
Citation: Hajj, S.; Azar, J.; Bou Abdo,

J.; Demerjian, J.; Guyeux, C.;

Makhoul, A.; Ginhac, D. Cross-Layer

Federated Learning for Lightweight

IoT Intrusion Detection Systems.

Sensors 2023, 23, 7038. https://

doi.org/10.3390/s23167038

Academic Editor: He Fang

Received: 14 June 2023

Revised: 3 August 2023

Accepted: 7 August 2023

Published: 9 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Cross-Layer Federated Learning for Lightweight IoT Intrusion
Detection Systems
Suzan Hajj 1 , Joseph Azar 2,* , Jacques Bou Abdo 3,* , Jacques Demerjian 4,5, Christophe Guyeux 2 ,
Abdallah Makhoul 2 and Dominique Ginhac 1

1 Imagerie et Vision Artificielle (ImVIA) Laboratory, Université de Bourgogne Franche-Comté,
21078 Dijon, France

2 Femto-St Institute, UMR 6174 CNRS, Université de Franche-Comté, 25030 Besançon, France
3 School of Information Technology, University of Cincinnati, Cincinnati, OH 45221, USA
4 LaRRIS, Faculty of Sciences, Lebanese University, Fanar P.O. Box 90656, Lebanon
5 Computer Science & IT Department, Faculty of Arts and Sciences, Holy Spirit University of Kaslik (USEK),

Jounieh P.O. Box 446, Lebanon
* Correspondence: joseph.azar@univ-fcomte.fr (J.A.); bouabdjs@ucmail.uc.edu (J.B.A.)

Abstract: With the proliferation of IoT devices, ensuring the security and privacy of these devices and
their associated data has become a critical challenge. In this paper, we propose a federated sampling
and lightweight intrusion-detection system for IoT networks that use K-meansfor sampling network
traffic and identifying anomalies in a semi-supervised way. The system is designed to preserve
data privacy by performing local clustering on each device and sharing only summary statistics
with a central aggregator. The proposed system is particularly suitable for resource-constrained
IoT devices such as sensors with limited computational and storage capabilities. We evaluate
the system’s performance using the publicly available NSL-KDD dataset. Our experiments and
simulations demonstrate the effectiveness and efficiency of the proposed intrusion-detection system,
highlighting the trade-offs between precision and recall when sharing statistics between workers and
the coordinator. Notably, our experiments show that the proposed federated IDS can increase the
true-positive rate up to 10% when the workers and the coordinator collaborate.

Keywords: federated learning; internet of things; lightweight intrusion detection; lightweight sampling;
semi-supervised learning

1. Introduction

Intrusion detection is a critical component of security systems for Internet of Things
(IoT) security. The proliferation of connected devices and the increasing amount of data
being transmitted create opportunities for malicious actors to exploit vulnerabilities [1]. An
essential challenge in developing effective intrusion-detection systems for IoT applications
is handling large volumes of data while preserving data privacy and minimizing energy
consumption [2]. Network nodes experience diverse traffic patterns, causing standalone
intrusion-detection system (IDS) nodes to learn only from accessible traffic. This leads to
delays in attack detection and potential privacy breaches if collaborative IDS are used, as
sensitive information may be shared across nodes. To address this challenge, we propose a
lightweight federated sampling and intrusion-detection approach based on an adaptation
of the K-means clustering algorithm called the Baseline K-means algorithm.

The Baseline K-means algorithm is a semi-supervised novelty detection technique that
trains a classifier using a limited amount of labeled benign data and subsequently employs
it to label additional unlabeled data points. This method is particularly advantageous when
unlabeled data are abundant but a scarcity of benign data. The proposed model utilizes
two centroids, one for the baseline distribution and another for the anomalous distribution,
and employs the Mahalanobis distance as a distance metric to account for the distribution’s

Sensors 2023, 23, 7038. https://doi.org/10.3390/s23167038 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23167038
https://doi.org/10.3390/s23167038
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5627-2625
https://orcid.org/0000-0002-4068-2996
https://orcid.org/0000-0002-3482-9154
https://orcid.org/0000-0003-0195-4378
https://orcid.org/0000-0002-5911-2010
https://doi.org/10.3390/s23167038
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23167038?type=check_update&version=1

Sensors 2023, 23, 7038 2 of 26

covariance. Compared to standard K-means clustering that uses Euclidean distance, this
approach allows for more robust and accurate identification of anomalous behavior.

The primary goal of this paper is to propose a federated, lightweight, and privacy-
preserving intrusion-detection system for lightweight IoT environments. We present a novel
approach for real-time intrusion detection in IoT applications by combining a federated
version of the Baseline K-means algorithm with a cluster-based sampling method, referred
to as the “cross-layer” federated IDS. The proposed approach tackles the challenge at
two layers, the first being sampling which significantly reduces the memory, power, and
computational resources needed to process with overwhelming traffic. The second layer
is anomaly detection which copes with the reduced traffic by learning from other nodes,
through a coordinator, in a federated learning process. The cross-layer approach allowed us
to shift clustering into the sampling layer and thus co-optimizing the performance of both
layers. The proposed solution is a cross-layer with a significant reduction in memory, power,
and computational resources and an increase in detection capabilities without impacting
individual nodes’ privacy.

The cluster-based sampling technique, proposed in our previous work [3], ensures
a high level of data representation, including rare subgroups, effectively reducing the
sampling error due to data variance. This technique is a prerequisite for our current work,
as it serves as the foundation for our proposed federated Baseline K-means algorithm.
The cluster-based sampling algorithm initially applies a feature reduction to the available
packets to decrease the overhead, based on a study highlighting the essential features
for detecting various attacks in the NSL-KDD dataset [4]. The algorithm has multiple
advantages as [3] showed, the first being significant efficiency, compared to other sampling
algorithms, for very low sampling rates which resembles a lightweight IoT environment.
The second is longer traffic visibility which is important against slow-rate attacks [5–7].
Subsequently, the K-means clustering algorithm is applied to divide the data stream into
separate homogeneous groups, called clusters. The algorithm then samples these clusters
proportionally to a chosen sampling rate, ensuring that the overall representation of the
cluster data remains consistent even after sampling.

In this approach, multiple IoT devices passively participate in the training process by
computing their local statistics, such as means and distances to the benign distribution,
which are then transmitted to a central coordinator for aggregation. This allows each
IoT node’s model to be updated with recent and more representative statistics without
transmitting sensitive data, effectively preserving data privacy. Moreover, by employing
cluster-based sampling before the intrusion-detection process, we reduce the processing
energy consumption and the volume of data to be transmitted, therefore extending the
lifetime of the IoT node. The federated Baseline K-means algorithm offers a practical,
scalable, and privacy-preserving solution for intrusion detection in IoT applications while
also addressing energy efficiency concerns. In this paper, we provide a comprehensive
explanation of our proposed federated Baseline K-means algorithm and its integration with
the cluster-based sampling technique, as well as experimental results demonstrating the
effectiveness and efficiency of our approach for intrusion detection in IoT applications.

The motivation for this work stems from several challenges faced by lightweight IoT
nodes. First, their limited resources make running IDS difficult, yet neglecting this security
measure leaves them vulnerable. Second, collaborative IDS systems risk privacy breaches
by exchanging sensitive traffic information. Lastly, these nodes may function in remote or
hostile conditions where information exchanged between collaborative IDSs can be both
intentionally disrupted and naturally corrupted.

This work makes several key contributions. First, it develops a cross-layer federated
learning system tailored for lightweight IoT nodes, utilizing cluster-based sampling to
reduce memory usage and employing lightweight IDS to minimize computational require-
ments while ensuring high detection rates. Second, it ensures privacy by sharing only
the model’s statistics with the aggregator, thus preserving collaborative learning without
exposing sensitive information. Lastly, by limiting the exchanged information to these

Sensors 2023, 23, 7038 3 of 26

statistics, the work reduces both the risk of adversarial jamming and noise-induced errors,
while also enabling local IDS to function independently if completely isolated from other
nodes. The experiments and obtained results validate the objective of this paper, showing
that the merging and sharing of statistics between the coordinator and the workers enhance
the performance of the IoT nodes over time, increasing their capabilities to detect intrusions
more accurately.

This paper is organized as follows: Section 2 reviews the related work, discussing
lightweight IDS and sampling algorithms for IoT, federated learning for IoT IDS, and the
cluster-based sampling algorithm proposed in our previous work, which is employed in
the cross-layer IDS of the present study. Section 3 provides an in-depth description of the
proposed work, beginning with an explanation of the term “cross-layer” in the context
of our research. The proposed semi-supervised novelty detection algorithm, based on
the K-means algorithm and referred to as Baseline K-means, is then introduced, followed
by a discussion of the federated version of this technique. Section 4 outlines the experi-
ments conducted in this paper, interprets the results, and highlights how the proposed
approach achieves the study’s objectives. Section 5 offers a comprehensive analysis of the
observations related to the experiments and their outcomes, addresses the limitations of
the proposed work, and suggests future research directions. Finally, Section 6 concludes
the paper.

2. Related Work
2.1. Lightweight IDS for IoT

Cyber security has become increasingly challenging due to the proliferation of the
Internet of Things (IoT), where a massive number of tiny, smart devices push trillion
bytes of data to the Internet and is expected to reach 73.1 ZB (zettabytes) by 2025 [8]. IoT
devices have limited computational capabilities and thus researchers have shifted their
focus onto designing lightweight IDS that can deliver the needed security requirements
while operating on those thin devices.

Zarpelão et al. [9] surveyed IDS developments for IoT and discovered a growing
interest in lightweight IDS. The authors discovered two tracks that claim to be lightweight
which are:

• Signature-based lightweight IDS (such as [10]): this track is beyond the scope of this
work.

• Anomaly-based lightweight IDS: We will focus this work on this research track.

Lee et al. [11] detected 6LowPAN attacks by observing IoT nodes’ reported energy
consumption. To deal with energy consumption attacks, Le et al. [12] created a lightweight
intrusion-detection system that restricts sensing operations to cluster heads, allowing the
remaining nodes to operate normally. This approach is aligned with Reza et al. [13]. Jan
et al. [14] concentrated on creating computationally lightweight IDS using support vector
machines, supervised machine learning (ML), which does not limit the IDS to a single
attack type (as in [11]) nor to the number of nodes running the IDS (such as in [12,13]).

By limiting the number of investigated features, Soe et al. [15] developed a lightweight
anomaly-based IDS strategy that selects the features with the highest gain ratio and discards
all others, thus reducing the amount of computation required. It is worth noting that this
strategy runs the risk of missing out on rare attacks that can only be detected using
discarded features. This method is consistent with that proposed by Davahli et al. [16],
where feature selection is based on the hybridization of a genetic algorithm (GA) and the
Grey Wolf Optimizer (GWO).

Khater et al. [17] combined the last two strategies (feature reduction and supervised
deep learning) to enhance the communication security of lightweight IoT devices in a Fog
computing environment. To maintain the lightweight criteria, a combination of Modified
Vector Space Representation (MVSR) N-gram (1-gram and 2-gram) were used for system
call encoding in the feature extraction phase while using a sparse matrix for space reduction.

Sensors 2023, 23, 7038 4 of 26

Then, the extracted features were fed into a Multilayer Perceptron (MLP) model with a
single hidden layer that would classify the nature of the network traffic.

Instead of being selective on the features (such as in [15]) or on nodes (such as
in [12,13]), Sedjelmaci et al. [18] proposed a strategy that is selective on time. The au-
thors proposed a game-theoretic approach for identifying the times when the attacks are
most probably going to happen. Only then, the IDS functionality is enabled.

Deep Neural Networks (DNN) were applied in the hope of improving the detection
accuracy of lightweight IDS. One of the most recent applications is “Realguard” by Nguyen
et al. [19], a DNN-based IDS that implements a simple MLP with 5 hidden layers. Realguard
can run on low-end IoT devices while achieving high attack detection accuracy.

2.2. Sampling Algorithms for IDS

IoT devices cannot handle all sent data due to rising network overhead and stagnant
power storage capacity. Researchers have turned to sampling methods before data analysis
to mitigate this, reducing data volume. This approach must prevent information loss
to avoid compromising threat detection accuracy. Sampling techniques are designed to
optimize IDS efficiency and attack detection accuracy. IoT nodes sample packets, creating a
subset of network traffic for subsequent analysis and detection. The success of a sampling
method depends heavily on factors such as the sampling rate and the chosen strategy.

A network-based IDS (NIDS) analyzes data samples as network packets. Thus, the
population is all packets in our network traffic, whereas the subset is a selection. Since only
a specific number of packets are taken for analysis, the essential parameter is the sampling
rate, or sampling ratio, which determines the ultimate size of the subset compared to the
original population. Some sampling algorithms may produce an incorrect sample size.
Static and dynamic sampling algorithms exist. A static sampling process is conducted
periodically or randomly following a given rule or data interval. We can classify those
rules under three main categories of sampling decisions: count-based, time-based, and
content-based. Every static algorithm that samples data based on its ordering position in
a stream of packets is identified as count-based. A time-based algorithm focused on the
arrival time of a packet (timestamp). Finally, content-based sampling methods analyze the
content of the packet before data selection. As this final method increases the overhead and
computation time, content-based algorithms, known as well as filtering algorithms, are
beyond the scope of our research. The main advantage of using a static sampling algorithm
would be reducing bandwidth and storage requirements, as only a subset is detained for
anomaly detection analysis. In their turn, dynamic or adaptive sampling algorithms use
different sampling intervals and/or rules for data sample decisions.

In this context, several studies have looked at the effects of data sampling. Mai et al. [20]
investigated, using various sampling algorithms, the effect of sampling high-speed IP-
backbone network traffic on intrusion-detection outcomes, specifically port scans and
volume anomaly detection. Roudiere et al. [21] tested the accuracy of the “Autonomous Al-
gorithm for Traffic Anomaly Characterization” detector in detecting DDoS attacks over sam-
pled traffic. Various sampling policies were used to sample the traffic. The authors of [22,23]
investigated how packet sampling influenced anomaly detection results. Silva et al. [24]
proposed a framework for evaluating packet sampling’s effects. They examined the ef-
fectiveness of each sampling algorithm and proposed a set of metrics for assessing each
sampling technique’s ability to produce a representative sample of the original traffic.
Bartos et al. [25] investigated the impact of traffic sampling on anomaly identification and
presented a new adaptive flow-level sampling algorithm to improve the sampling process’
accuracy. Using traces containing the Blaster worm, Brauckhoff et al. [26] assessed the
accuracy of existing anomaly detection and data sampling algorithms. Liu et al. [27] im-
plemented a novel Difficult Set Sampling Technique (DSSTE) to tackle the class imbalance
problem which helped in the detection of rare attacks. They used Edited Nearest Neighbor
(ENN) to identify the difficult set then applied the K-means algorithm to compress the
majority in the difficult set, and finally augmented the data of the clusters to obtain the

Sensors 2023, 23, 7038 5 of 26

final sample. A more thorough discussion can be seen in our previous survey [28] and
benchmarking [4] works where we investigated all data sampling strategies, their impact
on detecting various attacks, and the behavior and robustness of features under various
sampling strategies. We also looked at how the estimation of network features varies
depending on the sampling method, sample size, and other factors, and how this affects
statistical inference from these data.

2.3. Federated Learning for IoT IDS

In the evolving landscape of IoT applications, ensuring data privacy has become a
paramount concern. With increasing connectivity and data sharing among devices, there is
a growing need for robust strategies to safeguard sensitive information. One such strategy
is enhancing the ‘opacity’ of a system, a concept discussed extensively in the realm of
cyber-physical systems (CPSs). This method involves creating a system that is inscrutable
to external observers, thereby protecting its ‘secret’ state information [29]. Apart from
enhancing opacity, another well-known machine-learning approach for preserving privacy
is federated learning. Federated learning is a distributed machine-learning technique
that allows multiple IoT nodes to collaboratively train a global model without sharing
their raw data with a centralized server. In the context of intrusion detection, federated
learning can be used to detect attacks on IoT devices without compromising the privacy of
individual devices. In this direction, Pei et al. [30] designed a sophisticated data aggregation
method that allows network traffic anomaly detection based on the self-coding of long-
and short-term memory networks without violating privacy. Attota et al. [31] followed
another approach to ensuring privacy. They used multi-view classification and multi-view
ensemble learning to deliver better prediction accuracy without breaching privacy. In the
same direction, Mothukuri et al. [32] designed a federated learning process using Gated
Recurrent Units. All the previous methods are vulnerable to data poisoning attacks, such
as backdoor-attacks, as Nguyen et al. showed [33]. To deal with data poisoning attacks,
Generative Adversarial Networks are used with federated learning such as in [34,35].

Saadat et al. [36] studied the performance of hierarchical federated learning compared
to federated learning in an IoT context and showed that despite its infrastructure overhead,
hierarchical federated learning proved its superiority over federated learning in training
loss, testing accuracy, and convergence speed. This work is aligned with Sarhan et al. [37]
where a hierarchical federated learning framework has been designed to operate using
blockchain. Federated learning in IoT IDS has been extensively studied and benchmarked
in the literature such as in [38–43].

In the framework of this study, a federated intrusion-detection system plays a vital
role in safeguarding data privacy. By enabling each IoT device to execute local anomaly
detection and retain its raw data, while only transmitting summary statistics to a central
aggregator, the system enhances its anomaly detection capabilities and significantly reduces
the transfer of sensitive information. This approach adeptly addresses the dual necessities
of effective anomaly detection and robust privacy protection within the context of resource-
limited IoT settings.

3. Lightweight Semi-Supervised Intrusion Detection

K-means clustering is a feasible solution for IoT intrusion detection due to recent
advancements in IoT devices such as Arduino and ESP32. It is a lightweight and efficient
algorithm that can be run on small devices depending on data size and computational
resources. Its computation and memory requirements depend on the number of data points,
features, and clusters, making it suitable for small datasets and a small number of clusters.

This section presents the proposed Baseline K-means for intrusion detection in IoT
and a federated implementation of the same approach.

Sensors 2023, 23, 7038 6 of 26

3.1. Cross-Layer

As indicated in Sections 2.1 and 2.2, sampling and intrusion detection have been
studied separately in the context of lightweight IoT. This separation creates abstract layering
which is typical in communication stacks and provides significant advantages such as
modularity. In this work, we are interested in investigating the feasibility of a cross-layer
design incorporating sampling and intrusion detection and ultimately federated learning.
To the best of our knowledge, this work is the first to join sampling and intrusion detection
in the context of lightweight IoT.

The literature contains cross-layer designs for IoT IDS, but the term cross-layer is used
to indicate different meanings. Amouri et al. [44] proposed a cross-layer IoT IDS that spans
MAC and Network layers. In the same direction, Canbalaban and Sen [45] proposed a
cross-layer IoT IDS that spans link and routing layers. Long et al. [46] proposed cross-layer
industrial IoT IDS that spans its three layers which are: the application layer, the network
layer, and the perception layer. This work is aligned with Malik et al. [47] and Kore and
Patil [48]. A more thorough analysis was conducted by Parween et al. [49], but none of the
surveyed works incorporated sampling and intrusion detection.

3.2. Baseline K-Means

Novelty detection is a class of semi-supervised learning techniques that involves
training a classifier on a small amount of labeled data (in this case, the benign class) and
then using it to label additional unlabeled data points. The newly labeled data points can
then be added to the training set to improve the classifier’s performance. This approach
can be useful when there is a large amount of unlabeled data available, but only a small
amount of labeled benign data.

The proposed lightweight approach is an adaptation of the K-means technique, known
as the Baseline K-means. It is a semi-supervised novelty detection approach that uses a
small amount of labeled data, considers it as the baseline for learning, and trains a classifier
to label additional unlabeled data points. The proposed approach involves training a model
on a set of training data and using it to evaluate new observations. Outliers are defined as
observations that differ significantly from the distribution of the training data, even if they
form a high-density region. To adapt the K-means algorithm for intrusion detection, the
approach of using a distance measure to a known baseline was adopted. Specifically, the
Mahalanobis distance between each data point and the mean of the normal (benign) data
were used as the distance metrics. The Mahalanobis distance accounts for the covariance of
the distribution and provides a measure of the distance between a point and a distribution.
The Mahalanobis distance d from a point x to a distribution with mean µ and covariance
matrix Σ is given by:

DM(x, µ, Σ) =
√
(x− µ)>Σ−1(x− µ)

where T denotes the transpose of a matrix.
The proposed model uses two centroids: one for the baseline distribution and one

for the anomalous distribution. During training, data points are assigned to the nearest
centroid based on Mahalanobis distance. If a point is closer to the baseline centroid,
it is classified as the baseline. If it is farther from the baseline centroid than a certain
threshold times the distance to the anomalous centroid, it is classified as anomalous and
added to the anomalous cluster. When there are enough anomalous points, the anomalous
centroid is updated as the farthest point from the baseline distribution. The proposed
process is illustrated in Algorithm 1 and repeated for a certain number of iterations or until
convergence. The update() function in this algorithm updates the baseline and anomalous
statistics (mean, covariance, and centroid) based on the current state of the data. It computes
Mahalanobis distance from each baseline point to the baseline centroid to determine the
threshold for classifying new points as baseline or anomalous. It also computes the mean
and covariance of the anomalous data and sets the anomalous centroid. The centroids array
is updated to reflect the new baseline and anomalous centroids.

Sensors 2023, 23, 7038 7 of 26

Algorithm 1: Baseline K-means fit function.

Procedure fit(data)
n← number of data points in data;
d← number of features in data;
num_iter ← 0;
while num_iter < max_iterations or not converged do

num_iter ← numiter + 1;
f it_clusters← empty list for baseline and anomalous clusters;
if num_iter is a multiple of update_a f ter_iteration then

/* update baseline and anomalous statistics; */
update();

end
for i in range(n) do

point← ith data point in data;
compute Mahalanobis distance to baseline centroid;
if anomalous centroid exists then

compute Mahalanobis distance to anomalous centroid;
if distance to the anomalous centroid is smaller than to baseline centroid
times a threshold then

classify point as anomalous and add to anomalous cluster;
continue to the next point;

end
end
if distance to baseline centroid is below threshold then

classify point as a baseline and add to baseline cluster;
end
else

classify point as anomalous and add to anomalous cluster;
end

end
/* update baseline and anomalous statistics; */
update();
if converged then

break loop;
end

end
return clusters and centroids;

During prediction, the model computes the Mahalanobis distances from each data
point to the baseline distribution and the anomalous centroid. It classifies each data point
as baseline or anomalous based on the same distance threshold as during training. It then
assigns each data point to the nearest centroid and returns the assigned cluster as 0 for
benign and 1 for anomalous. This process is illustrated in Algorithm 2.

A high-level overview of the Baseline K-means class is presented in Algorithm 3.
This class is specifically designed for intrusion detection using K-means clustering. It is
constructed with four input arguments: baseline data, maximum number of iterations,
percentile, and update after iteration values:

• baseline_data: an array representing the baseline (benign) data to be used for training
the model.

• max_iterations: an optional integer argument that specifies the maximum number of
iterations to be performed during training.

• percentile: an optional integer argument that specifies the percentile to use for com-
puting the threshold distance between baseline and anomalous data points.

Sensors 2023, 23, 7038 8 of 26

• update_after_iteration: an optional integer argument that specifies the number of
iterations after which to update the baseline and anomalous statistics.

Algorithm 2: Baseline K-means predict function.

Procedure predict(new_data)
baseline_distances← empty list;
anomalous_distances← empty list;
for i← 1 to len(new_data) do

point← ith data point in new_data;
compute Mahalanobis distance to baseline centroid;
if distance to baseline centroid is below threshold then

/* used to label additional unlabeled data points */
classify point as a baseline and append it to baseline data;
append baseline distance to baseline_distances list;

end
if anomalous centroid exists then

compute Mahalanobis distance to anomalous centroid;
append anomalous distance to anomalous_distances list;

end
end
create binary vector indicating whether each point is baseline or anomalous;
assign each new data point to the nearest centroid (0 for baseline, 1 for
anomalous);

return the assigned clusters as a numpy array (0 for baseline, 1 for anomalous);

Please note that the importance of the percentile argument in this class is to compute
the threshold distance that separates the baseline data from the anomalous data. Specifically,
it sets the percentile of the Mahalanobis distances between each baseline data point and the
baseline centroid that should be used as the threshold. By setting the percentile to 90, for
example, the threshold will be set such that 90% of the distances between each baseline data
point and the baseline centroid are below the threshold, and 10% of the distances are above
it. This helps to distinguish the baseline data from the anomalous data, which are likely to
be farther away from the baseline centroid. Figure 1 illustrates how the percentile value
affects the clustering of points around the benign centroid. Reducing the percentile value
used to calculate the threshold in the Baseline K-means class will result in a lower threshold,
which means that more data points will be classified as anomalous. This is because the
threshold is calculated based on the Mahalanobis distance from the baseline centroid to
the data points. A lower percentile means that a smaller proportion of the data points
will be used to calculate the threshold, resulting in a lower threshold that is more likely to
include data points that are further from the baseline centroid. As a result, more benign
data points will be classified as anomalous because their distance from the baseline centroid
is greater than the lower threshold. Therefore, a lower percentile value will lead to a higher
false-positive rate and more benign data points being labeled as anomalous. It is worth
noting that the computational complexity of our method is primarily influenced by factors
such as the number of features and data points but not necessarily detection accuracy. The
detection accuracy, on the other hand, is determined largely by the quality of the data
and the selected detection threshold. As to how we determine the detection threshold, it
is currently set based on our experience, including trial-and-error experimentation and
considerations specific to the dataset we are using. The goal has been to select a threshold
that maximizes recall.

Sensors 2023, 23, 7038 9 of 26

Algorithm 3: Baseline K-means class shown in a Python-like pseudocode.
Input : Baseline data B, Anomalous data A, max iterations I, percentile P, update

after iteration U
Output : Trained model with updated centroids and threshold

Class Baseline K-Means:

Function
__init__(sel f , baseline_data, max_iterations, percentile, update_a f ter_iteration)
/* Initialize the model with baseline data representing the

expected normal behavior or performance of the system. */
end

Function update(self, baseline data, anomalous data, percentile)
/* Update the baseline and anomalous statistics */
/* The centroids, baseline_mean, baseline_cov, threshold,

anomalous_mean, and anomalous_cov values are returned as
output from the function. */

end

Function append_baseline_anomalous(self, baseline_distance, point)
/* Append new data to either the baseline or anomalous data based

on the distance to baseline centroid */
end

Function fit(self, data)
/* The function iterates until convergence or the maximum number

of iterations is reached. */
/* For each iteration, the function assigns each data point to

the nearest centroid based on Mahalanobis distance. */
/* The centroids are updated after a certain number of

iterations, and the function checks if the distance to the
anomalous distribution is smaller than to the baseline to
determine if a point is an anomaly. */

/* The function stops iterating when the clusters do not change
between iterations or the maximum number of iterations is
reached. */

end

Function predict(self, new_data)
/* Classify new data as baseline or anomalous based on distances

and baseline distance threshold */
end

This approach is specifically designed for intrusion detection, where the baseline
distribution represents the normal behavior of a system and the anomalous distribution
represents the behavior of potential attackers. The ability to set a threshold allows for tuning
the sensitivity of the detector, balancing between false positives and false negatives while
prioritizing the true-positive rate. The use of the Mahalanobis distance and covariance
matrix enables the algorithm to take correlations between features into account and adjust
the distance metric to the specific distribution of the data. In contrast to standard K-means,
which uses the Euclidean distance to compute the distance between data points and the
centroid, this implementation uses the Mahalanobis distance. As a result, this approach
can handle data points with different variances and covariances. It should be noted that
the cluster centroids are not updated during the K-means algorithm as is carried out in the
standard K-means algorithm. Instead, the baseline and anomalous centroids are set based

Sensors 2023, 23, 7038 10 of 26

on the mean of their respective data sets. Overall, this implementation provides a more
robust and accurate approach to identifying anomalous behavior.

BaselineKmeans with percentile value of 90% BaselineKmeans with percentile value of 95%

BaselineKmeans with percentile value of 98%

Figure 1. These plots illustrate the clustering of data based on different percentile values (90, 95, and
98) used to compute the anomaly threshold. Red markings represent the centroids of each cluster.
As the percentile value rises, more data points located at the extremities of the baseline centroid are
categorized as benign, resulting in fewer benign data points being labeled as anomalous. On the
other hand, a reduction in the percentile value results in a higher number of benign data points being
identified as anomalous.

3.3. Federated Sampling and Intrusion Detection

This section presents a proposed lightweight federated sampling and intrusion-
detection approach. The approach is based on the federated Baseline K-means algorithm,
which is a distributed and privacy-preserving version of the Baseline K-means algorithm
designed for intrusion detection in IoT applications. The federated version of the algorithm
can train a clustering model without transmitting sensitive data, therefore preserving data
privacy. In the federated version, multiple IoT devices participate in the training process
and compute their own local statistics, including means and distances. The statistics are
then transmitted to a central coordinator for aggregation. The coordinator updates the
baseline and anomalous centroids based on the merged statistics from the IoT devices and
computes a new threshold. It is worth noting that the local intrusion-detection step occurs
after the cluster-based sampling to reduce energy consumption related to processing and
transmission. The federated Baseline K-means algorithm offers a practical and scalable
solution for real-time intrusion detection in IoT applications while preserving data privacy.
Figure 2 illustrates the proposed approach.

As shown in Figure 2, each individual IDS node calculates the statistics of the local
model and shares it with the aggregator which in turn collects all the statistics from all
the IDS nodes. Then, the aggregator updates its model and returns the global model
parameters to the IDS nodes. This is performed in a star network topology and peer-to-peer
application architecture. The aggregator, in addition to being an IDS node, is selected to

Sensors 2023, 23, 7038 11 of 26

execute the aggregator role as an additional task. The aggregator role can rotate on the
participating IDS nodes, similar to [50].

Aggregator
Coordinator

IDS IDS IDS

4

1
3

Local
anomaly detection

Local
anomaly detection

Local
anomaly detection

2 2 2

Merger: The central server aggregates the local models by applying
an aggregation function, producing a new aggregate global model.

The aggregate global model
parameters are sent to each user’s device. After a certain amount of sampling,

the local model statistics are sent to the central
server.

The received parameters located on the user devices are updated with local data

Cluster-based
Sampling

Cluster-based
Sampling

Cluster-based
Sampling

Workers

Figure 2. The figure outlines a federated intrusion-detection strategy for IoT networks. The BaselineK-
Means class, acting as coordinator, initiates baseline data and fits the model, sending statistics to the
workers. Workers implement a cluster-based sampling algorithm, processed by the WorkerKmeans
IDS, and assign labels to the data points using coordinator statistics. Workers then send their statistics
for coordinator updates, merging worker data to refresh the global model. This method diminishes
latency, data transmission, and privacy issues typical of centralized intrusion-detection systems.

The algorithm involves four key steps as illustrated in Figure 2: Initialization, Local
clustering, Share cluster statistics, and Merge statistics. In the Initialization step, the
coordinator initializes the K-means clustering model with a fixed number of clusters
and shares cluster statistics between workers (Algorithm 4). Each node uses the global
representation of the benign cluster and the distance threshold to detect anomalies in
its local data subset. Data points with distances above the threshold are classified as
anomalies, while data points with distances below the threshold are classified as benign. In
the Local clustering step, each node uses its own local K-means clustering model on its own
sampled data. Each node calculates the Mahalanobis distance to the benign centroid for its
individual local data points. During the cluster statistics sharing step, every node shares
statistics like cluster centroids and distances to the benign centroid with other nodes via the
coordinator, but not the data itself. Please note that the workers do not perform fitting since
the clustering model is already initialized by the coordinator. This approach centralizes the
processing burden on the coordinator, enabling a lightweight implementation for the IoT
workers/nodes. Finally, in the Merge statistics step (Algorithm 5), the coordinator merges
the cluster statistics from each node to create a global representation of the benign and
anomalous clusters. This can be done by averaging the cluster centroids and defining a
classification threshold for the Mahalanobis distances based on the global representation of
the benign cluster. The updated global model can then be shared with the worker nodes.

Sensors 2023, 23, 7038 12 of 26

Algorithm 4: The coordinator’s export statistics function is presented in Python-
like pseudocode. It utilizes the pseudoinverse (pinv) with regularization to
ensure the covariance matrix’s invertibility and numerical stability

Output : Threshold, baseline mean, inverse baseline covariance, anomalous mean,
inverse anomalous covariance

Export statistics function:

Function export_stats(self)
linalgInv_baseline← pinv(baseline_cov + 0.001 * identity(dimension));
linalgInv_anomalous← pinv(anomalous_cov + 0.001 * identity(dimension));
return threshold, baseline mean, linalgInv_baseline, anomalous mean,
linalgInv_anomalous;

end

Algorithm 5: The merge statistics function of the coordinator, shown in a Python-
like pseudocode

Input : Worker baseline means, worker anomalous means, distances from
baseline points to new baseline centroid, distances from anomalous
points to anomalous centroid

Output : Updated threshold and centroids

Merge statistics function:

Function merge(self, worker_baseline_means, worker_anomalous_means,
distances_inline, distances_outline)

update centroids based on the mean of worker baseline means and worker
anomalous means;

linalgInv← pinv(baseline_cov + 0.001 * identity(dimension));
compute distances from baseline points to new baseline centroid;
compute distances from anomalous points to anomalous centroid;
distances← distances from baseline points to new baseline centroid;
distances← vstack((distances, distances_inline));
min_outline← min distance between outline points and benign centroid;
remove the distances that are greater than min_outline;
compute threshold based on the percentile of distances;
return updated threshold and centroids;

end

4. Experimental Setup and Simulations

In this section, we provide an overview of the experiments and simulations conducted
in this study to validate the relevance of the proposed solution. Initially, we introduce the
dataset utilized in this research and justify our rationale for employing a semi-supervised
novelty detection approach. Subsequently, we compare the proposed lightweight IDS based
on K-means clustering with other semi-supervised novelty detection methods. The results
elucidate the reasons behind selecting this particular solution for IoT intrusion detection in
comparison with existing alternatives. Furthermore, we present the simulations conducted
using the federated IDS, demonstrating that sharing and merging statistics between workers
and the coordinator effectively enhance the performance of the IoT IDS. Finally, we discuss
the simulations pertaining to the cross-layer IDS, wherein intrusion detection is applied
following the cluster-based sampling, and examine the impact of sampling rate on IDS
performance. The Baseline K-means has been implemented with Python. The main used
libraries are scikit-learn, pandas, and numpy. We publicly shared the Python code on
GitHub for reproducibility [51].

Sensors 2023, 23, 7038 13 of 26

4.1. NSL-KDD Dataset and Semi-Supervised Learning

The discussed techniques are implemented using Python and tested against the NSL-
KDD dataset [52]. The NSL-KDD dataset is a widely used and improved version of
the original KDD Cup 1999 dataset [53], specifically designed for evaluating intrusion-
detection systems (IDS). It contains a diverse set of network traffic data, including both
normal (benign) and various types of malicious (intrusion) instances. The NSL-KDD
dataset addresses some of the inherent problems of the original KDD dataset, such as
redundant records and data imbalance, making it a more suitable choice for evaluating the
performance of intrusion-detection techniques.

In the context of IoT intrusion detection, adopting a semi-supervised novelty detection
approach using K-means presents numerous advantages over traditional supervised and
unsupervised learning methods. Supervised learning approaches are hindered by the
need for labeling network traffic, which can be time-consuming and resource-intensive,
particularly in dynamic IoT environments. Conversely, unsupervised learning approaches
are only effective when the data contains clearly separable clusters of samples, making it
challenging to accurately identify and classify network attacks.

When applying the standard K-means algorithm to network traffic datasets such
as NSL-KDD, it faces certain challenges. To better illustrate the motivation for using
semi-supervised learning, we visualized the NSL-KDD data transformed with principal
component analysis (PCA) and compared the results of unsupervised K-means clustering,
ground truth, and the proposed Baseline K-means. As shown in Figure 3a, the K-means
clustering has difficulty grouping clusters of “anomalous” labels and often misclassifies
a significant portion of benign traffic as attack traffic. Although adjusting the value of k
can help to a certain degree, the visual analysis suggests that there may be fundamental
issues with relying solely on unsupervised clustering methods to classify network attacks
on these data.

Figure 3b (ground truth) reveals a region where benign and anomalous data are
difficult to separate. By adopting a semi-supervised novelty detection approach using
K-means (Figure 3c), we aim to address these limitations and enhance the effectiveness of
IoT intrusion-detection systems. Semi-supervised novelty detection leverages the strengths
of both supervised and unsupervised learning techniques to address these issues. This
approach enables intrusion detection even when labeled data are scarce, which is often the
case in IoT environments. By incorporating prior knowledge of normal traffic behavior,
semi-supervised novelty detection can more effectively distinguish between benign and
malicious activities in the network. Moreover, this method is more adaptive to the evolving
nature of cyber threats, as it can identify novel attacks without requiring explicit knowledge
of their characteristics. However, this approach comes with a trade-off, as seen in Figure 3c.
Many benign data points are classified as anomalous due to the nature of the proposed
technique that prioritizes the true-positive rate over the false-positive rate.

4.2. Semi-Supervised Novelty Detection for Intrusion Detection

This section compares our proposed Baseline K-means algorithm with several other
prominent novelty detection techniques. These novelty detection techniques share a com-
monality with our proposed approach, as they all initially utilize a portion of the benign
data to learn the underlying patterns of normal traffic. This aspect is crucial for effectively
identifying and classifying anomalous traffic in IoT environments, where labeled data are
often scarce. Furthermore, these algorithms can be conveniently implemented using the
widely used scikit-learn library, a popular open-source machine-learning library in Python.

Sensors 2023, 23, 7038 14 of 26

(a) (b)

(c)

Figure 3. Clustering the NSL-KDD data points using the standard unsupervised K-means and the
proposed semi-supervised Baseline K-means with k = 2. (a) Scatter plot of 10,000 data points with
the unsupervised K-means predicted classes (transformed with PCA). (b) Scatter plot of 10,000 data
points with ground truth labels (transformed with PCA). (c) Scatter plot of 10,000 data points with
the semi-supervised Baseline K-means (percentile = 95) predicted classes (transformed with PCA).

By comparing our proposed Baseline K-means algorithm with the below alternative
novelty detection techniques, we aim to demonstrate the effectiveness and suitability of
our approach for IoT intrusion-detection tasks:

• One-Class Support Vector Machine (SVM): One-Class SVM is a popular machine-
learning algorithm that constructs a decision boundary around the benign data points
in the feature space. It aims to maximize the margin between the benign samples and
the origin, allowing for the detection of novel data points that do not conform to the
learned benign pattern.

• One-Class Gaussian Mixture Model (GMM): One-Class GMM is a generative proba-
bilistic model that assumes the benign data are generated from a mixture of several
Gaussian distributions. It estimates the parameters of these Gaussian distributions
using the Expectation-Maximization (EM) algorithm. During the classification phase,
it computes the likelihood of a new data point belonging to the learned benign distri-
butions, identifying anomalies based on a predefined threshold.

• Local Outlier Factor (LOF): LOF is a density-based algorithm that detects outliers by
comparing the local density of a data point with the densities of its neighbors. The
algorithm assigns an outlier score to each data point based on the ratio of its local

Sensors 2023, 23, 7038 15 of 26

density to the average density of its nearest neighbors. Points with significantly lower
densities than their neighbors are considered anomalies.

• Isolation Forest: Isolation Forest is an ensemble-based anomaly detection algorithm
that builds multiple decision trees. Each tree isolates data points by randomly selecting
features and splitting them based on random thresholds. The isolation of an anomalous
data point requires fewer splits compared to benign data points, resulting in a shorter
path length. The algorithm calculates an anomaly score based on the average path
length across all trees in the ensemble.

• Minimum Covariance Determinant (MCD): MCD is a robust statistical method for
detecting outliers based on the Mahalanobis distance, which takes into account the
correlation between features. MCD estimates the mean and covariance matrix of
the benign data by finding the subset of data points with the smallest covariance
determinant. It then computes the Mahalanobis distance between each data point and
the estimated mean, identifying anomalies that exceed a predefined threshold.

In our simulation, we utilized the NSL-KDD dataset, which contains approximately
120,000 rows of data, with each row representing a feature vector containing multiple
features. To evaluate the performance of each semi-supervised novelty detection algorithm,
we initially presented each method with 500 benign data points to learn the patterns of
normal traffic. Subsequently, for each sliding window of 1000 data points, the novelty
detection techniques were applied to labelize and classify the data. Precision, recall, and F1-
score were calculated and recorded for each method within each window. After processing
the entire dataset, we computed the average values for precision, recall, and F1-score across
all windows for each novelty detection technique, enabling a comprehensive comparison
of their performance in the context of IoT intrusion detection.

The results of the simulation for each semi-supervised novelty detection algorithm are
presented in Figure 4. Upon interpreting the results, it is evident that the proposed Baseline
K-means algorithm achieves the highest recall at 0.97, indicating its ability to prioritize the
true-positive rate. This is particularly important for security and intrusion-detection system
(IDS) applications, where the primary focus is detecting as many intrusions as possible.
Although the precision of the proposed method is lower compared to other algorithms,
the F1-score, which is a harmonic mean of precision and recall, remains competitive at
0.85. The One-Class SVM has the highest F1-score at 0.88, but its recall is lower than the
proposed Baseline K-means. This suggests that although the One-Class SVM has a balanced
performance in terms of precision and recall, it may not prioritize the true-positive rate as
much as the proposed approach. Considering the nature of security and IDS applications,
the proposed Baseline K-means algorithm is a suitable choice due to its strong emphasis on
maximizing the true-positive rate, ensuring a robust detection of intrusions in the network.

4.3. Federated Lightweight IDS

In this section, we describe the simulation of a federated intrusion-detection system
(IDS) consisting of one coordinator and three workers. The simulation starts with the
coordinator learning a baseline model from an initial dataset containing N (in this case,
N = 100) benign data points. After the initial training, the coordinator exports its statistics
to the three workers. In the proposed version of the federated IDS, the coordinator actively
participates in the processing of network traffic data alongside the three workers. Unlike
the traditional federated learning setup where the coordinator only serves to aggregate and
distribute updates, in this case, the coordinator is also responsible for analyzing new data
that it has not encountered during the initial training phase.

Sensors 2023, 23, 7038 16 of 26

Baseline_KMEAN GMM Isolation_forest LOF MCD One_Class_SVM
Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Pe

rfo
rm

an
ce

 M
et

ric
0.76

0.98

0.86
0.82

0.89 0.89

0.97

0.78

0.88

0.78
0.74

0.870.85 0.86 0.87

0.80 0.81

0.88

Precision
Recall
F1-score

Figure 4. Performance comparison of semi-supervised novelty detection algorithms for intrusion
detection: The bar plot illustrates the precision, recall, and F1-score for each algorithm, highlighting
the proposed Baseline K-means’ ability to prioritize the true-positive rate (highest recall) while
maintaining a competitive F1-score, making it suitable for security and IDS applications.

The NSL-KDD dataset contains approximately 120,000 rows of data, which translates
to around 30 windows or epochs for our simulation. During each epoch, the coordinator
and the three workers process 1000 data points, amounting to a total of 4000 data points per
epoch. This design choice allows us to evaluate the performance and effectiveness of the
proposed Baseline K-means algorithm in a distributed environment, where the coordinator
and workers jointly process and learn from the evolving network traffic data. To execute the
simulation, we first initialize an empty results dataframe to store the performance metrics
(precision, recall, and F1-score) for each epoch. The simulation loop continues until less
than 1000 elements remain in both the normalized data and the ground-truth labels. Within
each epoch, the coordinator and workers process their respective data windows, and the
performance metrics are computed and stored in the results dataframe.

In our simulation, three scenarios were considered. The first scenario involves no
merging operation; the coordinator conducts its initial training and exports its statistics.
Each worker uses the initial statistics throughout all epochs or windows. In the second and
third scenarios, there are 3 and 4 merge operations, respectively, occurring at specific points
during the simulation. In these scenarios, the coordinator and workers share and update
their respective statistics. The objective is to examine and determine the extent to which this
merging step contributes to the overall system’s ability to adapt to the evolving nature of
network traffic data. The results of the first scenario (no merging operation) are illustrated
in Figure 5. As evident from the figure, the performance of the workers is comparable to,
and occasionally slightly better than, that of the coordinator. The coordinator’s recall is
approximately 0.86, while the workers have an average recall of 0.87. The average F1-score
for all agents is around 0.84. The performance metrics exhibit minor variations in each
window, depending on the processed data but remain close to the average values depicted
in the bar plot (Figure 5b). No noticeable increasing or decreasing trend is observed in
Figure 5a, indicating that the performance relies on the initial training and the baseline
data learned by the coordinator. The exported statistics at the beginning remain constant,
resulting in a similar performance for each data window.

Sensors 2023, 23, 7038 17 of 26

0.80

0.85

0.90 C
oordinator

0.80

0.85

0.90 W
orker_1

0.80

0.85

0.90 W
orker_2

0 5 10 15 20 25 30
Window

0.80

0.85

0.90 W
orker_3

Legend
Recall Precision F1-score

(a)

Coordinator Worker_1 Worker_2 Worker_3
IDS agent

0.0

0.2

0.4

0.6

0.8

M
ea

n
P

er
fo

rm
an

ce
 M

et
ric

0.82 0.82 0.82 0.81
0.86 0.88 0.88 0.87

0.84 0.84 0.85 0.84

Precision
Recall
F1-score

(b)

Figure 5. Federated IDS without merging operations. (a) Evolution of performance metrics for
the coordinator and three workers over 30 epochs, each comprising a window of 1000 data points.
(b) Average performance metrics for the coordinator and three workers after 30 epochs.

The results of the second scenario are presented in Figure 6, where three merging
operations occur at epochs 7, 14, and 21. From the figure, it is evident that the workers’
recall increases after each epoch involving a merging operation. The workers begin with an
average recall of 0.87 at epoch 1 and conclude with an average recall of 0.94 at epoch 30
(Figure 6a). A comparison of the bar plots in Figure 6b reveals an increase in recall values
in contrast to the scenario without merging operations. This observation supports our pro-
posed approach, suggesting that the federated IDS can enhance the workers’ performance
over time. Although the recall exhibits an increasing trend, a slight decrease in precision
can also be observed. This phenomenon can be attributed to our approach’s prioritization
of the true-positive rate over the false-positive rate. After each merging operation, the
workers become more stringent in terms of rejecting distances greater than the dynamically
evolving threshold. This measure is implemented to minimize the number of anomalous
data points detected.

Sensors 2023, 23, 7038 18 of 26

0.8

0.9

C
oordinator

0.8

0.9

W
orker_1

0.8

0.9

W
orker_2

0 5 10 15 20 25 30
Window

0.8

0.9

W
orker_3

Legend
Recall Precision F1-score

(a)

Coordinator Worker_1 Worker_2 Worker_3
IDS agent

0.0

0.2

0.4

0.6

0.8

M
ea

n
P

er
fo

rm
an

ce
 M

et
ric

0.80 0.80 0.80 0.79

0.87
0.90 0.90 0.89

0.83 0.84 0.84 0.84

Precision
Recall
F1-score

(b)

Figure 6. Federated IDS with three merging operations. (a) Evolution of performance metrics for
the coordinator and three workers over 30 epochs, each comprising a window of 1000 data points.
(b) Average performance metrics for the coordinator and three workers after 30 epochs.

The improvement in the true-positive rates over time is more evident in the results of
the third scenario, as depicted in Figure 7. After 30 epochs, the workers achieve a recall
of 0.97, as demonstrated in Figure 7a. Figure 7b reveals that the average recall for all
workers is approximately 0.96, and the F1-score increases to 0.86. However, similar to the
second scenario, the precision decreases to 0.78. Consequently, it is essential to consider
the trade-off between precision and recall and to determine the appropriate intervals for
merging operations. This consideration is crucial because, after each merging event, the
worker IDS further prioritizes the true-positive rate.

Sensors 2023, 23, 7038 19 of 26

0.7

0.8

0.9

1.0 C
oordinator

0.7

0.8

0.9

1.0

W
orker_1

0.7

0.8

0.9

1.0

W
orker_2

0 5 10 15 20 25 30
Window

0.7

0.8

0.9

1.0

W
orker_3

Legend
Recall Precision F1-score

(a)

Coordinator Worker_1 Worker_2 Worker_3
IDS agent

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
P

er
fo

rm
an

ce
 M

et
ric

0.84

0.77 0.78 0.78

0.91
0.96 0.96 0.96

0.87 0.86 0.86 0.86

Precision
Recall
F1-score

(b)

Figure 7. Federated IDS with four merging operations. (a) Evolution of performance metrics for
the coordinator and three workers over 30 epochs, each comprising a window of 1000 data points.
(b) Average performance metrics for the coordinator and three workers after 30 epochs.

4.4. Cross-Layer Federated Learning

This section discusses the simulation of cross-layer IDS where intrusion detection is
applied after the cluster-based sampling proposed in our previous work [3], and shows the
effect of the sampling on the IDS performance metrics. Next, this section highlights the
importance of the sampling operation when implementing the IDS on a microcontroller in
terms of processing time.

4.4.1. IDS Performance Metrics

In this section, we explore the concept of cross-layer federated IDS, where a cluster-
based sampling technique is applied before intrusion detection. We consider two scenarios
involving a coordinator and a worker, each with three sampling rates: 0.75, 0.5, and 0.25. In
the first scenario, the coordinator trains on baseline data, exports its statistics to the worker,
and then the worker utilizes the same statistics for 11 epochs, processing 5000 data points
per epoch. In the second scenario, two merging operations are added at epochs 3 and 7.

Figure 8 illustrates the results of the first scenario, revealing that the performance
of the IDS decreases with time when reducing the amount of data through cluster-based

Sensors 2023, 23, 7038 20 of 26

sampling. For example, at all three sampling rates, the worker starts with a recall value of
0.88 at Epoch 1 and concludes with a recall of 0.82 at Epoch 11. The performance drop is
faster when the sampling rate is lowered, as depicted in Figure 8.

Figure 9 showcases the significance of the proposed federated IDS in the second
scenario. For sampling rates of 0.75 and 0.5, the recall decreases from 0.88 to 0.87 at epoch
3, and the sampling rate of 0.25 drops to 0.83. After the first merging operation, where the
worker exports its statistics to the coordinator and receives the aggregated statistics, the
recall increases to 0.90 for sampling rates 0.75 and 0.5 and to 0.89 for the sampling rate 0.25
by epoch 7. At epoch 11, the recall reaches 0.95 for sampling rates 0.75 and 0.5 and 0.93 for
the sampling rate 0.25.

It should be noted that our simulation results may vary between runs due to the
shuffling of NSL-KDD data, leading the worker to process different data windows in each
simulation. However, in all runs, the worker consistently demonstrates a higher recall
and F1-score at the final epoch compared to the first epoch. These findings validate the
effectiveness of our proposed federated IDS and its ability to improve the performance
of the workers over time through cooperation with the coordinator and the merging
of statistics.

0.80

0.85 0.75

0.80

0.85 0.50

2 4 6 8 10
Window

0.80

0.85 0.25

Legend
Recall Precision F1-score

Figure 8. IDS performance metrics when applying cluster-based sampling with sampling rates of
0.75, 0.5, and 0.25, a change ratio of 0.5, and without merging operations.

4.4.2. Processing and Implementation

This section illustrates the implementation of the lightweight IDS on microcontrollers,
specifically the Arduino Nano 33, to demonstrate its feasibility and efficiency in real-world
applications. The IDS employed in this paper uses the Mahalanobis distance, which is a
lightweight and easily implementable algorithm suitable for low-power devices such as
microcontrollers. The coordinator exports the threshold, baseline mean, baseline covariance
inverse, anomalous mean, and anomalous covariance inverse values to each worker. In
the current implementation, these values were defined manually. In a real-world appli-
cation, these values could be downloaded by the workers at the beginning of the process
and after each merging operation. The C++ implementation of the function that calcu-
lates the Mahalanobis distance is computationally efficient and can be easily executed on
resource-constrained devices like the Arduino Nano 33. This makes the entire federated
IDS implementation suitable for low-power devices and applicable to a wide range of
IoT systems.

Sensors 2023, 23, 7038 21 of 26

0.8

0.9 0.75

0.8

0.9 0.50

2 4 6 8 10
Window

0.8

0.9 0.25

merge merge

Legend
Recall Precision F1-score

Figure 9. IDS performance metrics when applying cluster-based sampling with sampling rates of
0.75, 0.5, and 0.25, a change ratio of 0.5, and two merging operations.

To further improve the efficiency of the IDS, we simulated cluster-based sampling at
various rates (0.75, 0.5, and 0.25) in addition to processing the whole dataset. Figure 10
demonstrates the benefits of using cluster-based sampling. As the sampling rate decreases,
the amount of data stored in memory and the execution time of the IDS are reduced.
This allows for faster processing times and increased efficiency, which is particularly
important in resource-constrained environments. Figure 10 shows that the processing time
in milliseconds reduces from around 32 milliseconds for a window of 100 data points, each
containing six features, to 17 milliseconds when applying a sampling rate of 0.5, arriving at
around 9 milliseconds with a sampling rate of 0.25.

100% 75% 50% 25%
Data Sampling

0

5

10

15

20

25

30

Pr
oc

es
sin

g
tim

e
(m

s)

Processing time for different data sampling rates on an Arduino Nano 33

Figure 10. Processing time vs. sampling rate on an Arduino Nano 33.

5. Discussion
5.1. Experimental Results

In this section, we address three key observations derived from the experiments
and their corresponding results. First, we aim to clarify the discrepancy in performance
enhancement between the coordinator and the workers, as illustrated in Figures 6 and 7.
Second, we discuss the observed decline in precision, or the increase in the false-positive

Sensors 2023, 23, 7038 22 of 26

rate, when the coordinator and workers engage in a merging operation. Finally, we
examine the third observation, which pertains to the cross-layer federated IDS simulation
and, specifically, the performance degradation over time when utilizing cluster-based
sampling.

Regarding the first observation, the primary reason the coordinator’s performance
does not improve over time, as it does for the workers, is attributable to the workers not
updating the coordinator with their inverse covariance matrix. It is important to emphasize
that sharing the covariance matrix can be computationally demanding, particularly when
the number of features is high. Computing the inverse covariance matrix on devices
such as the Arduino Nano 33 or ESP32 can pose significant computational challenges,
especially with a high number of features. Nevertheless, not transmitting the covariance
matrix may result in a less accurate model, but this trade-off could be acceptable if the
objective is to minimize computational and communication overheads. Utilizing the
coordinator’s covariance matrix to calculate distances and define a threshold represents a
viable alternative to transmitting the covariance matrix from the workers. This approach
offers the benefit of reducing communication overheads since only the means and the
distances need to be exchanged between the workers and the coordinator. By employing
the coordinator’s covariance matrix, consistency in the threshold value can be maintained
across all workers, even if their datasets differ. However, this method presupposes that
the coordinator’s covariance matrix accurately represents the global dataset and that the
data point distribution in each worker’s dataset closely aligns with the global distribution.
If significant disparities exist in the data point distribution across workers, this approach
may not yield results as accurate as those obtained using each worker’s local covariance
matrix. In such cases, it may be better to use a hybrid approach where the workers send a
compressed version of the covariance matrix, such as the diagonal elements or a subset of
the matrix, which can be used to adjust the threshold value based on the local distribution
of data points in each worker’s dataset. These cases could be studied in future works.

Upon examining the second observation in the experiments, it is evident that during
the merging operation, where the worker exports its statistics to the coordinator and subse-
quently receives aggregated statistics, the recall of the worker increases, while its precision
decreases over time. This phenomenon can be attributed to the IDS becoming stricter in
terms of rejecting more packets or data points than before. In the provided implementation,
the coordinator’s merge function computes the new means for baseline and anomalous data
by averaging the coordinator’s and worker’s respective means. Additionally, it recalculates
the threshold based on the percentile of distances between baseline data points and the
updated baseline mean. As the merging operation advances, the threshold calculated by the
coordinator typically becomes more conservative, resulting in the rejection of an increased
number of data points. This happens because the recalculated threshold takes into account
the specified percentile, as well as the minimum distance of a worker’s anomalous data
points to the baseline mean. Consequently, all distances exceeding this minimum distance
are regarded as anomalous. The worker’s merge function then updates its baseline and
anomalous means, as well as the inverse covariance matrices and the threshold, based on
the coordinator’s aggregated statistics. Consequently, this may increase false positives,
therefore causing the precision to decrease. Meanwhile, the updated means and inverse
covariance matrices help the IDS in detecting more true positives, increasing the recall. In
future work, we intend to tackle this point and how the merging operation is defined and
implemented to reduce the decrease in precision with time.

Concerning the third observation, which underscores a decreasing trend in the perfor-
mance metrics of the IDS when the sampling rate is reduced over time, this phenomenon
can be attributed to two primary factors. The first factor relates to the possibility that
the initial baseline data may not accurately represent normal traffic. Since the dataset
is shuffled for each run, the coordinator’s baseline data varies in each simulation. This
variation might also mirror real-world scenarios in which the coordinator’s data may not
precisely represent the pattern of data arriving at the worker. The second factor stems

Sensors 2023, 23, 7038 23 of 26

from the nature of the cluster-based sampling algorithm proposed in our previous work.
This technique resembles a queue where each IoT device stores the sampled data in its
memory, and new items are processed sequentially. Each new item is added to one of the
clusters based on the Euclidean distance between the item and the center of each cluster.
After assigning the item to a cluster, a decision is made on whether to include it in the
corresponding cluster sample. This is determined by comparing the sampling error of the
cluster sample with and without the item. If excluding the item leads to a higher sampling
error, the new item will be sampled with a certain probability. Conversely, if including
the item results in a higher sampling error, the item will be rejected and not added to
the sample. To maintain a fixed cluster sample size, an item must be removed from the
sample when the featured cluster size exceeds a change ratio constant. In this case, the
item with the highest-ranked value in the current sample will be deleted. The decrease
in IDS performance can be explained by the manner in which the cluster-based sampling
technique selects data points for inclusion in the cluster sample. If the chosen data point is
at the periphery of the benign distribution (i.e., the distance is not too close to the center
and slightly exceeds the threshold), the IDS may regard it as a doubtful data point due to
its conservative nature and subsequently reject it as an anomaly. However, this occasional
decrease in performance can be mitigated through the merging operation, which enhances
each worker’s performance.

5.2. Differential Analysis with Existing Techniques

This section reviews recent federated learning strategies for intrusion-detection sys-
tems (IDS) and compares them with the approach proposed in this paper. The authors
in [54] employ an architecture very similar to the one we propose, concluding that utilizing
an initially pre-trained model leads to better results. This mirrors the approach we adopt,
initiating with a Baseline K-means model that has been pre-trained. Contrary to our work,
which formulates the problem as a semi-supervised novelty detection task, they use a
Deep Neural Network (DNN) and Deep Belief Network (DBN) for supervised multi-class
classification. The work in [54] might be more suitable for IoT devices with substantial
memory and computational capabilities, such as the Raspberry Pi 4, whereas our approach,
due to the simplicity of the K-means algorithm compared to a neural network, can be
embedded on more constrained devices like the ESP32.

The authors in [55] propose the Decentralized Online Federated Learning Intrusion
Detection (DOF-ID), a collaborative learning system. Similar to the Baseline K-means,
DOF-ID allows each IDS used for a cybersystem to learn from experiences gathered in
other cybersystems, in addition to its own local data, without violating the data privacy of
other systems. As in our paper, they start with the assumption that having labeled data is
not feasible, so they apply a novelty detection strategy by training an auto-associative G-
Network on data containing local benign network traffic. Unlike our work, their approach
is decentralized; each node n communicates directly with other nodes to send locally
learned IDS statistics and to receive those learned by others. The work in [55] focuses
on decentralizing collaborative learning and optimizing IoT traffic processing, whereas
our research emphasizes cross-layer anomaly detection. Our main objectives are to detect
anomalies while reducing energy consumption by limiting the amount of data transmitted,
using a cluster-based sampling strategy.

The authors in [31] propose an ensemble federated learning IDS at the gateway level.
Similar to our work, they download an initial model trained on the server with a certain
number of attacks to each gateway, enhancing it based on the local data of the IoT devices.
Their ensemble approach efficiently addresses the problem of false positives. However,
they employ a supervised approach for intrusion detection, which differs from the strategy
of our paper, as we assume only a small number of benign data are available initially.

Each existing federated learning strategy has its own merits and underlying assump-
tions. For future work, we intend to incorporate various aspects of these works into our
solution, such as decentralization and ensemble-based approaches.

Sensors 2023, 23, 7038 24 of 26

6. Conclusions

This study proposes and analyzes a lightweight intrusion-detection system (IDS) for
Internet of Things (IoT) devices, focusing on its implementation in microcontrollers and
its applicability in real-world settings. Experiments and simulations have demonstrated
the effectiveness and efficiency of the proposed IDS when implemented in a cross-layer
federated learning framework, where a sampling operation precedes intrusion detection
and the impact of cluster-based sampling on its performance.

The primary findings of this study highlight the influence of merging operations
on the performance of the coordinator and workers, the trade-offs between precision
and recall when sharing statistics between workers and the coordinator, and the factors
affecting the performance trends when adjusting the sampling rate. These results provide
valuable insights into the aspects that may influence the performance of the proposed IDS in
existing IoT systems. Experiments and simulations indicate the suitability of the proposed
lightweight IDS for IoT applications and the importance of using federated IDS to preserve
privacy, offering a potential alternative for intrusion detection in resource-constrained
contexts.

Author Contributions: Conceptualization, S.H. and J.B.A.; Methodology, S.H., J.A. and J.B.A.; Soft-
ware, J.A.; Writing—original draft, S.H.; Writing—review & editing, S.H.; Supervision, J.D., C.G. and
A.M.; Project administration, D.G. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The simulation code is publicly shared at [51].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Huč, A.; Šalej, J.; Trebar, M. Analysis of machine learning algorithms for anomaly detection on edge devices. Sensors 2021,

21, 4946. [CrossRef]
2. Tekin, N.; Acar, A.; Aris, A.; Uluagac, A.S.; Gungor, V.C. Energy consumption of on-device machine learning models for IoT

intrusion detection. Internet Things 2023, 21, 100670. [CrossRef]
3. Hajj, S.; El Sibai, R.; Barada, A.; Bou Abdo, J.; Demerjian, J.; Guyeux, C.; Makhoul, A.; Ginhac, D. Cluster-based Sampling

Algorithm for Lightweight IoT Intrusion Detection System. In Proceedings of the 2022 20th International Conference on Security
and Management, Las Vegas, VA, USA, 25–28 July 2022.

4. Hajj, S.; El Sibai, R.; Bou Abdo, J.; Demerjian, J.; Guyeux, C.; Makhoul, A.; Ginhac, D. A critical review on the implementation of
static data sampling techniques to detect network attacks. IEEE Access 2021, 9, 138903–138938. [CrossRef]

5. Tripathi, N.; Hubballi, N. Slow rate denial of service attacks against HTTP/2 and detection. Comput. Secur. 2018, 72, 255–272.
[CrossRef]

6. Procopiou, A.; Komninos, N.; Douligeris, C. ForChaos: Real time application DDoS detection using forecasting and chaos theory
in smart home IoT network. Wirel. Commun. Mob. Comput. 2019, 2019, 8469410. [CrossRef]

7. Reed, A.; Dooley, L.S.; Mostefaoui, S.K. A Reliable Real-Time Slow DoS Detection Framework for Resource-Constrained IoT
Networks. In Proceedings of the 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 7–11 December
2021; pp. 1–6.

8. Internet of Things Statistics for 2023—Taking Things Apart. Available online: https://dataprot.net/statistics/iot-statistics/
(accessed on 21 March 2023).

9. Zarpelão, B.B.; Miani, R.S.; Kawakani, C.T.; de Alvarenga, S.C. A survey of intrusion detection in Internet of Things. J. Netw.
Comput. Appl. 2017, 84, 25–37. [CrossRef]

10. Oh, D.; Kim, D.; Ro, W.W. A malicious pattern detection engine for embedded security systems in the Internet of Things. Sensors
2014, 14, 24188–24211. [CrossRef]

11. Lee, T.H.; Wen, C.H.; Chang, L.H.; Chiang, H.S.; Hsieh, M.C. A lightweight intrusion detection scheme based on energy
consumption analysis in 6LowPAN. In Advanced Technologies, Embedded and Multimedia for Human-Centric Computing; Springer:
Berlin/Heidelberg, Germany, 2014; pp. 1205–1213.

12. Le, A.; Loo, J.; Chai, K.K.; Aiash, M. A specification-based IDS for detecting attacks on RPL-based network topology. Information
2016, 7, 25. [CrossRef]

http://doi.org/10.3390/s21144946
http://dx.doi.org/10.1016/j.iot.2022.100670
http://dx.doi.org/10.1109/ACCESS.2021.3118605
http://dx.doi.org/10.1016/j.cose.2017.09.009
http://dx.doi.org/10.1155/2019/8469410
https://dataprot.net/statistics/iot-statistics/
http://dx.doi.org/10.1016/j.jnca.2017.02.009
http://dx.doi.org/10.3390/s141224188
http://dx.doi.org/10.3390/info7020025

Sensors 2023, 23, 7038 25 of 26

13. Raza, S.; Wallgren, L.; Voigt, T. SVELTE: Real-time intrusion detection in the Internet of Things. Hoc Netw. 2013, 11, 2661–2674.
[CrossRef]

14. Jan, S.U.; Ahmed, S.; Shakhov, V.; Koo, I. Toward a lightweight intrusion detection system for the internet of things. IEEE Access
2019, 7, 42450–42471. [CrossRef]

15. Soe, Y.N.; Feng, Y.; Santosa, P.I.; Hartanto, R.; Sakurai, K. Towards a lightweight detection system for cyber attacks in the IoT
environment using corresponding features. Electronics 2020, 9, 144. [CrossRef]

16. Davahli, A.; Shamsi, M.; Abaei, G. Hybridizing genetic algorithm and grey wolf optimizer to advance an intelligent and
lightweight intrusion detection system for IoT wireless networks. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 5581–5609.
[CrossRef]

17. Khater, B.S.; Abdul Wahab, A.W.; Idris, M.Y.I.; Hussain, M.A.; Ibrahim, A.A.; Amin, M.A.; Shehadeh, H.A. Classifier performance
evaluation for lightweight IDS using fog computing in IoT security. Electronics 2021, 10, 1633. [CrossRef]

18. Sedjelmaci, H.; Senouci, S.M.; Al-Bahri, M. A lightweight anomaly detection technique for low-resource IoT devices: A game-
theoretic methodology. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur,
Malaysia, 22–27 May 2016; pp. 1–6.

19. Nguyen, X.H.; Nguyen, X.D.; Huynh, H.H.; Le, K.H. Realguard: A lightweight network intrusion detection system for IoT
gateways. Sensors 2022, 22, 432. [CrossRef]

20. Mai, J.; Chuah, C.N.; Sridharan, A.; Ye, T.; Zang, H. Is sampled data sufficient for anomaly detection? In Proceedings of the 6th
ACM SIGCOMM Conference on Internet Measurement, Rio de Janeriro, Brazil, 25–27 October 2006; pp. 165–176.

21. Roudière, G.; Owezarski, P. Evaluating the Impact of Traffic Sampling on AATAC’s DDoS Detection. In Proceedings of the 2018
Workshop on Traffic Measurements for Cybersecurity, Budapest, Hungary, 20 August 2018; pp. 27–32.

22. Pescapé, A.; Rossi, D.; Tammaro, D.; Valenti, S. On the impact of sampling on traffic monitoring and analysis. In Proceedings of
the 2010 22nd International Teletraffic Congress (lTC 22), Amsterdam, The Netherlands, 7–9 September 2010; pp. 1–8.

23. Zhang, H.; Liu, J.; Zhou, W.; Zhang, S. Sampling method in traffic logs analyzing. In Proceedings of the 2016 8th International
Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), Hangzhou, China, 27–28 August 2016; Volume 1,
pp. 554–558.

24. Silva, J.M.C.; Carvalho, P.; Lima, S.R. A modular sampling framework for flexible traffic analysis. In Proceedings of the 2015 23rd
International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 16–18 September
2015; pp. 200–204.

25. Bartos, K.; Rehak, M.; Krmicek, V. Optimizing flow sampling for network anomaly detection. In Proceedings of the 2011 7th
International Wireless Communications and Mobile Computing Conference, Istanbul, Turkey, 4–8 July 2011; pp. 1304–1309.

26. Brauckhoff, D.; Tellenbach, B.; Wagner, A.; May, M.; Lakhina, A. Impact of packet sampling on anomaly detection metrics.
In Proceedings of the 6th ACM SIGCOMM Conference on Internet Measurement, Rio de Janeriro, Brazil, 25–27 October 2006;
pp. 159–164.

27. Liu, L.; Wang, P.; Lin, J.; Liu, L. Intrusion detection of imbalanced network traffic based on machine learning and deep learning.
IEEE Access 2020, 9, 7550–7563. [CrossRef]

28. Hajj, S.; El Sibai, R.; Bou Abdo, J.; Demerjian, J.; Makhoul, A.; Guyeux, C. Anomaly-based intrusion detection systems: The
requirements, methods, measurements, and datasets. Trans. Emerg. Telecommun. Technol. 2021, 32, e4240. [CrossRef]

29. An, L.; Yang, G.H. Enhancement of opacity for distributed state estimation in cyber–physical systems. Automatica 2022,
136, 110087. [CrossRef]

30. Pei, J.; Zhong, K.; Jan, M.A.; Li, J. Personalized federated learning framework for network traffic anomaly detection. Comput.
Netw. 2022, 209, 108906. [CrossRef]

31. Attota, D.C.; Mothukuri, V.; Parizi, R.M.; Pouriyeh, S. An ensemble multi-view federated learning intrusion detection for IoT.
IEEE Access 2021, 9, 117734–117745. [CrossRef]

32. Mothukuri, V.; Khare, P.; Parizi, R.M.; Pouriyeh, S.; Dehghantanha, A.; Srivastava, G. Federated-learning-based anomaly detection
for iot security attacks. IEEE Internet Things J. 2021, 9, 2545–2554. [CrossRef]

33. Nguyen, T.D.; Rieger, P.; Miettinen, M.; Sadeghi, A.R. Poisoning attacks on federated learning-based IoT intrusion detection
system. In Proceedings of the Workshop on Decentralized IoT Systems and Security (DISS) 2020, San Diego, CA, USA, 23–26
February 2020; pp. 1–7.

34. Tabassum, A.; Erbad, A.; Lebda, W.; Mohamed, A.; Guizani, M. Fedgan-ids: Privacy-preserving ids using gan and federated
learning. Comput. Commun. 2022, 192, 299–310. [CrossRef]

35. Zhao, Y.; Chen, J.; Zhang, J.; Wu, D.; Teng, J.; Yu, S. PDGAN: A novel poisoning defense method in federated learning using
generative adversarial network. In Proceedings of the Algorithms and Architectures for Parallel Processing: 19th International
Conference, ICA3PP 2019, Melbourne, VIC, Australia, 9–11 December 2019; pp. 595–609.

36. Saadat, H.; Aboumadi, A.; Mohamed, A.; Erbad, A.; Guizani, M. Hierarchical federated learning for collaborative IDS in IoT
applications. In Proceedings of the 2021 10th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro,
7–10 June 2021; pp. 1–6.

37. Sarhan, M.; Lo, W.W.; Layeghy, S.; Portmann, M. HBFL: A hierarchical blockchain-based federated learning framework for
collaborative IoT intrusion detection. Comput. Electr. Eng. 2022, 103, 108379. [CrossRef]

http://dx.doi.org/10.1016/j.adhoc.2013.04.014
http://dx.doi.org/10.1109/ACCESS.2019.2907965
http://dx.doi.org/10.3390/electronics9010144
http://dx.doi.org/10.1007/s12652-020-01919-x
http://dx.doi.org/10.3390/electronics10141633
http://dx.doi.org/10.3390/s22020432
http://dx.doi.org/10.1109/ACCESS.2020.3048198
http://dx.doi.org/10.1002/ett.4240
http://dx.doi.org/10.1016/j.automatica.2021.110087
http://dx.doi.org/10.1016/j.comnet.2022.108906
http://dx.doi.org/10.1109/ACCESS.2021.3107337
http://dx.doi.org/10.1109/JIOT.2021.3077803
http://dx.doi.org/10.1016/j.comcom.2022.06.015
http://dx.doi.org/10.1016/j.compeleceng.2022.108379

Sensors 2023, 23, 7038 26 of 26

38. Campos, E.M.; Saura, P.F.; González-Vidal, A.; Hernández-Ramos, J.L.; Bernabé, J.B.; Baldini, G.; Skarmeta, A. Evaluating
Federated Learning for intrusion detection in Internet of Things: Review and challenges. Comput. Netw. 2022, 203, 108661.
[CrossRef]

39. Rahman, S.A.; Tout, H.; Talhi, C.; Mourad, A. Internet of things intrusion detection: Centralized, on-device, or federated learning?
IEEE Netw. 2020, 34, 310–317. [CrossRef]

40. Belenguer, A.; Navaridas, J.; Pascual, J.A. A review of federated learning in intrusion detection systems for IoT. arXiv 2022,
arXiv:2204.12443

41. Agrawal, S.; Sarkar, S.; Aouedi, O.; Yenduri, G.; Piamrat, K.; Alazab, M.; Bhattacharya, S.; Maddikunta, P.K.R.; Gadekallu, T.R.
Federated learning for intrusion detection system: Concepts, challenges and future directions. Comput. Commun. 2022, 195,
346–361. [CrossRef]

42. Ghimire, B.; Rawat, D.B. Recent advances on federated learning for cybersecurity and cybersecurity for federated learning for
internet of things. IEEE Internet Things J. 2022, 9, 8229–8249. [CrossRef]

43. Arisdakessian, S.; Wahab, O.A.; Mourad, A.; Otrok, H.; Guizani, M. A survey on iot intrusion detection: Federated learning,
game theory, social psychology and explainable ai as future directions. IEEE Internet Things J. 2022, 10, 4059–4092. [CrossRef]

44. Amouri, A.; Alaparthy, V.T.; Morgera, S.D. Cross layer-based intrusion detection based on network behavior for IoT. In
Proceedings of the 2018 IEEE 19th Wireless and Microwave Technology Conference (WAMICON), Sand Key, FL, USA, 9–10 April
2018; pp. 1–4.

45. Canbalaban, E.; Sen, S. A cross-layer intrusion detection system for RPL-based Internet of Things. In Proceedings of the Ad-Hoc,
Mobile, and Wireless Networks: 19th International Conference on Ad-Hoc Networks and Wireless, ADHOC-NOW 2020, Bari,
Italy, 19–21 October 2020; pp. 214–227.

46. Long, J.; Liang, W.; Li, K.C.; Wei, Y.; Marino, M.D. A Regularized Cross-Layer Ladder Network for Intrusion Detection in
Industrial Internet of Things. IEEE Trans. Ind. Inform. 2022, 19, 1747–1755. [CrossRef]

47. Malik, M.; Dutta, M.; Granjal, J. IoT-Sentry: A cross-layer-based intrusion detection system in standardized Internet of Things.
IEEE Sens. J. 2021, 21, 28066–28076.

48. Kore, A.; Patil, S. IC-MADS: IoT enabled cross layer man-in-middle attack detection system for smart healthcare application.
Wirel. Pers. Commun. 2020, 113, 727–746. [CrossRef]

49. Parween, S.; Hussain, S.Z.; Hussain, M.A.; Pradesh, A. A survey on issues and possible solutions of cross-layer design in Internet
of Things. Int. J. Comput. Netw. Appl. 2021, 8, 311. [CrossRef]

50. Boudargham, N.; Abdo, J.B.; Demerjian, J.; Guyeux, C.; Atechian, T. Efficient cluster-based routing algorithm for body sensor
networks. In Proceedings of the 2018 IEEE Middle East and North Africa Communications Conference (MENACOMM), Jounieh,
Lebanon, 18–20 April 2018; pp. 1–6.

51. Baseline K-Means Open-Source Code. Available online: https://github.com/josephazar/baselineKmeans (accessed on 21 March
2023).

52. Revathi, S.; Malathi, A. A detailed analysis on NSL-KDD dataset using various machine learning techniques for intrusion
detection. Int. J. Eng. Res. Technol. 2013, 2, 1848–1853.

53. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the 2009
IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, 8–10 July 2009;
pp. 1–6.

54. Belarbi, O.; Spyridopoulos, T.; Anthi, E.; Mavromatis, I.; Carnelli, P.; Khan, A. Federated Intrusion Detection System based on
Deep Belief Networks. arXiv 2023, arXiv:2306.02715.

55. Nakıp, M.; Gül, B.C.; Gelenbe, E. Decentralized Online Federated G-Network Learning for Lightweight Intrusion Detection.
arXiv 2023, arXiv:2306.13029.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.comnet.2021.108661
http://dx.doi.org/10.1109/MNET.011.2000286
http://dx.doi.org/10.1016/j.comcom.2022.09.012
http://dx.doi.org/10.1109/JIOT.2022.3150363
http://dx.doi.org/10.1109/JIOT.2022.3203249
http://dx.doi.org/10.1109/TII.2022.3204034
http://dx.doi.org/10.1007/s11277-020-07250-0
http://dx.doi.org/10.22247/ijcna/2021/209699
https://github.com/josephazar/baselineKmeans

	Introduction
	Related Work
	Lightweight IDS for IoT
	Sampling Algorithms for IDS
	Federated Learning for IoT IDS

	Lightweight Semi-Supervised Intrusion Detection
	Cross-Layer
	Baseline K-Means
	Federated Sampling and Intrusion Detection

	Experimental Setup and Simulations
	NSL-KDD Dataset and Semi-Supervised Learning
	Semi-Supervised Novelty Detection for Intrusion Detection
	Federated Lightweight IDS
	Cross-Layer Federated Learning
	IDS Performance Metrics
	Processing and Implementation

	Discussion
	Experimental Results
	Differential Analysis with Existing Techniques

	Conclusions
	References

