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Abstract: Background: The aim of this study was to compare energy expenditure (EE) predicted by
accelerometery (EEAcc) with indirect calorimetry (EEMETA) in individuals with hemiparesis. Methods:
Twenty-four participants (12 with stroke and 12 healthy controls) performed a six-minute walk test
(6MWT) during which EEMETA was measured using a portable indirect calorimetry system and EEACC

was calculated using Bouten’s equation (1993) with data from a three-axis accelerometer positioned
between L3 and L4. Results: The median EEMETA was 9.85 [8.18;11.89] W·kg−1 in the stroke group
and 5.0 [4.56;5.46] W·kg−1 in the control group. The median EEACC was 8.57 [7.86;11.24] W·kg−1 in
the control group and 8.2 [7.05;9.56] W·kg−1 in the stroke group. The EEACC and EEMETA were not
significantly correlated in either the control (p = 0.8) or the stroke groups (p = 0.06). The Bland–Altman
method showed a mean difference of 1.77 ± 3.65 W·kg−1 between the EEACC and EEMETA in the
stroke group and−2.08± 1.59 W·kg−1 in the controls. Conclusions: The accuracy of the predicted EE,
based on the accelerometer and the equations proposed by Bouten et al., was low in individuals with
hemiparesis and impaired gait. This combination (sensor and Bouten’s equation) is not yet suitable
for use as a stand-alone measure in clinical practice for the evaluation of hemiparetic patients.

Keywords: accelerometery; energy expenditure; stroke; gait; six-minute walking test

1. Introduction

Physical activity measurements have been used to indirectly quantify energy expen-
diture in individuals with various pathologies for several years [1–4]. Connected devices,
such as watches, bracelets, and smartphone applications, which are designed to increase
the activity levels of the general public, have become popular among clinicians due to their
ease of use and low cost. Such devices have thus been integrated into clinical practice and
research to indirectly quantify energy expenditure [5]. Studies comparing results from
off-the-shelf connected devices with specialised, equivalent medical devices or indirect
calorimetry (which is the gold standard) have found that they accurately record data, such
as the number of steps and distance covered, and reliably estimate energy expenditure
in healthy subjects [6,7]. However, the methods used to predict energy expenditure by
Mandigout et al. [8], where the prediction was made using an accelerometer, have been
protected as an industrial secret.

Increasing the level of physical activity for people with a chronic pathology, such as
stroke, has been shown to reduce their co-morbidities [9,10]. The evaluation of the impact
of stroke treatments would be improved if clinicians could reliably and easily measure
the amount of activity performed by their patients [11]. A previous study has shown that
patients with stroke are more inactive than healthy age-matched controls [12]. Research has
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also shown that energy expenditure is doubled in patients with stroke due to the sequalae
(mainly weakness and spasticity) of their hemiparesis [13].

Feedback on patients’ activity levels would not only inform healthcare providers, but
it might also motivate individuals with stroke to perform regular physical activity, and
is therefore recommended by the HAS (Haute Autorité de Santé) [14]. The accessibility
of new technologies and connected devices that are easily integrated into peoples’ daily
lives and which allow activity to be tracked, such as smartphone applications and smart
watches, have simplified the collection of detailed data relating to physical activity levels
outwith the hospital setting [15]. Nevertheless, several studies have indicated that inter-
device reliability can be poor due to factors including the device’s position on the body,
the recording method used, and the equations used to process the data, all of which
result in either an over- or underestimation of energy expenditure [16]. As a result, the
use of connected devices is currently a less reliable measurement technique than indirect
calorimetry [17].

Therefore, despite the promise of such devices, the clinical interest in them, and the
work on their development, there is currently no consensus on their use in individuals
with chronic diseases and significant gait asymmetry. Optimal sensor types and positions
for the accurate evaluation of physical activity levels and energy expenditure have yet
to be identified. One method frequently reported in the literature [18–21] is Bouten’s
method [22]. This method has been validated in healthy individuals, but not in people
with gait disorders [23]. Bouten’s method [22] uses a regression equation to calculate the
integral of signal data recorded using an accelerometer, positioned between L3 and L4 (so
as to be close to the person’s centre of mass) in three planes of space (x, y, and z) in order to
estimate energy expenditure during the gait.

Moreover, following a cardiovascular accident (stroke), we often observe motor im-
pairment caused by either a hemorrhage (hemorrhagic stroke) or a blocked artery (ischemic
stroke) in the motor cortex. Neuromuscular disorders result from that, causing locomo-
tor impairments. In terms of spatiotemporal parameters of the gait cycle, reductions in
speed, cadence, and stride length have been observed [24,25]. At the joint kinematic level,
disturbance in flexion has been observed [26]. At the hip level, there can be limitations
in knee elevation due to impaired flexion and/or hip extension [27]. This can lead to
difficulties in overcoming obstacles. In terms of the knee joint, during the stance phase,
hyperextension and a deficit in flexion during the swing phase can be observed [28]. These
issues can be explained, on one hand, by the overactivity of the triceps surae, resulting in
knee extension and plantar flexion disturbance; on the other hand, it is possibly due to the
overactivation of the rectus femoris. Finally, at the ankle level, there is often hyperactivity
of the plantar flexors and weakness of the dorsiflexors. These impairments can lead to
foot drop [29]. The aforementioned impairments result in a significant increase in energy
cost during walking [25]. This means that the patient will expend more energy per unit of
distance compared to someone without a pathology [30]. The need to evaluate the effects
of therapies on these gait disorders is essential. Consequently, the evaluation of the energy
cost of walking, or more simply of energy expenditure, is relevant to support clinicians in
the overall evaluation of the effects of the therapies chosen. In fact, the connected objects
allowing this indirect measurement have a preponderant place in the evaluation of the
impact of therapeutics on the autonomy of walking. Thus, a question arises: are connected
tools using the Bouten’s method sufficiently accurate to estimate energy expenditure in
patients who have had a stroke?

The aim of this study, therefore, was to compare the accuracy of energy expenditure
values calculated using Bouten’s regression equation method [22] with those obtained from
the gold standard method of indirect calorimetry. This work would help to validate the use
of Bouten’s method as a simple way to assess people who have stroke-related hemiparesis
and impaired gait. Data were compared for both methods from two groups of subjects,
n = 12 individuals with stroke and impaired gait, and n = 12 healthy controls during a
six-minute walk test (6MWT).
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2. Materials and Methods
2.1. Participants

Participants with stroke or impaired gait were recruited either during a routine follow-
up medical consultation, or while they were hospitalised in rehabilitation. Inclusion criteria
were as follows: aged over 18 years, able to walk without assistance or assistive devices,
able to carry out the 6MWT according to the recommendations, and without any known
cardiovascular contraindications [23]. Their main sequelae were locomotor disorders due
to hemiparesis. The twelve participants with stroke included 10 males and 2 females; their
median age was 50.5 years [interquartile range (IQR) 41.25;53.25], their median height was
175 cm [170.0;177.0], and their median weight was 73 kg [62.0;83.0]).

A group of twelve control subjects (8 males and 4 females) was also recruited. Their
results were important not only because they allowed a comparison between the two
experimental groups, but also because their data ensured that any effects noted were
not an artefact of the experimental set-up used in this study, since Bouten’s method has
been validated in healthy individuals [23]. Inclusion criteria for the control group were as
follows: aged over 18 years and with no known neuromuscular pathologies. Their median
age was 29 years [IQR 24.0;33.7], their median height was 177 cm [169.8;177.0], and their
median weight was 69 kg [60.0;75.5].

The study was granted ethical approval, all participants provided informed consent
for participation, and the study was carried out according to the Helsinki declaration.

Study design
All participants performed the 6MWT, as recommended by the American Thoracic

Society [31], as quickly as possible along a 30 m long corridor that was marked every
2 metres. The distance covered was measured at the end of the test. Participants wore
a portable gas exchanger (K4b2, COSMED, Rome, Italy) and a three-axis accelerometer
(EQO2, Equivital, Cambridge, UK). We chose the 6-min walk test (and its performance
criteria including a walk that covers the greatest distance despite the difference in walking
speed) due to its common use for functional or cardio-respiratory evaluations.

2.2. Procedures
2.2.1. Energy Expenditure: Indirect Calorimetry (EEMETA)

Analysis of the gas expired from each respiratory cycle provided the reference mea-
surement of energy expenditure (EEMETA). The system (K4b2, Cosmed, Rome, Italy) was
calibrated in the corridor where the test was performed according to standard procedures.

EEMETA was calculated when
.

VO2 kinetics reached a stable state, during the two last
minutes of the exercise. The

.
VO2 values (Kcal·min−1) were initially smoothed using a

3-point moving average, then the last 150 s of each 6MWT were averaged. The EEMETA was
then converted to W·kg−1.

2.2.2. Energy Expenditure: Accelerometery (EEACC)

1. Sensor: A lightweight (38 g), compact (78 × 53 × 10 mm), three-axis accelerometer
(250 Hz, ±16 g) was positioned between the third and fourth lumbar vertebrae using
a custom-made support. This has previously been recommended for the optimal
estimation of energy expenditure [18,32,33]. This positioning is considered to be
representative of the displacement of the centre of mass in the global coordinate
system. A connected chest-strap monitor (EQO2, Equivital, Cambridge, UK) was
used to measure heart rate during the 6MWT.

2. Estimation of energy expenditure: Bouten’s method was used to estimate energy
expenditure [21]. This method requires accelerometric signal processing in 3 steps:

(1) The raw signals were initially filtered using a Butterworth filter (4th order with
a 20 Hz cut-off frequency);
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(2) The absolute values of the signal obtained on the three axes (IAAtot) were then
calculated in 30 s periods, and then summed for the duration of the test [21];

IAAtot =
∫ i+30sec

i
|X|+

∫ i+30sec

i
|Y|+

∫ i+30sec

i
|Z|

where X, Y, and Z correspond to the 3 axes of the accelerometer;
(3) The following equation was used to obtain predicted EEACC (W·kg−1):

EEACC = 0.104 + 0.23× IAAtot

2.3. Statistical Analysis

The results for the descriptive and interferential statistics were described using the
median, and the first and last quartiles (Q1 and Q3). The level of significance was set at
p ≤ 0.05. The normality of the distribution was verified using a Kolmogorov–Smirnov test.

The results from Bouten’s method and indirect calorimetry were not normally distributed;
therefore, we chose to use a Mann–Whitney test to compare the non-homogenous sample
with independent samples. The relative agreement between the EEMETA and EEACC values
of the groups was compared using Spearman’s rank correlations. Absolute agreement was
calculated using the Bland–Altman method (± limits of agreement set at 95%) [34].

3. Results

The variables measured during the 6MWT are presented in Table 1. There were
significant differences between the groups for

.
VO2 values and distance walked (highest in

the control group), but there was no difference in heart rate.

Table 1. Variables measured during 6MWT.

Control Group Patient with Stroke Mann–Whitney

Median Q1 Q3 Median Q1 Q3

HR (bpm) 140.0 98.1 143.7 116.0 90.1 126.5 p = 0.08
.

VO2
(mL·min−1·kg−1)

28.65 23.35 33.83 13.55 12.63 15.8 p = 0.0001

Distance (m) 686.5 660.0 729.7 341.0 310.0 442.0 p = 0.0001

We observed a significant difference in the median EEMETA between patients with
stroke and the control group. The median EEMETA was 9.85 [8.18;11.89] W·kg−1 in the stroke
group and 5.0 [4.56;5.46] W·kg−1 in the control group (p < 0.0001). For the accelerometric
method, the median EEACC was not significantly different between groups. The EEACC
was 8.2 [7.05;9.56] W·kg−1 in the stroke group and 8.57 [7.86;11.24] W·kg−1 in the control
group (p = 0.11) (Table 2).

Table 2. Comparison of EE measurements between methods (EEACC and EEMETA). * p-value < 0.5.

Median Q1 Q3 Mann–Whitney

EEMETA
(W·kg−1)

Control group 9.85 8.18 11.89 p < 0.0001 *
Patient with stroke 5.0 4.56 5.46

EEAcc
(W·kg−1)

Control group 8.57 7.86 11.24 p = 0.11
Patient with stroke 8.2 7.05 9.56

The EEACC and EEMETA were not significantly correlated in either the control (Spear-
man’s r = 0.086: p = 079) or the stroke groups (Spearman’s r = 0.56: p = 0.06) (Table 3).
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Table 3. Correlation between energy expenditure measured using K4b2 and the accelerometric method.

Median Q1 Q3 Correlation
Coefficient

Control group

EEMETA
(W·kg−1) 9.85 8.18 11.89

r = 0.09; p = 0.79
EEAcc

(W·kg−1) 8.57 7.86 11.24

Patient with stroke

EEMETA
(W·kg−1) 5.0 4.56 5.46

r = 0.56; p = 0.06
EEAcc

(W·kg−1) 8.2 7.05 9.56

The Bland–Altman analysis showed large differences between EEMETA and EEACC mea-
surements in the stroke group with a mean overestimation of the EEACC of 1.16 ± 3.70 W·kg−1

(p = 0.3) relative to the EEMETA (Figure 1A). In the healthy group, the EEACC was underesti-
mated by a mean of −2.43 ± 1.45 W·kg−1 (Figure 1B).
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4. Discussion

The purpose of this study was to compare the accuracy of energy expenditure values
calculated using an accelerometry signal via Bouten’s regression equation method, with
those obtained from the oxygen uptake of indirect calorimetry. The results of this study
showed differences between energy expenditure (EE) during a 6MWT calculated using
indirect calorimetry (EEMETA) and estimated using Bouten’s method (EEACC) in both
healthy volunteers (control) and individuals with stroke. The use of Bouten’s regression
equation led to a 17% underestimation in the control group and a 49% overestimation in
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the calculated energy expenditure in comparison to the gold standard indirect calorimetry
results in the stroke group (i.e., EEACC > EEMETA).

The first interesting result (Table 2) showed that when EE was calculated using indirect
calorimetry, there was a significant difference between the control group and patients with
stroke. This difference was consistent with the study by Slawinski, showing that strokes
have a lower EE because their walking speed is significantly lower than that of healthy
subjects. In that study, the authors also found that the addition of obstacles during a gait
test did not affect the

.
VO2 in patients with stroke [24] as they were already at their

.
VO2

peak and could not increase their O2 consumption further because of their limited gait.
Our EEMETA results agreed with those from that study, namely, that the EEMETA value of
the stroke group participants was half that of the control EEMETA. This difference was
mainly due to the difference in the distances covered during performance of the 6MWT:
the stroke group covered an average of 339 m, whereas the controls covered, on average,
696 m. Collectively, these results suggest that the reduction in distance covered by patients
with stroke was related to an increase in extraneous movements required for movement
control and balance in these patients.

The second interesting result concerned the comparison between stroke patients and
controls in terms of EE estimated using accelerometery and Bouten’s method. Indeed,
these differences could be associated with the fact the Bouten method does not take into
account the state of the subject, particularly individual anthropometric characteristics
such as the body mass index. However, there was no difference in the EEACC. In other
words, the EEACC was the same for both the stroke patients and controls. These results
confirmed the previous hypothesis regarding extraneous movements associated with the
locomotion of patients with stroke. In the stroke group, the overestimation of EEACC using
Bouten’s method (compared to gold standard method) was likely due to the individuals’
abnormal segmental kinematics. An increase in vertical oscillations of the pelvis is a
common gait anomaly following stroke [28]; it is related to various kinematic anomalies
such as knee hyperextension (genu recurvatum) or a stiff gait (lack of knee flexion during
swing) [35,36]. The position of the accelerometer just above the pelvis (between L3 and L4)
meant that all compensatory movements performed by the subjects as a result of motor
and sensory impairments were also recorded. The use of the integral of the unit vector of
the accelerometer (IAAtot) to calculate EE using Bouten’s method then amplified the EEACC
value. The more the accelerometer moves due to compensating for movements, the higher
the amplitude of the accelerometer signals is and the greater the IAAtot is.

The third surprising (Table 3 and Figure 1) result was to find that the control group’s
results contrasted with those described by Bouten et al. [23]. Their original paper reported
a mean overestimation of EEACC of 15% in a group of 11 young healthy adults walking at
different speeds. However, for a gait speed of 7 km·h−1, the EEACC was overestimated by
8%. By contrast, in the present study, at almost the same gait speed (6.97 ± 0.79 km·h−1),
Bouten’s method actually underestimated the energy expenditure in the control group by
17%. This contradiction has been observed elsewhere: other studies have also reported
both over- and underestimations of EE when using accelerometery and comparing the
results to indirect calorimetry in healthy subjects [37]. Indeed, two studies that used an
accelerometer device reported opposing results: Bai et al. found an overestimation [38]
while Imboden et al. (2018) found an under-estimation [39]. A review of the literature by
Jeran et al. in 2016 [40] even shows under- and overestimates of between 3% and 80%. These
variations were likely due to differences in the tasks (gait speed, cadence, etc.). There is cur-
rently no consensus regarding the level of acceptable errors or whether they relate to under-
or overestimations of EE. For strokes, EEACC overestimated EE by 1.16 ± 3.70 W·kg−1.
These results confirmed the variability of accelerometric measurements when used to
estimate energy expenditure. This measurement variability likely explains the lack of
correlation observed between the two measurement methods.

The present results associated with those of previous studies show that there is cur-
rently no consensus regarding the level of acceptable errors or whether they relate to under-
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or overestimations of EE. The variety of EEACC results obtained by different research groups
suggests that it is important to be aware of the limitations in the use of accelerometers.
We recommend that, in order to take advantage of the convenience of accelerometer mea-
surements, healthcare practitioners should produce their own reference data within their
own setting and in patients with different pathologies using both indirect calorimetry and
accelerometery in order to make informed interpretations of the accelerometery data.

The present study was different to other studies of EEACC with regards to two method-
ological aspects: (1) the choice of accelerometer signal processing method and (2) the
positioning of the sensor. In terms of the first point, signal processing using the root-mean
square has been largely replaced by count per minute [41]. Nevertheless, there is currently
no accepted consensus in the literature regarding threshold values for activity detection.
This may, at least in part, be due to inter-individual variations caused by variables such as
age or existing medical conditions. For example, it has been reported that it is difficult to
calculate EEACC in older patients when using gait thresholds taken from younger adults,
as older people have a naturally wider range of inappropriate movements compared to
younger adults which led to an unreliable detection of EE in the older population [17].

With regards to sensor position, Compagnat et al. [42] found a mean difference in the
predicted energy expenditure between 3% and 58% in patients with hemiparesis when the
sensor was positioned on the wrist rather than the pelvis. However, Bouten et al. (1997)
recommended positioning the sensor between L3 and L4 [18] in order to quantify movement
of the centre of mass, and this position has been used in many studies [19,21,25,36,37]. We
think that it seems more logical to place the sensor around the pelvis if the aim is to record
compensatory gait movements, and to objectify the patient’s progress during rehabilitation.
Finally, recent works demonstrated [43] that the choice of the oxygen cost prediction
equation can greatly improve the estimation of stroke patients’ daily energy expenditure.

The main limitation of this study was the inclusion of patients with diverse gait
patterns. Unfortunately, there were too few patients with each type of gait pattern to
determine the effects of different compensatory movements and to refine the prediction
equation accordingly. On the other hand, our sample was small and did not walk at the
same speed. We also observed a mismatch between gender and age.

5. Conclusions

In conclusion, therefore, the results from this study suggest that the 1993 Bouten
method [22] does have the potential to be of considerable practical value for quantifying
rehabilitation-induced changes in gait (improvement in gait and reduction in compensatory
movement acting on the IAAtot). In addition to being cheaper and more accessible than
indirect calorimetry, Bouten’s method to assess energy expenditure using an accelerometer
also accounts for compensatory lower limb movements that occur as part of a pathological
gait. However, we should also stress that this method is, at present, unvalidated in the
wider research community and is not always predictable in terms of how EEACC results
vary in comparison to EEMETA, even in the same populations. Therefore, this tool is not
yet suitable for use as a stand-alone measurement in routine practice for the assessment of
any patients with stroke-related hemiparesis and impaired gait. Further investigations are
required to ensure that the necessary corrective coefficients are known for different patient
groups and pathologies in order to ensure the accuracy, reliability, and reproducibility of
EEACC values for the different combinations of patient demographics and pathologies.
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