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Abstract: Today, machine learning applied to remote sensing data is used for crop detection. This
makes it possible to not only monitor crops but also to detect pests, a lack of irrigation, or other
problems. For systems that require high accuracy in crop identification, a large amount of data is
required to generate reliable models. The more plots of and data on crop evolution used over time,
the more reliable the models. Here, a study has been carried out to analyse neural network models
trained with the Sentinel satellite’s 12 bands, compared to models that only use the NDVI, in order
to choose the most suitable model in terms of the amount of storage, calculation time, accuracy,
and precision. This study achieved a training time gain of 59.35% for NDVI models compared with
12-band models; however, models based on 12-band values are 1.96% more accurate than those
trained with the NDVI alone when it comes to making predictions. The findings of this study could
be of great interest to administrations, businesses, land managers, and researchers who use satellite
image data mining techniques and wish to design an efficient system, particularly one with limited
storage capacity and response times.

Keywords: remote sensing; crop classification; machine learning; deep neural networks; Sentinel-2;
satellite imagery; multispectral; multitemporal; NDVI; common agricultural policy

1. Introduction

In many regions of industrialised countries (for example, the region of this study:
Extremadura, Spain), the number of farmers and farms is in decline (https://www.ine.es/
dynInfo/Infografia/Territoriales, accessed on 3 July 2023), despite the great importance of
agro-livestock farming. Many local governments are promoting different technologies to
improve and facilitate the work of farmers.

For several years, the application of remote sensing in agriculture has been a strategic
objective for many governments, aimed at improving the production of and controlling
agricultural areas. In 2014, the European Commission’s Directorate-General for Agriculture
and Rural Development introduced new regulations [1] in the field of automated land con-
trol, particularly in agriculture. They proposed a procedure for the regular and systematic
observation, tracking, and evaluation of all eligibility criteria, commitments, and other
obligations. This monitoring can be applied over time, supported by Copernicus Sentinel
satellite data or equivalent, and allows for conclusions to be drawn regarding the eligibility
of the aid or support requested as needed. These crop identification processes from satellite
images have been utilised for years by administrations, companies, and researchers, not
only to identify crops in desired areas but also to detect illegal plantations, control the
correct growth of crops, and help to improve production. With the use of data mining
techniques applied to these images, remarkable results have been achieved, especially
when multiple crop areas and time series data are used. In these cases, crop identification
systems must be designed to be as efficient as possible, especially if there are restrictions on
storage capacity and response times to carry out the process.
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When designing crop identification systems for large areas and a wide variety of
crops, it is essential to choose the right technology and data with which to achieve the
project objectives. It is necessary to evaluate the degree of precision and success in the
identification balanced with the time required to carry out the process and the storage
resources used. One of the aspects to consider is whether it is necessary to use all of the
information from the satellite bands or whether it is enough to use a significant index
that is widely used in crop identification, such as the normalised difference vegetation
index (NDVI). In this study, we compare the results of the identification of crops using
the reflectance values of the 12 bands of the Sentinel satellite with the results of only the
NDVI in order to help system designers make a decision about which approach to take.
The NDVI is one of the most widely used indices in remote sensing, as shown in the works
referenced below.

There are several state-of-the-art classification systems, many of which, like those
in [2,3], are based on classifications derived from a single image without clouds. Some
studies work directly with RGB images for land cover classification [4]. Others, such as
that in [5], make use of multiple images to create an NDVI time series, which is used for
further classification with random forest, using 21 images from the Landsat-8 satellite.
Comparable studies, like [6], implemented similar approaches with time series in China,
using different sensor datasets tested with random forest and support vector machines.
The use of the NDVI in time series for crop detections is endorsed in numerous studies,
such as [7], even using diverse spatial resolutions, ranging from 3 m [8] to more than
30 m [9]. In addition, ref. [10] shows that crop classification using multitemporal images
with the combination of the 12 bands of the Sentinel-2 satellite provides better results
than using individual bands or a single image. Previous studies have shown the good
performance of using all 12 bands in a time series [11]. Even articles like [12] recommend
the use of all 13 bands instead of individual bands for better performance. Studies that
add time series phenology features in order to improve performance, such as [13,14],
show that using these data provides better accuracy, albeit marginally, than using red,
near-infrared spectroscopy (NIR), and short-wave infrared (SWIR) bands. Using all of
these bands already provides much higher values than the individual use of the NDVI or
the normalised difference water index (NDWI). The NDVI has also been compared and
combined with different statistical detection systems, such as principal component analysis
(PCA) [15].

Taking all of these investigations into account, it becomes clear how important the
selection of data inputs for crop identification is, depending on the project objectives. As
expected, from a large number of training examples the models of each crop are obtained
with high success rates. Furthermore, it is expected that the models created with infor-
mation from all of the bands will be better than those from an index generated through
the combination of only two. However, no studies have been found that make these com-
parisons, and therefore the following question arises: is it worth using the 12 bands in
crop models or is it enough to use models generated only with the NDVI? This was the
motivation to undertake this study—that it may serve other projects that have the same
approach or other researchers who carry out similar work.

In this paper, we present a comparison between the use of the 12 bands of the Sentinel-
2 satellite (that is, all of the information available) and the use of the NDVI as the only data
input for the learning process, with the information as a temporal series. The results will
help researchers to decide the most appropriate way to approach the crop identification
process according to the requirements of their projects.

In the present paper, Section 2 outlines the proposed method, including the working
area, data collection and selection, data processing, and neural network design. Section 3
encompasses the results and discussion, featuring the results obtained from the training
of the generated models, a comparison of the results from the NDVI and 12-band models,
and a discussion of the findings. The study ends with Section 4, which summarises the
contributions and results of the study.



Sensors 2023, 23, 7132 3 of 22

2. Method

The method followed to carry out this study is based on the INTELIPAC project,
described in [16]. INTELIPAC serves to corroborate the crops declared by farmers to
proceed with the payment provided for in the Common Agricultural Policy (CAP). For this
reason, each neural network model is generated for each crop (in this study, we selected
only 10 crops), and the output of each network is the predicted value of each pixel of a plot
to the corresponding declared crop model. The main objective of this study was to evaluate
the difference in the efficiency of models with 12-band data versus only the NDVI, and
the advantages as well as disadvantages of both approaches. It should be noted that this
study was carried out using neural networks with a simple configuration (described later,
in Section 2.6), although it could have been carried out with other techniques.

The processes that are carried out for crop identification from Sentinel-2 images, for
both types of inputs, are described in this section. There are two basic types of image
analysis regarding crop monitoring: pixel-based and object-based [14]. For this study, a
pixel-based approach was used, where each individual pixel of the plot is processed and
its crop is identified. In this way, the proposed method can detect if a part of the selected
area has irrigation problems, diseases, or is illegally planted with another crop, among
other factors. The methodology employed consists of inputting all of the pixel data of the
selected crop over a time period with their categories into the neural networks.

The proposed method is versatile and can be adapted to the specific requirements
of the detection project. Some projects may need greater precision, and others may have
to handle large amounts of data with a limited response time. On the other hand, others
may want to focus on specific time periods with the aim of providing the early detection
of the crop, analysis of activity in enclosures, or specific stages of crop evolution, such as
ploughing, growth, or harvesting.

Therefore, one of the key factors for adapting the method to the project is to determine
the optimal period of analysis of the images, and to weigh the precision against the
execution time. The approach can range from processing a large number of images from
the entire phenological cycle of a crop to opting for single-temporal data processing.

One of the phases included in the method is the search for the optimal analysis period.
In [17], this process is described, and crop identification comparison data are offered using
data from different periods, where the analysis period is gradually modified through
heuristic searches.

This paper presents the results of two experiments. One of them consisted of the study
of the 12 bands extracted from Sentinel-2, and the other of the calculation and analysis of
the NDVI. The overview of the processes carried out in the experiments can be seen in
Figure 1. The first procedure consisted of inputting the 12 Sentinel-2 frequency bands over
a period of time, and the second one of only inputting the NDVI over the same period. All
of these image data, prior to processing, were downloaded using the Sentinel-2 API, then
trimmed into smaller images to avoid RAM overloads. After creating a time series with
the information for each of the days, the NDVI was calculated (since Sentinel-2 images
do not have this indicator precalculated). This calculation process is always carried out
because we use the NDVI to display a time series graph showing the evolution of the
NDVI over the months for each crop. Between these procedures there was also a treatment
of anomalies, such as cloud masks, as well as normalisation and interpolation to reduce
possible noise. Finally, the bands (or NDVI) were extracted and separated into training,
validation, and testing data, in order to create inputs for the network. These processes have
been developed and explained in previous studies and can be seen in detail in [16]. The
procedures briefly stated above will be explained in subsequent subsections.
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Figure 1. Overview of the main processes of the method for the double experiment.

For each of these experiments, the neural network was modified based on trial and
error. To achieve the best result according to the input, there is a process of tuning hyper-
parameters and layers based on the input dimensions. As the two kinds of inputs are so
different, it would be unfair to use the same architecture for the different inputs.

A short description of the final network for each of the cases can be seen in Section 2.7.
Once the training was finished, the test data were passed over the neural networks. The
final results and discussions are shown in Section 3.

2.1. Work Area: Region of Extremadura, Spain

The experiment was carried out in Badajoz, one of the two provinces of Extremadura,
the largest province in Spain, with an area of 21,766 km2, at degrees/minutes/seconds
(DMS) coordinates of 38◦40′0′′ N, 6◦10′0′′ W (Figure 2). This region has an average tem-
perature of 17.9 ◦C, with an annual average rainfall of 456 mm and an average humidity
of 59.08% (https://es.climate-data.org/europe/espana/extremadura/badajoz-714920/,
accessed on 3 July 2023). The highest elevation that this study included is 1112 m above sea
level (MASL), and the lowest is 150 MASL.

https://es.climate-data.org/europe/espana/extremadura/badajoz-714920/
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Figure 2. (a) World map with the Iberian Peninsula marked with a red circle (40◦12′30.6′′ N,
3◦42′46.8′′ W). (b) The Iberian Peninsula. Spain is outlined in white. (c) The Extremadura region is
outlined in white (39◦12′49.8′′ N, 6◦05′40.7′′ W). (d) The light grey area is the entire Extremadura
region, and the dark grey area is the work area (Badajoz region, Spain), divided into zones.

2.2. Data Collection

The location and characteristics of the plots of interest were provided by the Regional
Government of Extremadura (Figure 3), where each plot shows its crop label. A total of
549,579 plots were studied. In this way, it was possible to organise the information to create
different classes in order to train the neural networks. All of the images corresponding to
these plots had to be selected and downloaded from 1 October 2020 to 15 July 2021, and
were provided by Sentinel-2 satellites.
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Figure 3. Geographical representation of the geolocation of the study plots (549,579 plots). Region of
Badajoz (38◦40′0′′ N, 6◦10′0′′ W), Spain. The whole image is formed with the same grey colour lines
representing the geometric feature of every studied plot. Where the lines seem to be darker, it is due
to a greater density of plots in the area.

The API (https://scihub.copernicus.eu/, accessed on 3 July 2023) provided by
the ESA service was used to obtain all of these images. Our proposed method re-
quires several images to process the temporal evolution of each pixel. If the original
Sentinel images were used, there would be RAM oversaturation and internal storage
problems; therefore, memory optimisation became a priority. Once all of the images
had been downloaded, with a total of 1483 original images, they were processed by
trimming them into more manageable areas to avoid RAM overflows, transforming the
110 × 110 km size into slices of 5 × 5 km (5000 × 5000 m), as represented in
Figure 2b. For this slicing process the same coordinate system as the Sentinel satellites
(SRC) EPSG:32630, World Geodetic System 1984/Universal Transverse Mercator (WGS
84/UTM) zones 30N and 29N, was used. As each of the zones covered 25 square
kilometres and there were 977 zones, the total number of hectares to be processed was
approximately 2,442,500 ha, but the total number of hectares corresponding to crops,
and therefore actually used to feed the network, was 1,227,691.87 ha.

2.3. Preprocessing

After collecting the images, the data needed to be extracted from the bands. All bands
were resized to a resolution of 10 m, and additionally normalised from 0 to 1 in case there
was any anomaly in the original data. According to ESA documentation (https://step.esa.
int/thirdparties/sen2cor/2.5.5/docs/S2-PDGS-MPC-L2A-IODD-V2.5.5.pdf, accessed on

https://scihub.copernicus.eu/
https://step.esa.int/thirdparties/sen2cor/2.5.5/docs/S2-PDGS-MPC-L2A-IODD-V2.5.5.pdf
https://step.esa.int/thirdparties/sen2cor/2.5.5/docs/S2-PDGS-MPC-L2A-IODD-V2.5.5.pdf
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11 July 2023), reflectance values are between 0 and 1, but a manual study of the original
images, with the support of Sentinel Hub documentation (https://docs.sentinel-hub.com/
api/latest/data/sentinel-2-l2a/, accessed on 11 July 2023), showed that the reflectance
values can be above 1, so the abovementioned normalisation should be performed. One of
these bands, band number 10 (B10), was lost because it was used for atmospheric correction,
as shown in the ESA documentation.

Once the data collection and storage process of the 12 satellite bands had been carried
out, the massive calculation of the NDVI of each pixel was performed and was also stored
in the database. The calculation of the NDVI was created using a well-known formula
(Formula (1)), where NIR (B8 band) is near-infrared reflectance and RED (B4 band) is visible
red reflectance. The total time required to calculate all of the NDVIs for this experiment
over a twelve-month period was about 102 h. This process was carried out in local mode,
without using external software tools, to compare the times without depending on other
factors, such as the times of sending and receiving images to external APIs.

Formula (1). Formulate the calculation to obtain the NDVI:

NDVI =
NIR− RED
NIR + RED

(1)

To appreciate the evolution of the values of the 12 bands and the NDVI, two graphs
were generated (Figure 4a,b), averaging the reflectance values for each pixel of the images
over the temporal period of the corn crop during 2021 on different dates, where the y-axis
shows the spectral reflectance and the x-axis shows the different dates. Some anomalous
data (like those seen around the date of 1/21) do not follow the trend of the curve due
to the existence of atmospheric phenomena, such as clouds, which make it impossible to
obtain real terrain information.
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2.4. Crop Survey and Categories

For the experimentation process to be sufficiently complete, ten crops (corn, rice,
rapeseed, chickpea, alfalfa, tomato, onion/garlic/leek, olive, vineyard, and vineyard-olive)
in the province of Badajoz, Spain, were selected for the study, each with a different number
of pixels (Figure 5). The graphical representation of the plot and the crop labels for each
plot (commonly referred to as ground truth) were provided by the Regional Government of
Extremadura, Spain, and were used for the training and evaluation process. For each given
plot, the internal pixels of the polygon were calculated for further training and prediction.
We had a total of 1,790,716 hectares.

Not all crops have the same sowing, growing, ripening, and harvesting periods. In-
ternally, the crops were divided into periods (Figure 6), which correspond to the most
important and representative months for crop detection and allow greater flexibility when
training models with different crops. The suitable sensing time period for the identifi-
cation of these crops was chosen using expert agronomists’ criteria. Two periods were
created: one period, called period 1, with a start date of 1 October 2020 and an end date of
15 July 2021, and a second period, called period 2, with a start date of 1 April 2021 and an
end date of 15 July 2021.
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Figure 6. Graphic representation of the duration of the periods.

2.5. Training and Testing Sets

The dataset used for the experiment was created from scratch. All of the pixels were
extracted from the plots for each of the ten crops used for training (corn, rice, rapeseed,
chickpea, alfalfa, tomato, onion/garlic/leek, olive, vineyard, and vineyard-olive). The
varieties of each of the crops were unified and treated as one, whose phenological phases
include periods between 1 October 2020 or 1 April 2021 (depending on the crop) and
15 July 2021. It is worth noting that all of the input data were processed at the pixel level.

Each of the crops had their own model. The positive examples were those of the crop
itself, and the negative examples were a homogeneous distribution of each of the other
different crops. Pixels not belonging to any of the ten crops listed were ignored for the
training in this study. Once all of the necessary data were selected, collected, and processed,
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they were split into 70% for training, 15% for validation, and the remaining 15% for testing
(Table 1). To preserve randomness by ensuring the replication of the experiment, the
data were randomly split using a fixed seed with the Keras library (https://keras.io/api/,
accessed on 3 July 2023). Both majority and minority crops were included, having different
amounts of data, the one with the most training pixels (7,986,370) being vineyard and the
one with the fewest training pixels (54,110) being onion/garlic/leek.

Table 1. Start date and end date of the periods saved in the database and the number of pixels
corresponding to each stage of the model.

Crop Name Period Start Date End Date Training Pixels Validation Pixels Testing Pixels

Corn 2 1 April 2021 15 July 2021 2,420,130 484,026 484,026
Rice 2 1 April 2021 15 July 2021 1,454,960 290,992 290,992

Rapeseed 1 1 October 2020 15 July 2021 133,940 26,788 26,788
Chickpea 1 1 October 2020 15 July 2021 349,080 69,816 69,816

Alfalfa 1 1 October 2020 15 July 2021 262,730 52,546 52,546
Tomato 2 1 April 2021 15 July 2021 2,434,290 486,858 486,858

Onion/garlic/leek 2 1 April 2021 15 July 2021 54,110 10,822 10,822
Olive 1 1 October 2020 15 July 2021 7,949,940 1,589,988 1,589,988

Vineyard 1 1 October 2020 15 July 2021 7,986,370 1,597,274 1,597,274
Vineyard-olive 1 1 October 2020 15 July 2021 408,400 81,680 81,680

Total values - - - 23,453,950 4,690,790 4,690,790

2.6. Data Processing

Data from each of the spectrum bands collected by the Sentinel-2 satellites and of
the calculated NDVI for each of the days studied comprised the inputs. The reference
period was 5 days. In cases where there were two images between those 5 days (because
there can be images every 2 and 3 days in some areas), an average of the two images was
made. In cases where there were no images during the 5 days due to clouds or atmospheric
conditions, interpolation was used, although this was not common in the work area, so
the interpolation impact is not significant. A more detailed explanation of these processes
can be seen in [11]. The data for the NDVI were previously calculated, inserted into the
database, linked to the image from which those data had been extracted, and processed.

First and foremost, as stated in Section 2.2, the obtained original image data at the L2A
level were cropped and preprocessed—as explained in [16]—discarding all of the pixels
that contained clouds or erroneous data to avoid garbage in the training, validation, or
testing data. These discards were made based on the scene classification mask provided by
the Sentinel images. In addition, a Hampel filter [18] was applied as a data quality check,
detecting remaining anomalous data (outliers) and replacing them.

Then, before training the model, an interpolation was made of all the days to avoid
very sudden changes caused by data loss which could affect the neural network. Although
there are different interpolation techniques, such as those in [19,20], a linear interpolation
was applied. The interpolation process guarantees a complete temporal series for all of the
data and prevents the training from being compromised. Moreover, the days indicating
the start and end of the input are given by the periods, which indicate the expert-selected
dates that best distinguish the crop. The graphical image shown in Figure 7a depicts the
process of obtaining and processing information in order to convert it into an input. After
downloading all of the images for the corresponding dates, the same pixel was analysed
over time for each of the bands, resulting in the image to be used as an input. In the case of
the NDVI (Figure 7b), the same process was used, but instead of for each band, only for the
information of the new previously processed and created NDVI band.

https://keras.io/api/
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Figure 7. (a) Representation of the extraction of the 12 bands and temporal information for each
of the neural network inputs. The colour gradient indicates the band values (normalised from 0,
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In order to obtain an overview of the individual inputs according to crop, an average
of each of the input data was calculated for each of the crops. The result for the 12 bands
can be seen in Figure 8, and that for the NDVI in Figure 9.
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2.7. Network Design

Different neural network models were designed for both the 12-band and NDVI
approaches because the input dimensions are so different that training with the same
model would have been ineffective. A model was trained for each of the crops; in other
words, there are as many models as crops to identify. The input to each model consists of
positive examples of the target crop and negative examples of each of the remaining crops.
The output of each of the models consists of one predicted value representing the similarity
percentage with the evaluated crop.

Each of the architectures was searched through trial and error to configure the ideal
hyperparameters using a grid search hyperparameter methodology, which consisted of a
search for parameters by incrementing and decrementing them in a uniform and sequential
manner. Several tests were performed for each of the models until reaching the desired
architecture. The results of the final architecture were as follows: 12-band models consisting
of a three-layer architecture with 128, 64, and 32 layers (Figure 10a), and NDVI models also
consisting of three layers but with 32, 16, and 8 layers (Figure 10b). Between each of their
layers, batch normalisation and dropout to avoid overfitting were applied; the optimiser
chosen was Adam [21], and, for each layer, the activation function was ReLu [22]. On the
more technical side, the technology used for the development of the networks was the
Keras library in Python 3, which uses TensorFlow at a low level.
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Once the networks had been built and trained, different models were generated, as
seen in Section 3. Based on these models, various results were obtained to be used by the
administration. Different metrics were utilised in the evaluation process, such as precision
(the quality of a positive prediction made by the model), recall (fraction which the model
correctly identifies as true positives), accuracy (fraction of predictions the model was correct
about), F-score [23] (evaluation metric that measures a model’s accuracy, which combines
the precision and recall values), and loss [24] (penalty for a bad prediction).

For several years we have been studying the progress of the different crops [16], ac-
cording to the statement from the CAP agency of the Regional Government of Extremadura,
which includes ground truth data from inspectors. We have evaluated the accuracy of the
results with these data.

3. Results and Discussion

This section shows the data from applying the models of the ten crops (corn, rice,
rapeseed, chickpea, alfalfa, tomato, onion/garlic/leek, olive, vineyard, and vineyard-olive),
using both the 12 bands of Sentinel-2 and the calculated NDVI. The results of the time,
efficiency, and precision of the application of neural networks are shown with comparative
graphs so that the differences can be appreciated.

3.1. Results of Applying the Models to 12-Band versus NDVI Inputs

The first column of Table 2 presents the training times for each of the crops for the
12-band models, with the longest time for the 12 bands being 26 min 48 s and the shortest
time being 7 min 33 s, with an average time of 12 min 23 s.

Table 2. Training time for each of the crops for the 12-band and NDVI models. The best values are
highlighted in bold.

Crop Training Time 12-Band Model Training Time NDVI Model

Corn 11 min 46 s 03 min 22 s

Rice 09 min 22 s 02 min 40 s

Rapeseed 07 min 37 s 00 min 59 s

Chickpea 08 min 06 s 01 min 11 s

Alfalfa 07 min 58 s 01 min 12 s

Tomato 11 min 41 s 06 min 47 s

Onion/garlic/leek 07 min 33 s 01 min 08 s

Olive 24 min 43 s 16 min 42 s

Vineyard 26 min 48 s 14 min 45 s

Vineyard-olive 08 min 10 s 01 min 34 s

Average values 12 min 23 s 05 min 02 s

The data obtained for each of the crops as a result of training the models with 12 bands
are shown in Table 3. The accuracy, precision, recall, and F-score, the higher their number
the better their values, show results higher than 0.89. On the other hand, we have the loss,
where smaller is better. In this case, the values are less than 0.37. The mean values can be
seen in the last row of Table 3.
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Table 3. Training results for the models of the 12 bands. The best values in the comparison of Table 3
(12 bands) versus Table 4 (NDVI index) are highlighted in bold.

Crop Name Period Training Positive
Pixels Loss Overall

Accuracy Precision Recall F-Score

Corn 2 1,210,065 0.3363 0.9336 0.9563 0.9086 0.9319

Rice 2 727,480 0.1484 0.9698 0.9764 0.9630 0.9696

Rapeseed 1 66,970 0.3775 0.9005 0.9685 0.8280 0.8927

Chickpea 1 174,540 0.2376 0.9258 0.9386 0.9112 0.9247

Alfalfa 1 131,365 0.2406 0.9330 0.9243 0.9433 0.9337

Tomato 2 1,217,145 0.2181 0.9549 0.9503 0.9601 0.9552

Onion/garlic/leek 2 27,055 0.2153 0.9568 0.9389 0.9773 0.9577

Olive 1 3,974,970 0.2687 0.8970 0.9170 0.8731 0.8945

Vineyard 1 3,993,185 0.2705 0.9242 0.9481 0.8976 0.9222

Vineyard-olive 1 204,200 0.3170 0.9381 0.9528 0.9218 0.9370

Average values - 1,172,698 0.2630 0.9334 0.9471 0.9184 0.9319

Table 4. Training results for the models of the NDVI. The best values in the comparison of Table 3 (12
bands) versus Table 4 (NDVI index) are highlighted in bold.

Crop Name Period Training Positive
Pixels Loss Overall

Accuracy Precision Recall F-Score

Corn 2 1,210,030 0.2743 0.9149 0.9136 0.9165 0.9151

Rice 2 729,295 0.1723 0.9471 0.9484 0.9457 0.9471

Rapeseed 1 66,970 0.3600 0.8642 0.8639 0.8646 0.8643

Chickpea 1 174,540 0.1868 0.9437 0.9491 0.9378 0.9434

Alfalfa 1 131,365 0.2082 0.9335 0.9499 0.9153 0.9323

Tomato 2 1,217,145 0.2083 0.9371 0.8984 0.9856 0.9400

Onion/garlic/leek 2 27,055 0.2510 0.9252 0.8927 0.9667 0.9282

Olive 1 3,973,655 0.3367 0.8555 0.8746 0.8298 0.8517

Vineyard 1 3,993,470 0.2311 0.9227 0.9271 0.9175 0.9223

Vineyard-olive 1 204,205 0.2451 0.8968 0.9348 0.8531 0.8921

Average values - 1,172,773 0.2474 0.9141 0.9152 0.9133 0.9136

Confusion matrices were also generated (Figure 11), showing the highest value of true
positives as being 0.98 and the lowest as being 0.92. In the same way, we found the highest
value of 0.98 and the lowest of 0.83 to be true negatives. In each of the confusion matrices,
both the negative and positive responses include adverse crop samples.
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The second column of Table 2 shows the training times for each of the crops for the
NDVI models, with the longest time being 16 min 42 s and the shortest 59 s, with an average
time of 5 min 2 s.

The data obtained for each of the crops as a result of training the NDVI models are
shown in Table 4. Accuracy, precision, and F-score show results higher than 0.85. Loss
values were less than 0.36. The mean values can be seen in the last row of Table 4.

The matrices were also generated with these tests (Figure 12), with the highest value
of true positives being 0.95 and the lowest being 0.86. As for true negatives, we found the
highest value as being 0.99 and the lowest as being 0.83.



Sensors 2023, 23, 7132 17 of 22Sensors 2023, 23, x FOR PEER REVIEW 17 of 23 
 

 

  

 
Figure 12. Confusion matrix generated for the results of the NDVI models. 

3.2. Discussion 
There are several studies that carry out analyses using the time series of various 

indices, such as [25], whereas we highlight those that focus exclusively on the NDVI 
[26,27] because it is one of the most used indices. Other studies work directly with the 
spectral bands extracted from the images, as can be seen in [28,29]. These studies cannot 
be compared with each other since, by not applying models with the same data, the 
comparison would be unfair. 

Other investigations propose different studies comparing indices, or even comparing 
indices and bands, but for other purposes. The proposal of [30] performs a comparison of 
different indices to monitor soil salinity. The comparison presented by [31] does relate to 
spectral bands and indices, but focuses on quantifying the soil organic matter content. It 
is important to emphasise that these comparisons are not applied with the aim of 
improving crop identification. 

Likewise, no studies similar to the one proposed here have been found to be able to 
carry out an exhaustive comparison that can serve systems and researchers to make a 
decision about the use of one of the approaches, taking into account the fact that the 
objective is not to establish the best detection system but to compare different types of 
inputs for the models. 

Once all of the data necessary for the study had been calculated, it was possible to 
proceed with the data comparison. Looking at the results, the two systems produce similar 
results without significant differences, but small differences can be important depending 
on the requirements that are being pursued for a specific project. Analysing the results 
shown in Tables 3 and 4, it can be seen how the precision, accuracy, and F-score values 
are occasionally better with the NDVI models, although the average values of accuracy, 

Figure 12. Confusion matrix generated for the results of the NDVI models.

3.2. Discussion

There are several studies that carry out analyses using the time series of various indices,
such as [25], whereas we highlight those that focus exclusively on the NDVI [26,27] because
it is one of the most used indices. Other studies work directly with the spectral bands
extracted from the images, as can be seen in [28,29]. These studies cannot be compared
with each other since, by not applying models with the same data, the comparison would
be unfair.

Other investigations propose different studies comparing indices, or even comparing
indices and bands, but for other purposes. The proposal of [30] performs a comparison of
different indices to monitor soil salinity. The comparison presented by [31] does relate to
spectral bands and indices, but focuses on quantifying the soil organic matter content. It is
important to emphasise that these comparisons are not applied with the aim of improving
crop identification.

Likewise, no studies similar to the one proposed here have been found to be able
to carry out an exhaustive comparison that can serve systems and researchers to make
a decision about the use of one of the approaches, taking into account the fact that the
objective is not to establish the best detection system but to compare different types of
inputs for the models.

Once all of the data necessary for the study had been calculated, it was possible to
proceed with the data comparison. Looking at the results, the two systems produce similar
results without significant differences, but small differences can be important depending
on the requirements that are being pursued for a specific project. Analysing the results
shown in Tables 3 and 4, it can be seen how the precision, accuracy, and F-score values
are occasionally better with the NDVI models, although the average values of accuracy,
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precision, recall, and F-score are better with the 12-band inputs. The best values in the
comparison of one table with another are highlighted in bold. For a better understanding,
graphs have been generated with the most important values to take into account: the
F-score and loss (Figure 13a,b). Comparing the confusion matrices, the ideal situation
would be to have the values of true positives and true negatives as high as possible. The
best values, in general, are found in the results trained with the 12 bands.
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(b) Comparison of the loss measurement between the NDVI and 12-band models. (c) Comparison of
the training time between the NDVI and 12-band models.

Analysing the values of accuracy, precision, recall, and F-score, shown in Table 3, as
well as the time values, shown in Table 2, we see that, proportionally, there is no significant
difference in the models of the ten crops. Different results are obtained due to the number
of examples used to train the models and the size of the evaluation period (see Table 1).
Taking this second factor into account, we can group the ten crops into permanent (rapeseed,
chickpea, alfalfa, olive, vineyard, and vineyard-olive) and nonpermanent (corn, rice, tomato,
and onion/garlic/leek). Taking this into account, we can observe that permanent crops
have a mean F-score of 0.9004 with the NDVI model, while the 12-band model gives a mean
result of 0.9173, the latter being 1.21% better. As for the nonpermanent crops, we found an
F-score of 0.9325 with the NDVI model and 0.9304 with the 12-band model, with the NDVI
model being 0.19% better.

Overall, the 12-band models give more consistent results, but the differences, on many
occasions, are marginal: the F-score is only 1% better for 12-band models compared to
models trained with the NDVI. Additionally, the loss is better in NDVI models by 1%. The
main distinction between the two is the amount of time spent on training (Figure 13c),
where the training time is shorter in the models generated for the NDVI.

According to the training times shown and calculated in Table 2, it can be interpreted
that the training time of the NDVI models is between 37.5% and 87.09% faster than that
of the 12-band model, resulting in an average value of 59.35%. These values show that
the NDVI models are quicker to train than the 12-band models. These times may not be
considered important when training one or two models, but training hundreds of models
can lead to significant gains in terms of time, amounting to hours or even days.

A diagram (Figure 14) shows the F-score achieved by the time it took to train each crop
model, both 12-band and the NDVI. Although good results are obtained in both cases for
all crops, it can be seen that, overall, the correlation between the training time and F-score
is higher in those models that use the 12 bands.
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4. Conclusions

This study aimed at finding the advantages and disadvantages of the use of the
12 bands in the Sentinel or the individual use of the NDVI for the detection of crops
through satellite images. As we mentioned in the introduction, no similar studies have
been found that directly compare the efficiency (regarding various factors) of using data of
the 12 bands vs. the NDVI. The results obtained in the experiments with the ten types of
crops have consistent values. We hope that this work will serve as a basis for other future
experiments in this area. The main contributions of this work are as follows: (1) the results
of a comparative study of crop identification using data from the 12 Sentinel-2 bands vs.
the NDVI; (2) a method that can serve as the basis for other comparative studies that want
to perform similar experiments; and (3) an analysis of some key factors to consider when
undertaking a massive crop identification project.

For this study, we selected the necessary dates, downloaded Sentinel-2 images from
1 October 2020 to 15 July 2021, clipping them to reduce their size (5 km × 5 km), and
extracted the bands for the analysis and calculation of the NDVI. Once the data had been
obtained, they were divided into training, validation, and testing for the inputs of the
different neural networks. Multiple experiments were carried out, reaching the best results
for each of the experiments: 128–64–32 for the models whose input was the 12 bands and
an architecture of 32–16–8 for the NDVI model. The results obtained for the data of the
12 bands are summarised as an average of loss of 0.2630, accuracy of 0.9334, precision
of 0.9471, recall of 0.9184, and F-score of 0.9319. The average of the values of the results
obtained with the NDVI are a loss of 0.2474, accuracy of 0.9141, precision of 0.9152, recall
of 0.9133, and F-score of 0.9136.

It has been shown that both models can produce reliable results for pixel-by-pixel crop
detection. The main difference is that, for the NDVI models, there had to be a preprocessing
of the data beforehand to calculate this indicator, as it is an indicator that does not come
by default in the original Sentinel-2 images. The 12-band models need more time to train
because entry of the data of the twelve bands is necessary, but they are also more accurate
in their results. If maximum accuracy is needed, it is recommended to use the 12-band
model, but if only the NDVI is available, equivalent results can be achieved, which are less
accurate but quicker to obtain.

To carry out this modelling study, a large amount of data referring to the crops of
thousands of available plots offered by the administration of Extremadura (Spain) was
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available. Additionally, most of the images used to generate the models were useful, due
to the low presence of clouds in this region (as described in Section 2.1). Thus, with many
data as input sources, the generated models have high efficiency values. Thereby, the study
counted on a considerable number of examples to generate the models, using multiple
images in proper time periods and models that assess the coincidence of a declared crop
with its corresponding model. Although the results cannot be generalised to all situations
and data volumes, the study can be considered by system designers and researchers to
evaluate the advantages and disadvantages of choosing one of the two approaches.

Analysing the data from the experiments, it can be concluded that using the 12 bands
instead of only the NDVI provides better accuracy in the identification of crops, but to
a minimal degree. It would only be advisable when seeking maximum precision levels.
Regarding the calculation times, it will depend on the hardware resources. On the one
hand, it is faster to generate neural network models using the NDVI, since the inputs are
simpler; however, on the other hand, the calculation of the index itself entails computation
time. Regarding the optimisation of storage, it would clearly be advisable to use the NDVI
index against the storage of the 12 bands of Sentinel-2.
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