS framework, which can be seamlessly
integrated into embedded projects.

The advancement in technology and the increasing data traffic from a growing number
of devices have changed the way data are processed. At present, computing is transitioning
from centralized servers to edge devices [43]. Performing computing or classification tasks,
such as detection of AF, on an edge wearable device instead of transferring all data to the
cloud offers several advantages. It is power efficient, reduces costs associated with data
transfer and server maintenance, and enhances the security and privacy of users [44]. In
our case, a single recording comprises 48,000 bits (6 s × 16 bits per sample × 500 samples
per second). Transferring such a substantial amount of data via Bluetooth Low Energy
would require at least 24 ms (assuming a maximum bandwidth of 2 Mbit/s), which is
longer than performing edge classification with any classifier described in this paper.

On the other hand, moving the classification task from a microcontroller to a tablet,
PC, or the cloud greatly reduces computation time (Table 2) when computation times on
more-advanced systems are comparable. We found that the tablet was the fastest system
in our comparison. The advantage of the tablet over a desktop PC reflects progress in
processor design; the Intel Core i7-4790 was introduced to the market in 2014, and the
iPad Pro 11-inch with an M1 chip was introduced in 2021. Our simple, small classification
task does not utilize the HPC’s advantages, as an HPC cluster is intended to solve large,
complex problems (exceeding the computation power of a single computer) or many
small problems.

On every system, the Naïve Bayes classifier was the fastest. However, we observed
some differences in the performance of SVM classifiers; on the microcontroller and the HPC
cluster, the RBF kernel was faster, while on the tablet and the PC, it was the polynomial
one. An explanation of this phenomenon exceeds the scope of this paper.

7. Atrial Fibrillation Model Improvements

Heart arrhythmia classifiers, such as the AF classifiers described in this work, can
be utilized to enhance the efficiency of health monitoring systems [45]. The majority of



Sensors 2023, 23, 7521 9 of 12

ambulatory recordings are normal and do not exhibit any arrhythmia; hence, they do not
require additional processing and can be dealt with immediately after acquisition. This
approach optimizes the use of resources and saves physicians’ time.

On the other hand, the clinical significance of device-detected AF is unclear, as false
positives may be potentially harmful to patients [46]. Note that AF is relatively uncommon
among individuals under the age of 50; it has been found in 0.5% of people aged 50–59, and
its occurrence increases with age. More specifically, it was found in 8.8% of people between
the ages of 80 and 89 [47]. In our case, with an assumed representative population of
1000 people 50–59 years old and with 5 AF patients, to match population statistic described
in Lip et al. [47], the SVM RBF classifier probably will detect all 5 AF cases but will also
show 42 false positives. This will require further investigation. The study on AF assessment
performed by Apple showed that AF was present in 34% of the detected irregular pulses
that were identified by optical sensors on wearable devices [48]. In their study, out of
the total of 419,297 participants recruited, 0.52% of the participants received notifications
indicating an irregular pulse.

The effectiveness of screening for AF in the elderly to improve treatment outcomes for
screen-detected asymptomatic patients remains unclear [49]. It is uncertain whether such
screening provides superior results compared to treatment initiated after detection through
usual care or when symptoms develop. Currently, no expert consensus recommends
screening for AF [50].

One way of improving AF classifiers involves detecting and analyzing the P-wave in
the ECG signal. During an AF episode, atria do not repolarize properly, causing the normal
P-wave to be displaced by the fibrillatory F-wave. The P-wave analysis substantially re-
duces false positives with a minimal decrease in sensitivity of AF classifiers [51]. However,
implementing this technique into wearable devices with optical or one-lead ECGs is chal-
lenging, as the P-wave is rarely visible in a single lead I configuration, as commonly used
in wearable devices such as torso bands or the Apple Watch ECG. However, more-complex
devices such as the KardiaMobile 6L (AliveCor) implement a six-lead ECG and result in
properly incorporated P-wave information in AF detection.

Another way to improve the accuracy of the AF classifier is to use a complex deep
neural network solution. Petmezas et al. [40] used a CNN for automatic extraction of fea-
tures from ECGs and a Long Short-Term Memory (LSTM) model for accurate classification
of ECG rhythm types. They reported that the network for AF classification achieved a
sensitivity of 97.87% and specificity of 99.29% using a ten-fold cross-validation strategy.
Their proposed model was trained on the MIT-BIH Atrial Fibrillation Database.

8. Conclusions and Future Work

We have evaluated five classifiers for the detection of atrial fibrillation based on heart
rhythm irregularity. This has been achieved by developing Python scripts to automatically
transfer Python models trained in Scikit-learn to the C environment for deployment on
microcontrollers; in our case, the performance of these models has been assessed on a
STM32WB55 microcontroller (ARM Cortex-M4). We have found that the best performance
was achieved by the SVM classifier with the RBF kernel function, with a sensitivity of 98.4%
and specificity of 95.8%. In addition, it exhibited efficient computation time, processing each
recording in just 720 µs, and required a minimal storage space of 2.5 kB for its parameters.
These results have emphasized the feasibility of deploying machine learning classifiers in
edge computing environments.

Future work will include:

1. Investigating the deployment of more-advanced AF classifiers on edge devices, in-
cluding dense and convolutional neural networks. Utilizing these models is expected
to enhance specificity and sensitivity [40].

2. Integration of the classifier with online ECG signal analysis by implementing an
R-peak detection algorithm on the microcontroller. Of particular interest is a hearable



Sensors 2023, 23, 7521 10 of 12

device, such as implementation of R-peak detection in an Ear–ECG [15] with a deep
matched filter [16].

Author Contributions: Conceptualization, M.Ż. and D.P.M.; methodology, M.Ż.; software, M.Ż.;
validation, M.Ż.; formal analysis, M.Ż.; investigation, M.Ż.; resources, A.N.; data curation, M.Ż.;
writing—original draft preparation, M.Ż.; writing—review and editing, M.Ż. and A.N.; visualization,
M.Ż.; supervision, D.P.M.; project administration, D.P.M.; funding acquisition, D.P.M. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by USSOCOM grant EESB P85655.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: We used part of the publicly available data set from the Phys-
ioNet/Computing in Cardiology Challenge 2020 [34].

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AF atrial fibrillation
SVM support vector machine
RBF radial basis function
CNN convolutional neural network
IoT Internet of Things
FPU floating-point unit
SoC system on chip
HPC high-performance computing
ECG electrocardiogram
PPG photoplethysmogram

References
1. Dunn, J.; Runge, R.; Snyder, M. Wearables and the medical revolution. Pers. Med. 2018, 15, 429–448. [CrossRef] [PubMed]
2. Nassibi, A.; Papavassiliou, C.; Atashzar, S.F. Depression diagnosis using machine intelligence based on spatiospectrotemporal

analysis of multi-channel EEG. Med. Biol. Eng. Comput. 2022, 60, 3187–3202. [CrossRef] [PubMed]
3. Yetisen, A.K.; Martinez-Hurtado, J.L.; Ünal, B.; Khademhosseini, A.; Butt, H. Wearables in medicine. Adv. Mater. 2018, 30, 1706910.

[CrossRef] [PubMed]
4. Selvaraj, S.; Sundaravaradhan, S. Challenges and opportunities in IoT healthcare systems: A systematic review. SN Appl. Sci.

2020, 2, 139. [CrossRef]
5. Cho, S.; Ensari, I.; Weng, C.; Kahn, M.G.; Natarajan, K. Factors affecting the quality of person-generated wearable device data

and associated challenges: Rapid systematic review. JMIR mHealth uHealth 2021, 9, e20738. [CrossRef]
6. Sunny, J.S.; Patro, C.P.K.; Karnani, K.; Pingle, S.C.; Lin, F.; Anekoji, M.; Jones, L.D.; Kesari, S.; Ashili, S. Anomaly detection

framework for wearables data: A perspective review on data concepts, data analysis algorithms and prospects. Sensors 2022,
22, 756. [CrossRef]

7. Arshad, R.; Zahoor, S.; Shah, M.A.; Wahid, A.; Yu, H. Green IoT: An investigation on energy saving practices for 2020 and beyond.
IEEE Access 2017, 5, 15667–15681. [CrossRef]

8. Azar, J.; Makhoul, A.; Barhamgi, M.; Couturier, R. An energy efficient IoT data compression approach for edge machine learning.
Future Gener. Comput. Syst. 2019, 96, 168–175. [CrossRef]

9. Nattel, S. New ideas about atrial fibrillation 50 years on. Nature 2002, 415, 219–226. [CrossRef]
10. Randazzo, V.; Ferretti, J.; Pasero, E. Anytime ECG monitoring through the use of a low-cost, user-friendly, wearable device.

Sensors 2021, 21, 6036. [CrossRef]
11. Mäkynen, M.; Schlindwein, F.S. Wearable Devices Combined with Artificial Intelligence—A Future Technology for Atrial

Fibrillation Detection? Sensors 2022, 22, 8588. [CrossRef]
12. Pereira, T.; Tran, N.; Gadhoumi, K.; Pelter, M.M.; Do, D.H.; Lee, R.J.; Colorado, R.; Meisel, K.; Hu, X. Photoplethysmography

based atrial fibrillation detection: A review. NPJ Digit. Med. 2020, 3, 3. [CrossRef] [PubMed]
13. Hermans, A.N.; Gawalko, M.; Dohmen, L.; van der Velden, R.M.; Betz, K.; Duncker, D.; Verhaert, D.V.; Heidbuchel, H.;

Svennberg, E.; Neubeck, L.; et al. Mobile health solutions for atrial fibrillation detection and management: A systematic review.
Clin. Res. Cardiol. 2022, 111, 479–491. [CrossRef]

http://doi.org/10.2217/pme-2018-0044
http://www.ncbi.nlm.nih.gov/pubmed/30259801
http://dx.doi.org/10.1007/s11517-022-02647-4
http://www.ncbi.nlm.nih.gov/pubmed/36115006
http://dx.doi.org/10.1002/adma.201706910
http://www.ncbi.nlm.nih.gov/pubmed/29893068
http://dx.doi.org/10.1007/s42452-019-1925-y
http://dx.doi.org/10.2196/20738
http://dx.doi.org/10.3390/s22030756
http://dx.doi.org/10.1109/ACCESS.2017.2686092
http://dx.doi.org/10.1016/j.future.2019.02.005
http://dx.doi.org/10.1038/415219a
http://dx.doi.org/10.3390/s21186036
http://dx.doi.org/10.3390/s22228588
http://dx.doi.org/10.1038/s41746-019-0207-9
http://www.ncbi.nlm.nih.gov/pubmed/31934647
http://dx.doi.org/10.1007/s00392-021-01941-9


Sensors 2023, 23, 7521 11 of 12

14. Cheung, C.C.; Krahn, A.D.; Andrade, J.G. The emerging role of wearable technologies in detection of arrhythmia. Can. J. Cardiol.
2018, 34, 1083–1087. [CrossRef] [PubMed]

15. Hammour, G.; Yarici, M.; von Rosenberg, W.; Mandic, D.P. Hearables: Feasibility and validation of in-ear electrocardiogram.
In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), Berlin, Germany, 23–27 July 2019; pp. 5777–5780.

16. Davies, H.J.; Hammour, G.; Zylinski, M.; Nassibi, A.; Mandic, D.P. A Deep Matched Filter For R-Peak Detection in Ear-ECG.
arXiv 2023, arXiv:2305.14102.

17. Patel, S.; Wang, M.; Guo, J.; Smith, G.; Chen, C. A Study of RR Interval Transition Matrix Features for Machine Learning
Algorithms in AFib Detection. Sensors 2023, 23, 3700. [CrossRef]

18. Marinucci, D.; Sbrollini, A.; Marcantoni, I.; Morettini, M.; Swenne, C.A.; Burattini, L. Artificial Neural Network for Atrial
Fibrillation Identification in Portable Devices. Sensors 2020, 20, 3570. [CrossRef]

19. Jacobsen, M.; Dembek, T.A.; Ziakos, A.P.; Gholamipoor, R.; Kobbe, G.; Kollmann, M.; Blum, C.; Müller-Wieland, D.; Napp, A.;
Heinemann, L.; et al. Reliable detection of atrial fibrillation with a medical wearable during inpatient conditions. Sensors 2020,
20, 5517. [CrossRef]

20. Lee, K.S.; Park, H.J.; Kim, J.E.; Kim, H.J.; Chon, S.; Kim, S.; Jang, J.; Kim, J.K.; Jang, S.; Gil, Y.; et al. Compressed deep learning to
classify arrhythmia in an embedded wearable device. Sensors 2022, 22, 1776. [CrossRef]

21. Arm Cortex-M4–Microcontrollers–STMicroelectronics. Available online: https://www.st.com/content/st_com/en/arm-32-bit-
microcontrollers/arm-cortex-m4.html (accessed on 25 August 2023).

22. Lorenser, T. The DSP Capabilities of ARM Cortex-M4 and Cortex-M7 Processors. ARM White Paper. 2016; Volume 29, pp. 1–19.
Available online: https://community.arm.com/cfs-file/__key/communityserver-discussions-components-files/471/7607.ARM-
white-paper-_2D00_-DSP-capabilities-of-Cortex_2D00_M4-and-Cortex_2D00_M7.pdf (accessed on 25 August 2023).

23. Wickert, M.A. Using the ARM Cortex-M4 and the CMSIS-DSP library for teaching real-time DSP. In Proceedings of the IEEE
Signal Processing and Signal Processing Education Workshop (SP/SPE), Salt Lake City, UT, USA, 9–12 August 2015; pp. 283–288.

24. Lai, L.; Suda, N.; Chandra, V. CMSIS-NN: Efficient neural network kernels for ARM Cortex-M CPUs. arXiv 2018, arXiv:1801.06601.
25. Ingolfsson, T.M.; Wang, X.; Hersche, M.; Burrello, A.; Cavigelli, L.; Benini, L. ECG-TCN: Wearable cardiac arrhythmia detection

with a temporal convolutional network. In Proceedings of the 3rd IEEE International Conference on Artificial Intelligence Circuits
and Systems (AICAS), Washington, DC, USA, 6–9 June 2021; pp. 1–4.

26. Sakr, F.; Bellotti, F.; Berta, R.; De Gloria, A. Machine learning on mainstream microcontrollers. Sensors 2020, 20, 2638. [CrossRef]
[PubMed]

27. Sailesh, M.; Selvakumar, K.; Prasanth, N. A novel framework for deployment of CNN models using post-training quantization
on microcontroller. Microprocess. Microsyst. 2022, 94, 104634.

28. Profentzas, C.; Almgren, M.; Landsiedel, O. Performance of deep neural networks on low-power IoT devices. In Proceedings of
the Workshop on Benchmarking Cyber-Physical Systems and Internet of Things, Milan, Italy, 3–6 May 2022; pp. 32–37.

29. Zhao, T.; Xie, Y.; Wang, Y.; Cheng, J.; Guo, X.; Hu, B.; Chen, Y. A survey of deep learning on mobile devices: Applications,
optimizations, challenges, and research opportunities. Proc. IEEE 2022, 110, 334–354. [CrossRef]

30. Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained quantization and
huffman coding. arXiv 2015, arXiv:1510.00149.

31. Véstias, M.P.; Duarte, R.P.; de Sousa, J.T.; Neto, H.C. Moving deep learning to the edge. Algorithms 2020, 13, 125. [CrossRef]
32. Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual

Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992; pp. 144–152.
33. Zhang, H. The optimality of naive Bayes. Am. Assoc. Artif. Intell. 2004, 1, 3.
34. Alday, E.A.P.; Gu, A.; Shah, A.J.; Robichaux, C.; Wong, A.K.I.; Liu, C.; Liu, F.; Rad, A.B.; Elola, A.; Seyedi, S.; et al. Classification of

12-lead ECGs: The PhysioNet/computing in cardiology challenge 2020. Physiol. Meas. 2020, 41, 124003. [CrossRef]
35. Li, Q.; Liu, C.; Oster, J.; Clifford, G.D. Signal processing and feature selection preprocessing for classification in noisy healthcare

data. Mach. Learn. Healthc. Technol. 2016, 2, 2016.
36. Żyliński, M.; Cybulski, G. Selected features for classification of 12-lead ECGs. In Proceedings of the IEEE Computing in

Cardiology, Rimini, Italy, 13–16 September 2020; Volume 47, pp. 1–4.
37. Tuboly, G.; Kozmann, G.; Kiss, O.; Merkely, B. Atrial fibrillation detection with and without atrial activity analysis using lead-I

mobile ECG technology. Biomed. Signal Process. Control 2021, 66, 102462. [CrossRef]
38. Tateno, K.; Glass, L. A method for detection of atrial fibrillation using RR intervals. In Proceedings of the IEEE Conference on

Computers in Cardiology, Cambridge, MA, USA, 24–27 September 2000; Volume 27, pp. 391–394.
39. Tison, G.H.; Sanchez, J.M.; Ballinger, B.; Singh, A.; Olgin, J.E.; Pletcher, M.J.; Vittinghoff, E.; Lee, E.S.; Fan, S.M.;

Gladstone, R.A.; et al. Passive detection of atrial fibrillation using a commercially available smartwatch. JAMA Cardiol.
2018, 3, 409–416. [CrossRef]

40. Petmezas, G.; Haris, K.; Stefanopoulos, L.; Kilintzis, V.; Tzavelis, A.; Rogers, J.A.; Katsaggelos, A.K.; Maglaveras, N. Automated
atrial fibrillation detection using a hybrid CNN-LSTM network on imbalanced ECG datasets. Biomed. Signal Process. Control 2021,
63, 102194. [CrossRef]

41. Pan, J.; Tompkins, W.J. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 1985, BME-32, 230–236. [CrossRef]
[PubMed]

http://dx.doi.org/10.1016/j.cjca.2018.05.003
http://www.ncbi.nlm.nih.gov/pubmed/30049358
http://dx.doi.org/10.3390/s23073700
http://dx.doi.org/10.3390/s20123570
http://dx.doi.org/10.3390/s20195517
http://dx.doi.org/10.3390/s22051776
https://www.st.com/content/st_com/en/arm-32-bit-microcontrollers/arm-cortex-m4.html
https://www.st.com/content/st_com/en/arm-32-bit-microcontrollers/arm-cortex-m4.html
https://community.arm.com/cfs-file/__key/communityserver-discussions-components-files/471/7607.ARM-white-paper-_2D00_-DSP-capabilities-of-Cortex_2D00_M4-and-Cortex_2D00_M7.pdf
https://community.arm.com/cfs-file/__key/communityserver-discussions-components-files/471/7607.ARM-white-paper-_2D00_-DSP-capabilities-of-Cortex_2D00_M4-and-Cortex_2D00_M7.pdf
http://dx.doi.org/10.3390/s20092638
http://www.ncbi.nlm.nih.gov/pubmed/32380766
http://dx.doi.org/10.1109/JPROC.2022.3153408
http://dx.doi.org/10.3390/a13050125
http://dx.doi.org/10.1088/1361-6579/abc960
http://dx.doi.org/10.1016/j.bspc.2021.102462
http://dx.doi.org/10.1001/jamacardio.2018.0136
http://dx.doi.org/10.1016/j.bspc.2020.102194
http://dx.doi.org/10.1109/TBME.1985.325532
http://www.ncbi.nlm.nih.gov/pubmed/3997178


Sensors 2023, 23, 7521 12 of 12

42. Wu, H.; Chen, C.; Weng, K. An energy-efficient strategy for microcontrollers. Appl. Sci. 2021, 11, 2581. [CrossRef]
43. Ren, J.; Zhang, D.; He, S.; Zhang, Y.; Li, T. A survey on end-edge-cloud orchestrated network computing paradigms: Transparent

computing, mobile edge computing, fog computing, and cloudlet. ACM Comput. Surv. 2019, 52, 1–36. [CrossRef]
44. Shi, W.; Dustdar, S. The promise of edge computing. Computer 2016, 49, 78–81. [CrossRef]
45. Al-Turjman, F.; Baali, I. Machine learning for wearable IoT-based applications: A survey. Trans. Emerg. Telecommun. Technol. 2022,

33, e3635. [CrossRef]
46. Ding, E.Y.; Marcus, G.M.; McManus, D.D. Emerging technologies for identifying atrial fibrillation. Circ. Res. 2020, 127, 128–142.

[CrossRef]
47. Lip, G.Y.; Beevers, D.G. ABC of atrial fibrillation: History, epidemiology, and importance of atrial fibrillation. BMJ 1995, 311, 1361.

[CrossRef]
48. Perez, M.V.; Mahaffey, K.W.; Hedlin, H.; Rumsfeld, J.S.; Garcia, A.; Ferris, T.; Balasubramanian, V.; Russo, A.M.; Rajmane, A.;

Cheung, L.; et al. Large-scale assessment of a smartwatch to identify atrial fibrillation. N. Engl. J. Med. 2019, 381, 1909–1917.
[CrossRef]

49. Jonas, D.E.; Kahwati, L.C.; Yun, J.D.; Middleton, J.C.; Coker-Schwimmer, M.; Asher, G.N. Screening for atrial fibrillation with
electrocardiography: Evidence report and systematic review for the US Preventive Services Task Force. JAMA Clin. Rev. Educ.
2018, 320, 485–498. [CrossRef]

50. Marcus, G.M. The Apple Watch can detect atrial fibrillation: So what now? Nat. Rev. Cardiol. 2020, 17, 135–136. [CrossRef]
[PubMed]

51. Palano, F.; Adduci, C.; Cosentino, P.; Silvetti, G.; Boldini, F.; Francia, P. Assessing atrial fibrillation substrates by P wave analysis:
A comprehensive review. High Blood Press. Cardiovasc. Prev. 2020, 27, 341–347. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/app11062581
http://dx.doi.org/10.1145/3362031
http://dx.doi.org/10.1109/MC.2016.145
http://dx.doi.org/10.1002/ett.3635
http://dx.doi.org/10.1161/CIRCRESAHA.119.316342
http://dx.doi.org/10.1136/bmj.311.7016.1361
http://dx.doi.org/10.1056/NEJMoa1901183
http://dx.doi.org/10.1001/jama.2018.4190
http://dx.doi.org/10.1038/s41569-019-0330-y
http://www.ncbi.nlm.nih.gov/pubmed/31873198
http://dx.doi.org/10.1007/s40292-020-00390-1
http://www.ncbi.nlm.nih.gov/pubmed/32451990

	Introduction
	Related Works
	Edge Computing
	Method
	Results
	Discussion
	Atrial Fibrillation Model Improvements
	Conclusions and Future Work
	References

