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Abstract: Multi-step traffic forecasting has always been extremely challenging due to constantly
changing traffic conditions. Advanced Graph Convolutional Networks (GCNs) are widely used to
extract spatial information from traffic networks. Existing GCNs for traffic forecasting are usually
shallow networks that only aggregate two- or three-order node neighbor information. Because of
aggregating deeper neighborhood information, an over-smoothing phenomenon occurs, thus leading
to the degradation of model forecast performance. In addition, most existing traffic forecasting
graph networks are based on fixed nodes and therefore need more flexibility. Based on the current
problem, we propose Dynamic Adaptive Deeper Spatio-Temporal Graph Convolutional Networks
(ADSTGCN), a new traffic forecasting model. The model addresses over-smoothing due to network
deepening by using dynamic hidden layer connections and adaptively adjusting the hidden layer
weights to reduce model degradation. Furthermore, the model can adaptively learn the spatial
dependencies in the traffic graph by building the parameter-sharing adaptive matrix, and it can also
adaptively adjust the network structure to discover the unknown dynamic changes in the traffic
network. We evaluated ADSTGCN using real-world traffic data from the highway and urban road
networks, and it shows good performance.

Keywords: traffic forecasting; spatio-temporal graph; deep graph convolutional network; adaptive
graph construction

1. Introduction

The Intelligent Transportation System (ITS) plays an essential role in urban construc-
tion. Reliable and accurate real-time traffic forecasting can help people rationalize travel
and ease traffic congestion [1,2]. The development of deep learning has enabled the appli-
cation of several deep-learning-based forecast models in traffic and transport fields [3,4].
However, traffic conditions have complex, irregular, and nonlinear spatial and temporal
relationships [5,6]. The urban road network is complex, irregular, and topological and is
challenging to manage conventionally. Graph Convolutional Networks (GCNs) excel in
managing non-linear and irregular data, causing them to be extensively applied in traffic
forecasting [7,8], as shown in Figure 1. How to construct and optimize graph networks us-
ing GCNs to improve traffic forecasting and alleviate traffic congestion is the main problem
we address.

The combination of graph convolution and the Gated Recurrent Unit is the first to
have improved traffic forecasting [7]. Initially, a purely convolutional approach using
graph convolution and 1D Convolution Neural Networks (CNN) was explored in the field
of traffic forecasting [8]. They have shown better results in traffic forecasting. However,
they are usually shallow networks that aggregate only two- or three-order node neighbor
information [7–11]. Deeper models tend to have superior nonlinear expression abilities and
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extract deeper features [12]. The multi-order neighborhood in the traffic graph is shown
in Figure 2a. As the network deepens, the adjacent nodes in the graph structure become
increasingly similar, creating an over-smoothing problem [13,14]. This leads to a decrease in
forecasting performance. In traffic forecasting studies, skip connections [11,15,16] and GRU
architectures [7,17] are used to deepen the overall spatio-temporal model level, but GCN
is still a shallow network. Divergent from previous studies, to extract deeper and richer
spatial relations in the traffic and increase the node receptive field in the traffic graph, we
deepen the neighborhood propagation of the graph network and to mitigate the problem
of over-smoothing, and we seek to enhance the connectivity between hidden layers.
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Figure 2. (a) The multi-order neighborhood of node vi in the traffic graph. (b) For vj nodes that
change or are newly added to the graph, the model can adaptively adjust the graph structure and
learn its relationship with the surrounding nodes.

The graph construction relies more on the node adjacency matrix. In the traffic
forecasting graph, the creation of the adjacency matrix is commonly accomplished by
considering the distance, connectivity, or similarity among nodes [7–10]. These fixed
pattern-based graph structures are not the best at discovering unknown hidden spatial
relationships between nodes. There are also models that use an adaptive matrix to increase
the flexibility of the graph [11,18]. However, they create random matrices that adaptively
learn node relationships from the perspective of the feature space, ignoring the composite
spatial association information with neighbors and similarity. Different from their work,
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we propose a parameter-sharing adaptive graph convolution method for traffic forecasting,
considering the composite space with near neighbors and similarities and the random
feature space in the traffic network. The method discovers unknown dynamic changes
in the network by establishing the parameter-sharing adaptive matrix. It can adaptively
learn and adjust the spatial dependencies and structures within the traffic according to the
changes, as shown in Figure 2b. The main innovative work of this paper is as follows:

1. To address the over-smoothing problem arising from deepening the network layers in
multi-step traffic forecasting with Graph Convolutional Networks, we employ a tech-
nique of dynamically adjusting hidden layer connections and adaptively modifying
the hidden layer weights to prevent model degradation.

2. We propose a parameter-sharing adaptive graph convolution method for multi-step
traffic forecasting, which considers the ever-changing complex spatio-temporal re-
lationships within the traffic network. This is able to adaptively learn and adjust
the spatial dependencies and structures within the traffic network by building the
adaptive matrix for parameter sharing.

3. We propose Dynamic Adaptive Deeper Spatio-Temporal Graph Convolutional Net-
works (ADSTGCN), a new traffic forecasting model. It uses the diffusion graph
convolutional network to obtain spatial dependencies in traffic and the temporal
convolutional network to obtain temporal dependencies for better traffic forecasting.

4. We validate our model on two traffic datasets and show better traffic forecasting
results than existing advanced baselines.

2. Related Work

Multi-step traffic forecasting involves predicting the traffic conditions at various
future time intervals from the spatial and temporal dimensions according to the historical
traffic conditions in the traffic road network. Its research focuses on the spatio-temporal
correlation between the traffic network structure and traffic time series [19]. Recently,
deep learning network models have performed outstandingly in traffic forecasting, and
their performance is much better than traditional machine learning models [20–22]. The
spatio-temporal dependence of historical traffic data obtained from sensors can be extracted
from the two different dimensions of spatial and temporal, respectively, by using a neural
network model.

Extraction of spatial dependencies. GCNs [23–25] designed for non-Euclidean data
have attracted significant interest in the area of traffic forecasting. According to statistics,
most traffic forecasting models since 2019 have used GCNs to model spatial relationships,
demonstrating that GCNs research is cutting-edge [1]. The GCNs that are currently avail-
able are commonly classified into two categories: spectral domain and spatial domain
graph convolution [24–26]. The spectral domain graph convolution uses Fourier trans-
form for convolution operations [23]. However, it is very time-consuming to compute the
eigenvalue decomposition of the Laplacian matrix, and the model has sizeable parametric
complexity. ChebNet utilizes Chebyshev polynomials in the spectral domain as a substitute
for the convolution kernel, aiming to decrease the model’s complexity [27]. The GCN sim-
plifies ChebNet by only considering one-order Chebyshev polynomials and only has one
parameter per convolution kernel, lowering the model’s complexity [23]. The traffic graph’s
spatial representation is extracted using the one-order approximate graph convolution of
the Laplacian matrix, which circumvents the spatial neglect issue encountered in recurrent
neural networks [8]. Compared with the complex operation of spectral domain graph
convolution, spatial graph convolution operates directly on neighborhood nodes, which is
more intuitive and flexible. To obtain heterogeneity in the spatial data, after constructing a
local spatio-temporal graph, the spatial representation is extracted through spatial graph
convolution [3]. Different from the base spatial graph convolution, which only does a linear
transformation of its input feature, the diffusion graph convolution takes the aggregation
operation on the input feature of its neighbors. A self-attention-mechanism-based infor-
mation fusion module utilizes diffusion graph convolution to model and comprehend the



Sensors 2023, 23, 6950 4 of 17

traffic change relationships of various regions, leveraging the global spatial scope of the
entire city [4]. It is also used to model the fusion features extracted from road network
graphs and regional graphs [11]. Incorporating diffusion graph convolution, modeling the
spatio-temporal dependence between main and auxiliary features is achievable through
two segmented spatio-temporal modules [16]. Graph Attention Networks consider the
importance of different neighbors and employ the attention mechanism to integrate the
information from embedded neighboring nodes. It is used to extract the channel, temporal,
and spatial embedding relationships between nodes in the traffic graph [28]. K-hop graph
convolution obtains spatial dependences on adjacency matrices constructed using road
network connections and competing influence relationships [5]. They have shown better re-
sults in traffic forecasting. However, they are usually shallow networks that aggregate only
two- or three-order node neighbor information. Skip connections [11,15,16] and GRU archi-
tectures [7,17] are used in traffic forecasting studies to deepen the overall spatio-temporal
model level also achieve better results, but they are also shallow graph networks. Based
on these studies, we focus on intensifying the model hierarchy and deepening the graph
network to enlarge the receptive fields of graph nodes, thereby capturing deeper and more
intricate spatial relationships within the traffic road network.

The graph structure adjacency matrix determines the GCN performance such that
it is one of the main research focuses. Existing studies have generally used the dis-
tance between nodes [7,11,29], or the similarity between nodes [9,10,16], to construct
adjacency matrices. Other studies have utilized external factors such as POI (Point
of Interest) to enhance features along with fusion based on local and global adjacency
matrices [3,19,30]. However, these models are based on fixed graph structures and lack the
flexibility to capture dynamically changing traffic conditions and road network structures.
Some other models use adaptive matrices to increase graph flexibility, learning node feature
similarity relationships through two random nodes [11,18]. However, they adaptively learn
feature spatial relationships from the feature perspective, and do not adaptively learn the
association information from the graph spatial adjacency structure at the same time. On the
basis of their work, we adaptively learn and adjust the spatial dependencies and structures
within the traffic network by building the adaptive matrix for parameter sharing from the
feature and spatial perspectives.

Extraction of temporal dependencies. Traffic forecasting extensively employs re-
current neural networks (RNNs) because of their capacity to memorize and learn both
short- and long-term temporal dependencies in sequences [5,7,22,31–33]. However, if
the dataset is large, the computational load of gating in the RNNs will be large. During
rush hour, capturing fluctuations in large traffic volumes is challenging because RNN
calculations often rely on the previous step [8]. In certain research works, Convolu-
tional Neural Networks (CNNs) are employed to capture temporal dependencies in traffic
forecasting [8,9,17,20,34,35]. However, CNNs perform convolution through input in a
window before and after time t, which leads to information leakage after time t. When
the historical sequence is long, CNNs need to increase the convolution size to view addi-
tional historical information, leading to less efficient training. Thus, Temporal Convolution
Networks (TCNs) [36] which combine dilated and causal convolution, have attracted
widespread interest in the field of traffic forecasting. TCNs are simple and effective in
processing time series data and cannot see future data. Furthermore, TCNs use dilated
convolution to obtain a long receptive field with fewer layers, which is beneficial in cap-
turing long-term periodic dependencies. Experimental TCN results have demonstrated
that it outperforms RNN in terms of both accuracy and computational time [36]. Temporal
dependence at different temporal levels can be obtained by increasing the model temporal
receptive field by stacking 1D and 2D causal dilated TCN [10,11,16,29]. In this paper, we
use TCN to extract the time dependence of traffic forecasting.
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3. Methodology
3.1. Problem Definition

The primary purpose of multi-step traffic forecasting is to anticipate the traffic con-
ditions for multiple future time steps in the traffic road network, relying on historical
traffic data.

Definition 1. Graph G: In this study, the traffic topology is represented by graph G(V, E), as
shown in Figure 3. The graph’s node set is represented asV = {v1, v2, . . . . . . vn}. Then, any node
i can be represented as vi. E = {e1, e2, . . . . . . en}represents the set of connection relationships
between all nodes in the graphs.
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Definition 2. Traffic feature matrix X: The traffic conditions of each traffic forecasting sensor are
the feature of each node in the graph. In this paper, we mainly study traffic speed as shown in
Figure 3b. The traffic speed monitored by all sensors within the road network can be represented
by the feature matrix X, where X ε RT×N . The time step is represented by T, and the number of
nodes is represented by N. Then, for any node i in G(V, E), its eigenvalue can be expressed as xi.

Definition 3. Adjacency matrix A: The connectivity among all sensors in the traffic network can
be depicted by matrix A, commonly referred to as the adjacency matrix, A ε RN×N . In our work,
the connectivity of edges in the graph is represented using the distance and similarity between
nodes [37].

Definition 4. Multi-step traffic forecasting: We slice the time axis into steps every 5 min, denoted
by t, and the total step is denoted by T. In this paper, our objective is to learn a mapping function f ,
which can effectively transform the traffic conditions X observed over P time steps in the historical
data to the predicted traffic conditions Ŷ over Q future time steps. For any node i, we can define
Ŷi as:

Ŷi = f
(

G; xP+1
i , xP+2

i , . . . . . . , xP+Q
i

)
(1)

where P is the historical time step and Q is the predicted time step, as shown in Figure 4.
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3.2. Overall Architecture

Figure 5 shows the overall architecture of the ADSTGCN. The model uses the multi-
head attention mechanism [38] to perform multi-strategy fusion transformation on the
spatio-temporal dependencies obtained through spatio-temporal convolution and spatio-
temporal embedding, respectively. Finally, the forecast results are output after the activation
function transformation. In the convolution strategy, TCN convolves the input traffic
feature X to obtain the time dependence. Adaptive deep Graph Convolutional Networks
obtain spatial dependencies through composite adjacency matrices with distance and
similarity relationships. Multiple spatio-temporal layers of the ADSTCN with residual
connections [39] are subsequently linked to form the input for the multi-head attention
mechanism. In order to further strengthen the spatio-temporal relationship, we integrate the
traffic network structure and feature data into Est by embedding and encoding, respectively.
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3.3. Input Data Processing

Using distances between sensors to create graph adjacencies tends to ignore richer
spatial relationships. This paper uses the multi-association graph method in [37] to create
graph networks that extract rich spatial dependencies. Spatial static graph Gss represents
the neighborhood spatial structure of the traffic network, which is generated based on the
distance between road sensors. Spatial dynamic graph Gsd is constructed based on the
sensors with similar traffic flow in the traffic network with dynamic changes over time.
By merging Gss and Gsd, we create the spatially fused graph Gs, from which we derive a
composite matrix As.

In this paper, we use the One-Hot method to encode time series in traffic data, both
daily and weekly, to capture fine-grained adjacent temporal traffic features. According
to the dynamic time change, we can identify the time step with a similar traffic flow and
obtain the similar function dynamic time step, even if the two time steps are not adjacent.
The final temporal dynamic and static features are encoded as Et. To further enhance the
feature relationship, we utilize the Node2vec method [40] to perform node embedding
on the composite adjacency matrix As, resulting in spatial embedding Es. Ultimately, we
combine the two embeddings to obtain the spatio-temporal embedding.

3.4. Deep Diffusion Graph Convolution

Diffusion-Convolutional Neural Networks assume that information propagates con-
tinuously between neighboring nodes according to a certain probability of constant dif-
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fusion [24]. Usually, GCN has two operation processes, propagation and transformation.
Propagation aggregates each node’s neighborhood information and transforms the aggre-
gated information through a linear transformation or activation function [41,42]. For the
feature matrix X, the propagation in the diffusion graph convolutional network can be
defined as follows:

Z = f (W � P∗X) (2)

where Z ε RN×C denotes the output, W ε RC×C denotes the weight matrix, C denotes the
number of input and output channels, P∗ ∈ RN×N is the probability transition matrix, and
f denotes the mapping function. The symbol � indicates element-wise multiplication. In
our work, the matrix P∗ can be replaced by the composite matrix As. We use the hidden
layer output as the input of the next layer, so the new propagation is defined as follows:

Z0 = X (3)

Z =
i

∑
k=1

Wk AsZk−1 (4)

As = Asd + Ass + IN (5)

Here, k refers to the filter, which also signifies the order of the node neighborhood. Z0

is the original feature matrix, As ∈ RN×N is the composite adjacency matrix, Asd denotes
the static distance matrix, Ass denotes the dynamic similarity matrix, and IN denotes the
identity matrix.

If the diffusion order is two in the diffusion graph convolutional network, it means
diffusion to the two-order neighbors of the node. For any node vi, the propagation of its
diffusion convolution is expressed as:

Zvi = Z0 + Z(1) + Z(2) (6)

According to the above equations, we define the transformation of diffusion graph
convolution as:

H = σ
(
Wt � Z

)
= σ(Wt(Z0 + Z(1) + Z(2)) (7)

where σ denotes the activation function and H is the final output of the diffusion
graph convolution.

In traffic forecasting, shallow GCNs that aggregate two- or three-order neighborhood
information can easily lose the deep spatial dependencies of higher-order neighborhoods.
However, GCN is prone to over-smoothing with the increase in the aggregated neighbor-
hood order, resulting in the nodes tending to be consistent and indistinguishable, thus
reducing the forecasting performance. The core operations of GCNs are propagation and
transformation, which significantly impact network performance. It is verified in [42] that
decoupling operations on propagation and transformation can expand the node receptive
field. Base on this method, on the basis of Equation (3), we decouple the transformations
of the features using MLP operations. Then, the new feature matrix X0 can be defined
as follows:

X0 = MLP(X) (8)

Z0 = X0 (9)

The decoupled GCN neighborhood convolution process is shown in Figure 6. Since
the deepening of graph networks can suffer from the problem of over-smoothing, to solve
this problem, referring to the residual network approach [39], we connect hidden layers
to the network, and their weights are adjusted adaptively. The propagation of the deeper
graph convolutional can be defined based on Equations (4) and (8) as:

X′ = (1− α)X + αX0 + β
(

X + X0
)

(10)
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Z =
i

∑
k=1

Wk AsX′ (11)

where α and β are hyperparameters, α belongs to the range (0, 1), and β is equal to 1− k−1.
Here, k represents the node convolution order. The parameter β increases as k grows, and
this helps to mitigate model degradation.
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3.5. Adaptive Deep Graph Convolution

Although composite adjacency matrices based on node distance and similarity function
can simultaneously capture the spatial relationship between adjacent and non-adjacent
nodes, they are built based on a fixed structure and are not ideal for discovering the
unknown hidden spatial relations between nodes. Traffic flow can change in a complex
way depending on various external factors, and a fixed graph structure makes it difficult
to extract more information from the challenging changes. We create an adaptive matrix
to improve the flexibility of the graph. It can acquire the dependencies in different spaces
through parameter sharing and adaptively learns the unknown changing relationships
in the network. We set two randomly initialized matrices, fuse them and use a nonlinear
activation function to activate, so that the adaptive matrix is defined as follows:

Aadp = σ(A1 A2) (12)

where Aadp is the adaptation matrix, σ is the activation function, and A1, A2 ε RN×N are
two random initialization matrices representing random sensor nodes in the traffic network.
According to the above equation, the propagation of adaptive graph convolution can be
defined as:

Zadp = Waσ(A1 A2)X (13)

Adaptive adjacency matrices feature spaces with randomness, and composite adja-
cency matrices are spaces possessing proximity and similarity. They have some common
features, although their parameters are different. By adopting parameter sharing, we
extract common features to further strengthen the fusion of spatial and feature information.
We can define the spatial graph convolution and adaptive graph convolution with the same
shared weights as:

Zsp = Wc AsX (14)

Zadp
′ = Wc AadpX (15)

where Zsp denotes spatial graph convolution, Zadp denotes adaptive graph convolution,
and Wc ε RC×C is the shared weight matrix. Then, the shared graph convolution can be
defined as:

Zcom =
(

Zsp + Zadp
′
)

/2 (16)
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According to Equations (13) and (16), we can define the propagation of the parameter-
sharing adaptive graph convolution as:

Zadp_c = Zadp + Zcom (17)

According to Equations (11) and (17), after transformation, as shown in Figure 7, we
finally define the adaptive deeper graph convolution as:

HG = σ(∑i
k=1 Wk AsX′ + Zadp_c) (18)
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3.6. Dilated Causal Temporal Convolution

A Temporal Convolution Network (TCN) [36] is widely used in time series research
because the inability to see future data during propagation avoids information leakage. It
employs dilated convolution to enlarge the receptive field, enabling the capture of longer
temporal relationships. In this study, we use a TCN to capture temporal relationships in
the traffic flow. It can be defined as:

H′ = ∑k′−1
i=0 f ·Xs−d·i (19)

where f is the 1-D filter, s is any time step within the set T, d is the dilation factor, and k′ is
the kernel size. In this paper, we set k′ = 2, that is, the time convolution on the s-th time
step involves convolving the upper layer’s time step with the (s− d)-th time step, then the
above equation can be simplified as:

H′ = f ·Xs + f ·Xs−d (20)

To further extract richer time dependencies, we add a gating mechanism:

HT = ReLU
(
sigmoid

(
H′a

)
∗ tanh

(
H′b

))
(21)

where H′a denotes the 1D temporal convolution operation in the temporal dimension
and H′b denotes the 2D temporal convolution operation in both the spatial and temporal
dimensions. The sigmoid activation function filters weaken relations in the 1D convolution,
and the tanh activation function controls the 2D convolution result between (−1, 1). Both
activation functions are multiplied to highlight the important information, and the ReLU
activation function is used to eliminate weak connections in the TCN to obtain the final
temporal dependencies. We use double-layer convolution in 2D temporal convolution in
both spatial and temporal dimensions to capture additional spatio-temporal relationships,
as shown in Figure 8.
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3.7. Attention Mechanism

To strengthen the spatio-temporal dependency extraction, we combine the spatio-
temporal embedding Est with the spatio-temporal convolutional layer output to perform
multi-strategy fusion transformation through the multi-head attention to obtain the forecast
result. In this study, we divide the space-time embedding Est into historical spatio-temporal
embedding Est_h and predictive spatio-temporal embedding Est_p and acquire the impor-
tance weight of the embedding predicted from historical embedding. Referring to the
attention mechanism, we define single-head attention as:

H′ = ∑n
i=1 αst·V (22)

αst = so f tmax
((

Est_p·Est_h
T
)
·h−0.5

)
(23)

where αst denotes the importance coefficient of spatio-temporal attention, V denotes the
spatio-temporal dependency obtained after stacking ADSTCN layers, H′ denotes the output
result of single-head attention, so f tmax is the activation function, and h is the quantity of
attention heads.

We concatenate the multi-head attention output to obtain the fusion output result and
transform the attention mechanism, which will be converted by the activation function and
fully connected layer into the final forecast result. According to Equation (10), the output
result after fusion and the multi-head attention mechanism transformation is defined as:

Hatt = concat(H1, H2, . . . . . . , Hh) (24)

4. Experiments

In this section, we assess the performance of the ADSTGCN model using two real
datasets, namely the highway network and the urban road network. We compare and
analyze our model’s experimental outcomes against nine traffic forecasting baseline models
to validate its effectiveness. Additionally, we conduct ablation studies and analyze the
pivotal components in the model.

4.1. DataSets

In our experiment, we select two real traffic datasets, as shown in Figure 9. One is the
highway network dataset PEMS_BAY. The CalTrans Performance Measurement System
collects it and has 325 sensors. It collected data for six months, from 1 January 2017 to
31 May 2017. The traffic speed is high, and the traffic situation is comparatively simple as
PEMS_BAY involves high-speed road network data. Another dataset used in this study is
the NE_BJ road network dataset, comprising 500 sensors, and collected through Navigation
data in Northeast Beijing for a duration of one month. It spans between 1 July 2020 and
31 July 2020. The NE_BJ dataset is the real dataset of the main roads within the Beijing urban
area. It is more complex and congested than freeway traffic, making it more challenging to
forecast traffic. It also has more research value.
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Traffic flow data is collected every 30 s, and the unit of speed is km/h. Before the
experiment, the collected data were pre-processed and aggregated into 5 min time steps,
with one hour of 12 time steps. All data are arranged into time series according to the time
step, which is then used as the model’s input data. The data is separated into three parts,
with proportions of 7:2:1 for the training, test, and validation sets.

4.2. Experimental Settings

We conduct experiments using PyTorch 1.10 on a GeForce RTX 2080Ti GPU. The
learning rate is 1 × 10−3, and the batch size is 16. The order of neighborhood is 8, and the
kernel size of the TCN is 2. The time step T is configured to be 12. We use MAE, RMSE, and
MAP to evaluate the performance of the models, which are often used in traffic forecasting
model evaluation.

4.3. Baselines

During the experiments, we conducted a comparison between ADSTGCN and nine
baseline methods. HA [43]: The forecast result is the average of all historical records.
VAR [44]: The real-time fluctuation of traffic state can be obtained, and is frequently em-
ployed in multivariate time series models. FC-LSTM [45]: A recurrent neural network with
LSTM hidden units is fully connected. DCRNN [7]: Graph convolutions are embedded into
GRU, and modeled with encoder–decoder architecture for traffic forecasting. STGCN [8]:
Spatio-temporal relationships are modelled using pure convolutions to predict traffic with
fewer parameters and faster training. GWnet [11]: The use of diffusion graph convolution
and an adaptive matrix to obtain better short-term forecast effects. AGCRN [18]: The
adjacency matrix is obtained by data-adaptive learning of intrinsic hidden associations
between nodes. GMAN [21]: The spatio-temporal representation is extracted according to
the random walk of graph nodes and the attention mechanism, and the encoder–decoder
architecture is used to model and improve poor medium- and long-term traffic forecasts.
MTGNN [46]: Multivariate time series are processed with or without predefined graph
structures through a joint framework for modeling learning graph and time series data.

4.4. Experimental Results

We compare the ADSTGCN with the baseline on two real datasets, PEMS_BAY and
NE_BJ. The forecasts for each model for the next 15 min, 30 min, and 60 min are presented
in Table 1, and all models are evaluated using the MAE, RMSE, and MAPE metrics.
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Table 1. Evaluation of traffic forecasting performance of various models on PEMS_BAY and
NE_BJ datasets.

Method
15 min 30 min 60 min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

PEMS_BAY

HA [43] 2.88 5.59 6.80% 2.88 5.59 6.80% 2.88 5.59 6.80%
VAR [44] 1.74 3.16 3.60% 2.32 4.25 5.00% 2.93 5.44 6.50%

FC-LSTM [45] 2.05 4.19 4.80% 2.20 4.55 5.20% 2.37 4.96 5.70%
DCRNN [7] 1.38 2.95 2.90% 1.74 3.97 3.90% 2.07 4.74 4.90%
STGCN [8] 1.36 2.96 2.90% 1.81 4.27 4.17% 2.49 5.69 5.79%
GWnet [11] 1.30 2.74 2.73% 1.63 3.70 3.67% 1.95 4.52 4.63%

AGCRN [18] 1.37 2.87 2.94% 1.69 3.85 3.87% 1.96 4.54 4.64%
GMAN [21] 1.34 2.82 2.81% 1.62 3.72 3.63% 1.86 4.32 4.31%

MTGNN [46] 1.32 2.79 2.77% 1.65 3.74 3.69% 1.94 4.49 4.53%
ADSTGCN 1.28 2.71 2.70% 1.60 3.63 3.60% 1.86 4.26 4.31%

NE_BJ

HA [43] 6.00 10.95 26.40% 6.00 10.95 26.40% 6.00 10.95 26.40%
VAR [44] 5.42 8.16 19.28% 5.76 9.07 21.53% 6.14 9.65 23.33%

FC-LSTM [45] 3.97 7.05 13.05% 4.93 9.04 17.74% 6.06 10.88 23.52%
DCRNN [7] 3.84 6.84 12.82% 4.51 8.49 15.84% 5.15 9.77 19.08%
STGCN [8] 5.02 8.34 19.31% 5.10 8.55 19.82% 5.39 9.09 22.14%
GWnet [11] 3.74 6.54 12.49% 4.41 8.08 15.79% 4.99 9.20 19.45%

AGCRN [18] 3.84 6.75 13.80% 4.48 8.41 16.70% 4.99 9.44 19.94%
GMAN [21] 4.08 7.63 14.94% 4.42 8.45 16.51% 4.80 9.18 18.36%

MTGNN [46] 3.75 6.71 12.91% 4.39 8.33 16.07% 4.90 9.38 19.79%
ADSTGCN 3.78 6.75 12.95% 4.32 8.16 15.70% 4.73 9.02 18.42%

According to the results presented in Table 1, the non-neural network models, HA
and VAR, perform poorly in traffic forecasting, and their learning ability for features is not
as strong as that of the neural network models. Conversely, the neural network models
achieve better performance in the forecast. After conducting a comprehensive comparison
of the two datasets, it is observed that the ADSTGCN model’s enhancement of the graph
network results in superior performance compared to other baseline models in terms of
MAE, RMSE, and MAPE. Through the deepening of the GCN, the ADSTGCN is capable of
extracting more profound and intricate spatial relationships, leading to improved long-term
forecasting performance, particularly in the Beijing inner city roads with more complex
traffic conditions. Additionally, ADSTGCN incorporates an adaptive matrix for parameter
sharing, enhancing the flexibility of the graph convolutional network model and facilitating
the capture of evolving traffic states, resulting in improved performance.

On the PEMS_BAY dataset, the ADSTGCN model exhibits superior forecast perfor-
mance for both short-term (15 min) and long-term (60 min) forecasts. GMAN model uses
RNN to achieve better long-term forecast results, and ADSTGCN outperforms it in short-
term forecasts by 4.48% in MAE. For long-term forecasting results, both models exhibit a
similar performance. GWnet achieves superior short-term forecasting results using a purely
convolutional model, and ADSTGCN outperforms it by 1.54% in MAE for short-term
forecasts and by 4.62% in MAE for long-term forecasts. MTGNN improves the extraction
of spatio-temporal dependencies using hybrid jump propagation and achieves a better
comprehensive result in both short-term and long-term forecasts. ADSTGCN improves
short-term and long-term forecasts compared to it, where short-term forecasts outperform
it by 3.03% in MAE, and long-term forecasts outperform it by 4.12% in MAE.

ADSTGCN shows better forecast results in both short-term and long-term forecasts of
NE_BJ datasets under more complex traffic situations, with better long-term forecast results.
GMAN uses RNN to achieve better long-term forecast results, and ADSTGCN outperforms
it by 1.74% in MAE for long-term forecasts and by 7.35% in MAE for short-term forecasts.
ADSTGCN’s short-term forecast is worse than GWnet in MAE, and its MAE is 1.07% behind
GWnet’s, but its long-term forecast is 5.21% better than GWnet in MAE. ADSTGCN is
significantly affected by external factors in more complex traffic situations in the short term,



Sensors 2023, 23, 6950 13 of 17

and the forecast effect is insufficient. Still, ADSTGCN has a more stable performance in
medium- and long-term forecasts.

DCRNN and AGCRN use GCN and RNN to model spatio-temporal relationships,
as RNNs are good at sequence data and have better long-term forecast performance than
short-term. STGCN, GWnet, and MTGNN use GCN and CNN to model spatio-temporal
relationships, are more concise, and achieve better short-term forecast results than long-
term. The GMAN model adopts the multi-attention model and an encoding–decoding
mechanism to achieve better long-term forecasts than other baseline models. On the basis
of GCN, ADSTGCN acquires deeper spatial neighborhood dependencies, extracts richer
shared features, and uses adaptive matrices to make the network more flexible. This enables
the extraction of richer traffic graph features and learning of more flexible traffic graph
structures, and therefore the model improves the forecasting performance. Deepening the
graph network makes it easier to discover deeper and more complex spatial relationships
between neighboring nodes, thus achieving better performance in long-term forecasting.
Figure 10 compares the forecasting performance of ADSTGCN and the nine baseline models
on the PEMS_BAY and NE_BJ datasets, respectively.
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Figure 11 compares the actual and predicted traffic forecasting of the ADSTGCN on
the PEMS_BAY and NE_BJ datasets on a specific day.
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4.5. Ablation Study

In this section, we conduct experimental ablation research on key model components
to verify the method’s effectiveness and help us to improve the model further. We study
the following ablation models: STGCN: a base model that only includes a two-order
neighborhood GCN; DSTGCN: an STGCN-based model that deepens GCN neighborhoods;
ASTGCN: a model that adds a parameter-sharing adaptive adjacency matrix to the STGCN.
Our proposed ADSTGCN deepens the GCN neighborhood based on the STGCN and adds
a parameter-sharing adaptive adjacency matrix model. Taking the NE_BJ dataset as an
example, we compare the MAE, RMSE, and MAPE values of the ablation and ADSTGCN
model forecast results at 15, 30, and 60 min, respectively, as shown in Figure 12.
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(a) MAE(NE_BJ); (b) RMSE(NE_BJ); (c) MAPE(NE_BJ).

The figure shows that the NE_BJ dataset, which has more complex traffic situations,
exhibits favorable short-term and long-term traffic forecasting performance when using the
ADSTGCN model with the parameter-sharing adaptive adjacency matrix and the adaptive
hidden layer connection method. The overall performance of the ASTGCN model using
the parameter-sharing adaptive adjacency matrix is better than the basic STGCN model,
and its long-term forecast effect is better than its short-term forecast. The comprehensive
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performance of the DSTGCN using the adaptive hidden layer connection method is better
than that of the basic STGCN model. Because this method can deepen the model and
restrain the over-smoothing problem, the short-term and long-term forecast performance is
relatively stable.

We compare the ASTGCN with the ASTGCN-NOC adaptive matrix with the parameter
sharing removed on the PEMS-BAY and NE_BJ datasets to verify the superior effect of
parameter sharing on adaptive matrix adjacency. Their contrasting results on MAE values
are shown in Figure 13. It can be seen from the figure that using the parameter-sharing
method to extract the adjacent composite and random-feature-space common features
further influence the model forecast effect. Adjacent composite spatial convolution is based
on composite spatial matrices with neighbors and similarities, while random eigenspace
convolution is based on adaptive and eigenspace matrices. In addition to their different
parameters, they also have something in common. By extracting the common features of
feature and space, the fusion of feature and space is further strengthened to improve the
forecast effect.
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5. Conclusions

This paper mainly studies the traffic flow forecasting problem using deep Graph
Convolutional Networks, as well as traffic road network graph adaptability, and the use of
multi-strategy information extraction in traffic forecasting models. We introduce a novel
traffic forecasting model, Dynamic Adaptive Deeper Spatio-Temporal Graph Convolutional
Networks for Multi-Step Traffic Forecasting (ADSTGCN), using GCN and TCN to obtain
spatio-temporal relationships, respectively. The model deepens the neighborhood convo-
lution of the graph while mitigating the network over-smoothing problem using hidden
layer connectivity, allowing the model to extract deeper and richer features. The flexibility
of node structures in traffic graphs is enhanced using a parameter-sharing adaptive ap-
proach. The ADSTGCN performs well when evaluated on two real datasets, highways and
urban roads. In our future research, we aim to optimize the model further, validate the
model on more comprehensive experimental environments and datasets, and improve the
model’s efficiency.
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