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Abstract: Microwave medical sensing and imaging (MMSI) has been a research hotspot in the past
years. Imaging algorithms based on electromagnetic inverse scattering (EIS) play a key role in MMSI
due to the super-resolution phenomenon. EIS problems generally employ far-field scattered data
to reconstruct images. However, the far-field data do not include information outside the Ewald’s
sphere, so theoretically it is impossible to achieve super resolution. The reason for super resolution
has not been clarified. The majority of the current research focuses on how nonlinearity affects the
super-resolution phenomena in EIS. However, the mechanism of super-resolution in the absence of
nonlinearity is routinely ignored. In this research, we address a prevalent yet overlooked problem
where the image resolution due to scatterers of extended structures is incorrectly analyzed using
the model of point scatterers. Specifically, the classical resolution of EIS is defined by the Rayleigh
criterion which is only suitable for point-like scatterers. However, the super-resolution in EIS is
often observed for general scatterers like cylinders, squares or Austria shapes. Subsequently, we
provide theoretical results for the Born approximation framework in EIS, and employ the Sparrow
criteria to quantify the resolution for symmetric objects of extended structures. Furthermore, the
modified Sparrow criterion is proposed to calculate the resolution of asymmetric scatterers. Numerical
examples show that the proposed approach can better explain the super-resolution phenomenon
in EIS.

Keywords: electromagnetic inverse problems; resolution; super-resolution; point spread function;
Rayleigh criterion; Sparrow criterion

1. Introduction

Microwave medical sensing and imaging (MMSI) uses non-ionizing electromagnetic
waves at microwave frequencies for the diagnosis of functional and pathological tissue con-
ditions. The applications of MMSI include breast cancer screening, brain stroke diagnosis,
and bone fracture imaging [1–8]. Compared with traditional medical imaging methods
such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI), MMSI
systems are more portable, lower cost and reduce health risks. For imaging techniques,
both quantitative and qualitative imaging algorithms have been developed. The former
are mainly based on electromagnetic inverse scattering (EIS) whereas the latter utilize
radar-based approaches.

The objective of EIS is to reconstruct the dielectric profile of scatterers, which can be
used to sense anomalies with distinctive dielectric properties. In this paper, we mainly
focus on the case of using far-field scattered data for dielectric reconstruction, as commonly
studied in EIS. The resolution is a central metric in EIS for determining the sensing system’s
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capability. For instance, the resolution in [9] is about 1/12 wavelength, which achieves
super-resolution performance because the result significantly exceeds the diffraction limit
(1/2 wavelength). However, the reason behind super-resolution in EIS has not been com-
pletely understood. According to the analytical results using the spectrum theory [10], the
imaging resolution based on Born approximation (BA) can only reach about 0.3 wavelength.
Subsequently, researchers proposed the Born approximation iteration method (BIM) to
improve the results of BA, and argued that this iterative scheme accounts for multiple
scattering of electromagnetic waves. Hence, they interpreted super-resolution as a result
of multiple scattering of the incident wave, which transforms the evanescent wave to the
transmission wave that radiates to the far field. The evanescent wave contains information
outside the Ewald sphere resulting in super-resolution. However, this explanation is subject
to debate. For instance, ref. [10] points out that super-resolution can be achieved without
multiple scattering. Moreover, ref. [11] suggests that even if the far field contains the
information outside the Ewald sphere, it cannot naturally lead to the super-resolution phe-
nomenon. This is because even though multiple scattering transforms the evanescent wave
into the transmission wave, the latter is destroyed and the spectrum of the former should
be obtained which is hard to achieve due to complex multiple scattering. Also, a recent
paper [12] argued that such multiple scattering would lead to 0/0 manifolds from a math-
ematical point of view, which would make it meaningless to yield super-resolution. The
existing literature mainly focuses on whether multiple scattering leads to super-resolution.
Nevertheless, few works are dedicated to super-resolution without multiple scattering.
In [13], super-resolution was interpreted as the result of analytical continuation, which
however is not feasible in practice due to its serious instability and high sensitivity to noise
as mentioned in [14]. Consequently, for weak scattering problems, we still need new tools
to explain the super-resolution characteristics.

In this paper, we extend the definition of resolution to offer new insight into super-
resolution. The diffraction limit in optics is calculated by the Rayleigh criterion, which
is defined such that the centre of the diffraction pattern of one image is directly over the
first minimum of the diffraction pattern of the other. Using this definition, we can obtain a
resolution limit of 0.383 wavelength. For point scatterers, the result is correct. When the
distance between two points is less than 0.383 wavelength, it is impossible to distinguish
them from the reconstructed image. However, the result becomes inaccurate if general
scatterers such as two cylinders are employed. We can find that the resolution would be
reduced with an increased scatterer radius. Hence, the Rayleigh criterion cannot be applied
to general scatterers directly. To deal with this problem, there are two problems to be
solved. The first problem is how to describe the spread function of general scatterers; the
second one is how to determine whether the scatterers on the reconstructed image could be
resolved. For the first problem, we review the BA framework and derive the corresponding
point spread function (PSF). Subsequently, the generalized spread function (GSF) for a
general scatterer can be regarded as the sum of PSFs if the scatterers are weak. For the
second problem, we consider the Sparrow criterion traditionally used in astronomy. It is
defined as the separation distance between two targets when the joint function has no dip
in intensity at the midpoint. By combining the GSF and the Sparrow criterion, we propose
a novel resolution computation method as well as a new interpretation of super-resolution
in EIS under weak scattering. The reason behind super-resolution by BA is not that we get
the information ouside the Ewald’s sphere. On the contrary, we found that the definition of
super resolution is the key factor. With the new definition, the size of the scatterers have a
great impact on the resolution. When the scatterers are points, super-resolution does not
occur. But when the scatterers become larger, the resolution calculated by the Sparrow
criterion can reach super-resolution. Moreover, most real-life scatterers are asymmetrical.
In order to deal with asymmetry, we further propose a modified Sparrow criterion. In this
case, the relative permittivity of scatterers have the same effect on the resolution. Numerical
experiments verify the validity of the proposed methods. In short, we believe that the
super-resolution is related to the size and the relative permittivity of the scatterers.
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This paper proposes a new perspective for interpreting the super-resolution phe-
nomenon in EIS by employing the Sparrow criterion, instead of the conventional Rayleigh
criterion. In order to achieve this, the explicit expression of the spread function for general
scatterers in EIS needs to be obtained. Thus, the BA method is first investigated. Subse-
quently, the Sparrow criterion is used to calculate the resolution of symmetrical scatterers
and is modified to accommodate asymmetrical scatterers. Following this method, the size
of the scatterer would also affect the resolution. As the cylindrical scatterer gradually
increases in size, the image resolution is improved. The proposed analysis can be readily
extended to iterative methods such as BIM and DBIM.

The paper is organized as follows. Section 2 briefly reviews the general framework of
EIS under BA. Section 3 gives the spread function of BA. Section 4 analyzes the resolution
of EIS by applying the Sparrow criterion. Numerical examples are then used to validate
the analysis. Finally, concluding remarks are provided in Section 5.

2. General Framework of EIS

We consider a two-dimensional (2D) scenario with transverse magnetic wave illumina-
tion. As shown in Figure 1, the unknown scatterers are located in the domain of interest (D).
Without loss of generality, the antennas are supposed to be distributed on the circumference
of a circle (S). The background is homogeneous. The equations describing the relationship
between the scatterers and the field can be written as,

J = χ(Ei + GDJ), (1)

and
Es = GSJ, (2)

where J is the contrast current; χ is the contrast function defined as χ(r) = [ε(r)− ε0]/ε0
with ε(r) and ε0 being the permittivities of scatterer r and background, respectively; Ei is
the incident field; GD and GS are the matrix forms of the Green functions in domain D and
surface S, respectively; and Es is the scattering field. It is worth mentioning that our focus
is on the resolution generated in far field, thus the receiving antenna is located in the far
field area.

Figure 1. Schematic diagram of EIS.

In solving the EIS problems, the incident field Ei, the scattering field Es, and the Green
function matrixes GD and GS are known. The contrast function χ and the current J are
unknown. For the BA method, the first step is to obtain the current J using (2). This yields
an underdetermined equation with the following solution,

Jsol =
(

GS
)∗[

GS
(

GS
)∗]−1

Es, (3)

where (·)∗ denotes the Hermitian conjugate and Jsol is the solution of (2) that minimizes
the norm ||J|| , where ||J|| is the 2-norm of J .
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The second step is to calculate the contrast function χ using (1). In consideration of
BA, the scattering field is very weak compared with the incident field. Therefore, it can be
approximated as J = χEi. This equation is overdetermined without an exact solution. A
common method is to obtain the least squares solution,

χsol =
∑Ni

n=1 Jsol
n ·

(
Ei

n

)∗
∑Ni

n=1 Ei
n ·
(

Ei
n

)∗ , (4)

where the subscript n denotes the nth incident wave, Ni is the total number of incident
waves, and χsol is the solution of contrast function under BA.

In summary, BA can separate the inverse process into two steps. The first is to use
the minimum norm method to obtain the current J, and the second is to use the least
squares method to obtain the contrast function χ. As BA is only suitable for weak scatterers,
researchers have developed the Born iterative method (BIM) to deal with strong scatterers.
In each iteration of BIM, the first step is the same as BA, and the second step is to calculate
the current by using the total field derived from χ. A further improved method is to
calculate the current by using the Green function of an inhomogeneous medium, which is
called the Distorted Born iterative method (DBIM) [15]. Other types of methods solve the
current and contrast functions by using optimization algorithms [16–18].

3. General Spread Function

A key quantity in the examination of resolution is the spread function. In this section,
we first re-derive the classical point spread function (PSF) from the perspective of BA,
which allows us to extend it to the general spread function (GSF) for scatterers of extended
structures. This analysis paves the way for the discussion of super-resolution based on
various forms of Sparrow criteria in the following section.

Consider the scenario of point scatterers. The PSF can be derived from the process of
BA. First, we can compute the current using (3). The current and the scattering field are
linked by the Green’s function, which is the zeroth-order Hankel function of the first kind
in 2D free space,

Es = k2
0

∫
D

g(r, r′)J(r′)dr′, (5)

where

g(r, r′) = − j
4

H(1)
0 (k0

∣∣r− r′
∣∣), (6)

with H(1)
0 (·) being the zeroth-order Hankel function of the first kind. k0 is the wave number

of incident wave. Because antennas are located in the far field, we can use the following
approximation of Hankel function,

lim
|r−r′ |→∞

H(1)
0 (k0

∣∣r− r′
∣∣) = √ 2

jπk0|r− r′| e
jk0|r−r′ |. (7)

Substitute (6) and (7) into (5) results in

Es = k2
0

∫ ∞

−∞
−1

4

√
2j

πk0|r− r′| e
jk0|r−r′ |J(r′)dr′. (8)

Suppose that antennas are located in the far field. In this case, r is much larger than r′. The
term |r− r′| in the denominator in (8) can be approximated by |r|. Furthermore, the term
|r− r′| in the exponent can be approximated by |r| − |r′| cos θ, where θ is the angle between
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r and r′. Applying cos θ = rr′
|r||r′ | , it comes to |r| − r′ · er, where er is the unit vector in the r

direction. Subsequently, we have

Es = −
k2

0
4

√
2j

πk0|r|
ejk0|r|

∫ ∞

−∞
e−jk0r′ ·er J(r′)dr′. (9)

Using the Cartesian coordinate system in (9), it comes to

Es =−
k2

0
4

√
2j

πk0|r|
ejk0|r|

∫ ∞

−∞

∫ ∞

−∞
e−j2π

(
kx
2π x+

ky
2π y

)
J(x, y)dxdy,

(10)

where k2
x + k2

y = k2
0. We can find that the double integral in (10) indicates the 2D Fourier

transform of the current over a ring of radius k0
2π . Defining a constant term

C = − k2
0

4

√
2j

πk0|r|
ejk0|r|, the scattering field reduces to

Es = C · F (J) · ring
(

k0

2π

)
, (11)

where F (·) denotes the 2D Fourier transform, and ring
(

k0
2π

)
is the 2D Dirac delta function

with a ring shape of radius k0
2π .

Next, we use the singular value decomposition (SVD) to decompose the current into a
radiation component and a non-radiation component [18]. The SVD of GS is expressed as

GS = UΣV∗, (12)

where U and V are composed of orthonormal left and right singular vectors, respectively.
The term Σ is a diagonal matrix composed of singular values. In this form, the vector of the
current can be written as a span of the right singular vectors V. And we can decompose
the current into two complementary and orthogonal parts,

J = J+ + J−, (13)

where J+ and J− are corresponding to the first and last columns of V, respectively. Ac-
cording to SVD theory, the radiation current J+ produces the scattering field, whereas the
non-radiation current J− has no contribution. Then the value of J+ can be obtained by
applying (2) and (12),

J+ = V
U∗ · Es

Σ
. (14)

Applying the SVD theory, the pseudo inverse of GS in (3) can also be represented as(
GS
)∗[

GS
(

GS
)∗]−1

= VΣ−1U∗. (15)

So the current is given by

Jsol = VΣ−1U∗Es = V
(U)∗ · Es

Σ
= J+. (16)

Subsequently, the current in (11) can also decomposed into the form of (13), which leads to

Es = C · F
(
J+ + J−

)
· ring

(
k0

2π

)
. (17)
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On the basis of the definitions of radiation and non-radiation currents, the term J+ is the
value of F (J) on the ring,

Es = C · F
(
J+
)
. (18)

Hence, the inverse Fourier transform of the scattering field is J+,

J+ =
1

2πC
F−1(Es) (19)

Substituting (11) and (19) into (16) yields

Jsol =
1

2πC
F−1(Es) =

1
2πC
F−1

[
C · F (J) · ring

(
k0

2π

)]
=

1
2π

{
J ∗ F

[
ring

(
k0

2π

)]}
,

(20)

where the symbol ∗ denotes convolution. It is worth noting that the result would be zero if
the ring had zero thickness. However, the quantization effect of the numerical computation
in (3) results in a non-zero thickness of the ring implicitly. Hence, the result comes to

Jsol =
1

2π

{
J ∗ F

[
ring

(
k0

2π
, ∆R

)]}
, (21)

where ∆R is the effective thickness of the ring due to the quantization effect. Following the
derivation of the 2D Fourier transform of a ring in Appendix A, the result is

F
[

ring
(

k0

2π
, ∆R

)]
= k0∆RJ0(k0ρ), (22)

where ρ represents the distance from the origin in the reconstructed image. Substituting (22)
into (20) yields

Jsol =
1

2π
[J ∗ k0∆RJ0(k0ρ)]

∝ J ∗ J0(k0ρ).
(23)

To reconstruct the relative permittivity profile, the least squares method in (4) is used.
Applying the plane wave equation in (4), we have

χsol =
1

Ni Jsol
Ni

∑
n=1

ej(k0ρθn ), (24)

where θn is the incident angle of the nth plane wave. For a sufficiently large Ni, the
summation can be approximated by an integral

χsol =
1

Ni Jsol
∫ 2π

0
ejk0ρθ dθ. (25)

For simplicity, we focus on the value along the x-axis with y = 0,

χsol(x) =
1

Ni Jsol
∫ 2π

0
ejk0x cos θdθ. (26)

It can be found that the integral in (26) has the same expression as the zeroth-order
Bessel function,

J0(k0x) =
1

2π

∫ 2π

0
ejk0x cos θdθ. (27)
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Substitute (27) into (26) results in

χsol(x) =
1

2πNi Jsol J0(k0x). (28)

We can then derive the PSF from (23) and (28),

χsol(x) ∝ [J0(k0x)]2. (29)

To verify the above result, the reconstructed image of a point scatterer at 300 MHz is
shown in Figure 2a. Furthermore, Figure 2b compares the normalized amplitude of the
reconstructed image along the x-axis and the PSF in (29), which shows excellent agreement
between these two functions.

Figure 2. (a) Reconstructed image of a point scatterer in 300 MHz. (b) Comparison of the normalized
amplitude of the reconstructed image along the x-axis and the PSF in (29).

For a general scatterer, the reconstructed image could be regarded as the superposition
of PSFs for all point scatterers that comprise the general scatterer if the mutual coupling of
these individual point scatterers could be ignored. Hence, we can extend the concept of
PSF to a general scatterer, which results in the following approximation

χsol(r) ∝ χ(r) ∗ [J0(k0r)]2. (30)

Equation (30) defines the general scatterer spread function (GSF). Although it is an approxi-
mate solution under BA, it can be regarded as an upper limit in any chosen frequency.

4. Resolution Analyses Using Various Forms of Sparrow Criteria
4.1. Standard Sparrow Criterion
4.1.1. Point Scatterers

We first review the classical Rayleigh criterion. It states that two images become
resolvable when the centre of the diffraction pattern of one image is directly over the first
minimum of the diffraction pattern of the other. The resolution defined by the Rayleigh
criterion can be expressed as

σ = min
∣∣∣argx{χ

sol(x) = 0}
∣∣∣. (31)

Substituting (29) into (31) results in σ = 0.383λ.
Then, the standard Sparrow criterion is applied, which is defined as the separation

distance between two targets when the joint function has no dip in intensity at the midpoint.
The resolution defined by this criterion is

σ = min

∣∣∣∣∣argx

{
d2χsol(x)

dx2 = 0

}∣∣∣∣∣, (32)



Sensors 2023, 23, 7404 8 of 14

where χsol(x) is the overall spread function along the x-axis with y = 0.
The resolutions obtained using the criteria in (31) and (32) are 0.383λ and 0.344λ,

respectively. In Figure 3, we plot the reconstructed images and the sectional view of two
points with separation distances of 0.30 m (Figure 3a–c), 0.34 m (Figure 3d–f) and 0.38 m
(Figure 3g–i). As can be seen from the figure, the two points in Figure 3a) are not resolved
as only one peak is observed in Figure 3c). On the other hand, in Figure 3i, we can clearly
observe a slight trough between two peaks, which indicates that the two points in Figure 3g
have been resolved.

Figure 3. (a) Actual permittivity profile of two point scatterers with a separation distance of 0.30 m
and the corresponding (b) reconstructed image and (c) the sectional view in the x-axle of recon-
structed image. (d) Actual permittivity profile of two point scatterers with a separation distance
of 0.34 m and the corresponding (e) reconstructed image and (f) the sectional view in the x-axle of
reconstructed image. (g) Actual permittivity profile of two point scatterers with a separation distance
of 0.38 m and the corresponding (h) reconstructed image and (i) the sectional view in the x-axle of
reconstructed image.

4.1.2. Cylinder Scatterers

In general, the definition of resolution is determined by the separation from the
scatterer’s edges. Hence, the definition of resolution comes to
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σ = min

∣∣∣∣∣argx

{
d2χsol(x)

dx2 = 0

}∣∣∣∣∣− 2a, (33)

where a is the distance from the edge to the center of each scatterer.
For illustration purposes, we consider two cylinder scatterers. In this case, χsol(x) can

be written as

χsol(x) =
∫ x−d/2+r

x−d/2−r
[J0(k0ρ)]2dρ

+
∫ x+d/2+r

x+d/2−r
[J0(k0ρ)]2dρ,

(34)

where r is the radius of each circle and d is the distance between the centers of the circles.
According to the definition of Sparrow criterion, we need to calculate the first null point of
the second derivative of the joint function when x = 0. This is given by

d2χsol(x)
dx2 =

2k0 J0[k0(x + d/2− r)]J1[k0(x + d/2− r)]

− 2k0 J0[k0(x + d/2 + r)]J1[k0(x + d/2 + r)]

+ 2k0 J0[k0(x− d/2− r)]J1[k0(x− d/2− r)]

− 2k0 J0[k0(x− d/2 + r)]J1[k0(x− d/2 + r)],

(35)

and the resolution is obtained as

σ = min

∣∣∣∣∣argx

{
d2χsol(x)

dx2 = 0

}∣∣∣∣∣− 2r. (36)

For example, if we set the frequency as 300 MHz and the radius as 0.1 m, the resolution
is obtained as 0.152 m. Figure 4a,b are the actual and reconstructed images for a separation
distance of 0.12 m. Figure 4d,e are the images for a separation distance of 0.16 m. Figure 4g,h
are the images for a separation distance of 0.2 m. Figure 4c,f,i are the sectional views of
the reconstructed images. We can find that the two scatterers can be resolved at 0.2 m. It
is hard to say the two cylinders are resolved at 0.16 m. This result is because the distance
is too close to the calculation result. But we believe the calculation results indicate the
demarcation between whether it can be distinguished. Furthermore, as σ

λ = 0.152, the
resolution with respect to wavelength is around 0.152λ. Hence, the Sparrow criterion
could explain the phenomenon of super resolution. In addition, if we want to achieve the
minimum level of super-resolution (0.25λ), we can find that the radius of cylinder should
be 0.048λ.

4.2. Modified Sparrow Criterion

To deal with different asymmetric scatterers, the Sparrow criterion should be modified.
The Gaussian point between two scatterers is used to deal with this situation. First, the
Gaussian point is calculated as

g = min

∣∣∣∣∣argx

{
dχsol(x)

dx
= 0

}∣∣∣∣∣, (37)

And the resolution comes to

σ = min

∣∣∣∣∣argx

{
d2χsol(x)

dx2 = g

}∣∣∣∣∣− a1 − a2. (38)

where a1 and a2 are the edge-to-center distances of the two scatterers, respectively.
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Figure 4. (a) Actual permittivity profile of two scatterers with a separation distance of 0.12 m and
the corresponding (b) reconstructed image and (c) the sectional view in the x-axle of reconstructed
image. (d) Actual permittivity profile of two scatterers with a separation distance of 0.16 m and
the corresponding (e) reconstructed image and (f) the sectional view in the x-axle of reconstructed
image. (g) Actual permittivity profile of two scatterers with a separation distance of 0.20 m and the
corresponding (h) reconstructed image and (i) the sectional view in the x-axle of reconstructed image.

We first consider two point scatterers with different permittivity. We set the relative
permittivity values of two points as 1.1 and 1.2, respectively, and the frequency as 300 MHz.
In Figure 5, we plot the reconstructed images and the sectional view of two points with
separation distances of 0.34 m (Figure 5a–c), 0.38 m (Figure 5d–f) and 0.42 m (Figure 5g–i).
The numerical results of resolution by (37) and (38) is 0.382 m. Together with Figure 3,
we can find that the resolution is reduced if the permittivity values of the two points
are different.
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Figure 5. (a) Actual permittivity profile of two scatterers with a separation distance of 0.34 m and
the corresponding (b) reconstructed image and (c) the sectional view in the x-axle of reconstructed
image. (d) Actual permittivity profile of two scatterers with a separation distance of 0.38 m and
the corresponding (e) reconstructed image and (f) the sectional view in the x-axle of reconstructed
image (g) Actual permittivity profile of two scatterers with a separation distance of 0.42 m and the
corresponding (h) reconstructed image and (i) the sectional view in the x-axle of reconstructed image.

Next, we look into two cylindrical scatterers with different radii. The frequency is
set as 300 MHz, and the radii of two cylinders are 0.1 m and 0.15 m. Figure 6a,b are the
actual and reconstructed images when the distance of separation is 0.11 m. Figure 6d,e
are the actual and reconstructed images when the distance is 0.15 m. Figure 6g,h are the
actual and reconstructed images when the distance of separation is 0.19 m. Figure 6c,f,i
are the sectional views of the reconstructed images. The numerical results of resolution is
0.147 m. The two cylinders can be resolved in 0.15 m and 0.19 m. Numerical results verify
the accuracy of the generalized Sparrow criterion.
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Figure 6. (a) Actual permittivity profile of two scatterers with a separation distance of 0.11 m and
the corresponding (b) reconstructed image and (c) the sectional view in the x-axle of reconstructed
image. (d) Actual permittivity profile of two scatterers with a separation distance of 0.15 m and
the corresponding (e) reconstructed image and (f) the sectional view in the x-axle of reconstructed
image. (g) Actual permittivity profile of two scatterers with a separation distance of 0.19 m and the
corresponding (h) reconstructed image and (i) the sectional view in the x-axle of reconstructed image.

5. Conclusions

Resolution limit is an important topic in EIS. Nevertheless, the determination of
resolution has been subject to debate. Most of the existing works on super-resolution focus
on the role of multiple scattering, whereas super-resolution without involving multiple
scattering is often ignored. The traditional PSF and Rayleigh criterion cannot explain
super-resolution in the latter case. To address these issues, we proposed to use the GSF
and Sparrow criterion to calculate the resolution. We found that two point scatterers can
be resolved for a distance of 0.344λ. The resolution would be improved if two cylindrical
scatterers were employed. The super-resolution would be observed if the cylinder radius
was more than 0.048λ.
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Appendix A. Two-Dimensional Fourier Transform of Ring

The ring with radius of R and thickness of ∆R is

f (x, y) =

{
1, R2 ≤ x2 + y2 ≤ (R + ∆R)2,

0, others.
(A1)

The two dimensional Fourier transform is as follows

F(u, v) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)e−i2π(ux+vy)dxdy. (A2)

To deal with the ring, we can use polar coordinate. Use r, θ, ρ and φ to replace x, y, u
and v. The relationship of these parameters are x = r cos θ , y = r sin θ , u = ρ cos φ and
v = ρ sin φ. The two dimensional Fourier transform in polar coordinate is as follows

F(ρ, φ) =
∫ ∞

r=0

∫ 2π

θ=0
f (r, θ)e−i2πrρ(cos θ cos φ+sin θ sin φ)rdrdθ. (A3)

Because the ring is independent of θ, it comes to

F(ρ, φ) =
∫ ∞

r=0
r f (r)

∫ 2π

θ=0
e−i2πrρ cos(θ−φ)drdθ, (A4)

where the second integral term is the definition of Bessel function.

J0(x) =
1

2π

∫ 2π

0
e−jx cos(θ)dθ. (A5)

The Fourier transform comes to

F(ρ, φ) = 2π
∫ ∞

0
r f (r)J0(2πrρ)dr. (A6)

Then, substitute (A1) to it, the result comes to

F(ρ, φ) = 2πR∆RJ0(2πRρ). (A7)
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