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Abstract: Soft robots are interesting examples of hyper-redundancy in robotics. However, the
nonlinear continuous dynamics of these robots and the use of hyper-elastic and visco-elastic materials
make modeling these robots more complicated. This study presents a geometric inverse kinematics
(IK) model for trajectory tracking of multi-segment extensible soft robots, where each segment of the
soft actuator is geometrically approximated with a rigid links model to reduce the complexity. In
this model, the links are connected with rotary and prismatic joints, which enable both the extension
and rotation of the robot. Using optimization methods, the desired configuration variables of the
soft actuator for the desired end-effector positions were obtained. Furthermore, the redundancy of
the robot is applied for second task applications, such as tip angle control. The model’s performance
was investigated through kinematics and dynamics simulations and numerical benchmarks on multi-
segment soft robots. The results showed lower computational costs and higher accuracy compared
to most existing models. The method is easy to apply to multi-segment soft robots in both 2D
and 3D, and it was experimentally validated on 3D-printed soft robotic manipulators. The results
demonstrated the high accuracy in path following using this technique.

Keywords: extensible soft robots; inverse kinematics; hyper-redundancy; trajectory tracking; piecewise
constant curvature model

1. Introduction

Soft robots have shown great potential in many robotics applications that require
flexibility and adaptation [1]. Despite the recent progress in soft robotics, motion planning
and control remain the main challenges due to the complex nonlinear dynamics of these
robots [2]. One possible solution could involve designing an inverse kinematics (IK) model,
which could then be integrated with an existing joint-space controller to provide a more-
straightforward approach [3].

Solutions to soft robots’ IK have been studied using different approaches. In ana-
lytical approaches, an absolute solution for the required degrees of freedom (DoFs) is
found using the geometry and kinematics of the robot. However, this solution is not
trivial due to these robots’ nonlinear equations and hyper-redundancy. Different models
have been proposed to overcome this, the most-famous one being the constant curvature
(CC) approximation [2,4,5]. Using this model, the authors in [6] suggested an absolute
geometrical solution for a single-segment inextensible continuum arm, showing it to be
the most-suitable method for a single-segment robot. Combining a piecewise constant
curvature (PCC) model and analytical solutions for multi-segment soft robots can lead to
complex mathematics, high computational costs, and many simplifications [7]. For this
reason, a less-intricate, yet accurate model is needed to overcome the complexity of the
analytical solution.
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Numerical solutions are a better alternative for IK solutions where state variables
are approximated using iterative or optimization techniques. For example, in [8], the
deformations of a soft robot under different actuation loads were simulated using FEM.
The main benefit of the FEM is its capability to solve the inverse kinematics of nonuniformly
shaped robots and torsional robots [9,10]; yet, the results are dependent very much on
the robot itself. This method is also computationally intensive for multi-link systems and
real-time control. Only recently in [11], using visual servoing, the authors performed the
closed-loop trajectory tracking of a soft robot using FEM. In other numerical methods,
such as curvature discretization, the nonlinear behavior of soft robots is approximated by
multiple rigid links. In [12], the authors suggested 16 rigid link approximations to model a
single-segment polymer actuator. In [13], the more-complicated shape of soft robots was
approximated by a rigid link modeling. Here, the strain of the robot during actuation
was not taken into account; only bending was modeled, and a solution for extensible soft
robots is still missing. Other numerical methods, namely heuristic inverse kinematics
algorithms, are famous for low computational costs and the possibility of solving large DoF
systems [14]. Reference [15] proposed a new cyclic coordinate descent (CCD) algorithm for
soft and redundant robots by solving the shortcomings of the standard CCD algorithms.
This method is limited to simulations only and has not been tested with real-time controllers
and experimental setups.

Learning methods are also employed to overcome the complexity of the IK problem.
Mostly, these techniques are combined with other well-known IK solutions to propose faster
solutions [16]. For example, in [17], the authors combined the Jacobian inverse kinematics
method with feedforward neural networks to control the multi-link robot and optimize
energy usage. In learning approaches, similar to FEM approaches, inverse kinematics can
be solved for nonuniform robots. However, a physical experimental setup or a sophisticated
dynamic model is required for the data acquisition. In [18], a combination of both model-
based (numerical) and learning methods was used to solve the inverse kinematics problem
at two levels, but only in 2D.

Leveraging this literature and with the aim of proposing a fast and accurate IK solu-
tion for extensible multi-segment 3D soft robots that can be used easily in experimental
validations, we propose a geometric inverse kinematics model for 2D and 3D single- and
multi-segment extensible soft robots. In the proposed method, each robot segment is
modeled with a CC approximation and discretized with multiple rigid links connected
together with prismatic and rotary joints. The developed method is mathematically simple,
can easily be applied to various types of soft actuators, and has negligible error with respect
to the workspace. Increasing the DoFs of the robot by adding segments to the robot is
straightforward and does not significantly affect the method’s performance. Using this
geometric model, an optimization method was employed to find a configuration for the
soft robot, resulting in the end-effector reaching the required position. The optimization
method allows for working with the boundary conditions using the redundancy of the
robot for different tasks, such as tip angle control and pressure control. Although the pose
control of soft actuators has been studied before [19], to the best of the authors’ knowl-
edge, no study has proposed an IK method that can put tip angle control as the second
priority. Using this model, one can either control the tip angle of the soft robot with the
same priority as the position (same as pose control) or solve the IK so that the tip angle
is a second priority and position control is the first priority. Another advantage of the
proposed IK model is its application diversity; as the obtained results using this model are
geometric variables, it is possible to employ this method with most dynamic models. To
express how this IK method can be integrated with dynamic models and can be used for
trajectory tracking in experimental setups, a model-based control algorithm is required to
assist with controlling the robot on a designed trajectory. Different dynamic models have
been presented previously [20–26]. Since this research proposes the IK method for the PCC
model, a model-based control based on this modeling is also needed. Furthermore, an ex-
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perimental setup with a soft robot control unit was used to show the real-time applications
of the models presented in this study.

The overall contributions of this work include the following:

1. A fast and accurate IK model for trajectory tracking of extensible soft robots that is
easy to use and efficient for multi-segment soft robots.

2. A new approach towards tip angle control of soft robots on desired trajectories.
3. An overview of implementing the IK model for open-loop and real-time closed-loop

control via extensive simulations and experiments.

The organization of this work is as follows. After this Introduction, in Section 2,
an overview of the IK method, the dynamic model, and the proposed controller are
presented. Then, in Section 3, different numerical simulations on single-segment and
multi-segment soft robots are studied and validated. Finally, in Section 4, the results of the
experiments are presented, followed by a brief conclusion.

2. Materials and Methods

In this section, we first present the formulation of our geometry-based IK model-
ing framework. Then, the dynamic modeling and also the controllers needed for the
model-based control are presented. The material presented in this section is later used
in simulations and also experiments. Meanwhile, some notations used in this paper are
described briefly.

2.1. Notations

Throughout this paper, bold letters are used to present column vectors and matrices,
respectively, e.g., q ∈ IRn and M(q) ∈ IRn×n. The identity matrix is denoted by Ik ∈ IRk×k.
Furthermore, subscript d means the desired trajectory, subscript i means the ith, subscript e
means elongation, and subscript b means bending. The details of other notations used in
this paper are summarized in Table 1.

Table 1. Summary of the mathematical notation used in this paper.

Symbol Description

XEi , YEi , ZEi Position of end-effector of the ith soft segment
Li, ∆Li, and θi Length, change of length, and bending angle of the ith soft segment
φi Deflection angle of the ith soft segment with respect to the X-axis
Ry and Rz Rotation matrix with respect to the Y-axis and Z-axis, respectively
m Number of soft segments in a multi-segment soft robot
q State variable used in dynamic model
qd Desired state variables (trajectory) designed using IK model
ε, kx, and ky Strain of the robot and curvature of the robot in the x-z and y-z planes
n State dimensions for the soft robot
M(q) ∈ IRn×n System’s inertia
C(q, q̇)q̇ ∈ IRn Matrix of Coriolis and centrifugal forces
G(q) ∈ IRn Matrix of gravitational forces exerted on the robot
K(q) and D(q̇) Matrices of hyper-elastic and visco-elastic properties of the robot
Uelastic(q) Hyper-elastic potential energy
u Input pressure to the soft robot
H Map from the input space to the actuation space of the robot
α1, α2 Effective transferal of differential pressure to joint forces
kp and kv Controller gains designed for trajectory tracking

2.2. Inverse Kinematics Model

The geometric properties and complex dynamic behavior of soft robots make solving
the inverse kinematics more challenging than traditional rigid robots. Our approach to
reducing the complexity of soft robots is to discretize the robot curvature with small rigid
links, which is also known as the rigid link model. In this model, the rigid links are inexten-
sible and connected via prismatic and rotary joints to cover both extension and rotation
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in dynamic behavior (Figure 1). The reduced complexity of using this technique enables
more-straightforward kinematics solutions for soft robotic applications. Additionally, since
many soft robots exhibit uniform shapes with limited torsional motion, the constant cur-
vature approximation is suitable. Therefore, we modeled each segment of the robot as a
constant curvature. Then, each curvature was approximated by multiple rigid links for a
more-straightforward solution. This approach involves the links in each segment forming
a regular polygon due to the constant curvature assumption, enabling a more-accessible
geometrical approach to simplify the complex deformation of soft robots.

In the proposed model, the links were connected to each other via two sets of joints:
rotary joints to emulate the bending of the actuators and prismatic joints to implement the
robot’s extension into the model (Figure 1). Additionally, one primary assumption was that
each segment’s rotary and prismatic joints move uniformly. Hence, the overall change in
the length of each segment would be the deformation of each prismatic joint multiplied
by the number of rigid links, and the same applies to the curvature. Using this method,
if we assumed that each segment of a multi-segment soft robot is being approximated by m
rigid links, and the forward kinematics equation for one segment of this soft robot can be
calculated as Equation (1):XEi

YEi
ZEi

 =

XEi−1

YEi−1

ZEi−1

+
(Li + ∆Li)

m
Rz(φi−1)Ry(θi−1)


cos(φi)∑m

j=1 sin( 2j−1
2m θi)

sin(φi)∑m
j=1 sin( 2j−1

2m θi)

∑ms
j=1 cos( 2j−1

2m θi)

 (1)

where XEi , YEi , and ZEi are the end-effector positions of the ith segment, Li is the length
of the segment, ∆Li is the change of length of the segment, θi is the bending angle of the
segment, φi is the deflection angle from the X-axis, Ry and Rz are the rotation matrix around
the Y-axis and Z-axis, respectively, and n is the number of rigid links in each segment. It is
worth mentioning that, although the IK method is presented for a 3D case, Equation (1) is
also applicable for 2D systems. The only difference is the deflection angle (φ) being zero in
the 2D system.

Figure 1. Combination of PCC and rigid link model for the multi-segment soft robot and the
respective configuration variables. The configuration before (left) and after actuation (right) is shown.
Each PCC curvature is represented with two rigid links (m = 2) presented in dark blue connected to
each other with rotary (circles) and prismatic (light blue) joints. Here, n is the number of links in each
segment, L is the initial length of the segment, ∆L is the extension of each segment, θ is the bending
angle, and φ is the deflection angle from the X-axis.
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Despite the reduced complexity of the kinematics equation after replacing curvature
with small rigid links, it is not possible to solve the problem analytically for the multi-
segment robots since the number of variables exceeds the number of kinematic equations.
Therefore, after obtaining the forward kinematics, an optimization method is applied to
find the parameters of each segment (Li,φi,θi) in a way that minimizes the error between the
desired point, [Xd Yd Zd], and the end-effector point derived from the forward kinematics in
Equation (1), [XE f YE f ZE f ], as in Equation (2). It is worth mentioning that this optimization
approach is not limited to only the constant curvature model and can be applied to other
soft robotics models.

min
∆L,θ,φ

‖
(

Xd − XE f , Yd −YE f , Zd − ZE f

)
‖2

s.t. ∆Limin < ∆Li < ∆Limax

θimin < θi < θimax

− π < φi < π

(2)

The optimization method applied here was the MATLAB fmincon function, which
uses the sequential quadratic programming algorithm (SQP). Since the SQP algorithm
cannot find the globally optimized solution, the initial conditions and constraints are
essential factors in finding the most-optimal solution for the inverse kinematics. We
set the initial conditions for optimization as the configuration variables of the robots
at the previous posture to have a smoother and more-energy-efficient solution over the
trajectory and avoid abrupt changes in robot posture. In addition, since robots do not
have unlimited changes in length or bending, physical constraints were added to the
optimization equation to have a more-realistic solution according to the robots’ capability.
Equation (2) includes these physical constraints, which are the extension and bending
limitations of the robot. As a result of the conditions and constraints, the optimization
equations provide a minimum change in the configuration variables for consecutive points
on the trajectory. Thus, the energy change and overall energy consumption were minimal.

In the case of a multi-segment robot, as the configuration variables are more than
kinematic equations, there are multiple possible solutions for each desired position. These
multiple solutions give the robot redundancy, which is beneficial for a secondary task such
as tip angle control. Adding additional constraints can include the secondary task in the
inverse kinematics solution. This additional constraint for the tip angle control of the 2D
robot is presented in Equation (3).

θd −
m

∑
i

θi = 0 (3)

where θd is the desired angle and θi is the bending angle of each soft segment. With this ad-
ditional constraint, the IK model benefits from the redundancy to not only find parameters
that follow the trajectory, but also calculate the bending angle of each segment in a way
that keeps the tip angle at a certain angle. However, the priority of the IK model is to follow
the trajectory and, if possible, achieve the second task. Using the boundary condition of the
method enabled us to add the secondary task. However, this method limits the IK model
to satisfy the secondary task. Therefore, we manipulated the program in a way that the
inverse kinematics solution is the priority, and if possible, it follows the second task, which
is tip angle control. It is important to mention that it is also possible to add the tip angle
control as the first priority and control the position and the angle simultaneously. For other
secondary tasks, such as pressure optimization or obstacle avoidance, boundary conditions
are still applicable since we needed both inverse kinematics and obstacle avoidance and
pressure optimization to happen simultaneously.
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2.3. Model-Based Control

Different trajectories were implemented on single-segment and multi-segment soft
robots to examine the IK model. To this end, the desired state variables were initially
calculated using the IK model. Subsequently, the desired state variables were fed into a
model-based controller enabling the robot to be controlled along the intended trajectory.
This demonstrated the integration of the IK model with dynamic models and controllers
(Figure 2). In this section, the dynamics and also the controller applied to the robot
are presented.

Figure 2. A block diagram representing closed-loop control of the robot on the desired trajectory is
presented. Parameters defined in this schematic are later defined in the paper.

For the dynamics of the PCC model, a bishop frame was attached to every point on
the backbone curve of the soft robot (in SE(3)), which was parameterized by a state vector
q = [ε kx ky]T ∈ R3. In this context, ε represents the strain of the robot , while kx and ky
represent the curvature of the robot in the x-z and y-z planes, respectively. The relation
between these newly defined state variables and the configuration variables defined in the
IK model for each segment (Figure 1) is as follows:

ε = (L− L0)/L0

kx = cos(φ)× θ/L

ky = sin(φ)× θ/L

(4)

Using this notation, the position of each point on the backbone curve is defined as
p(q, σ) =

∫ σ
0 Φ(q, η)U(q)dη, where Φ(q, η) and U describe the differential geometry of the

backbone curve. In this context, the equation of motion of the soft robot can be expressed as:

M(q)q̈ + C(q, q̇)q̇ + G(q) + K(q) + D(q̇) = τ. (5)

where M(q) ∈ IRn×n characterizes the system’s inertia, C(q, q̇)q̇ ∈ IRn contains the Coriolis
and centrifugal forces, and G(q) ∈ IRn denotes the gravitational forces exerted on the robot.
Additionally, the hyper-elastic and visco-elastic properties of the robot are described by the
two matrices K(q) and D(q̇), where the hyper-elastic potential energy can be defined as:
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Uelastic(q) =
∫

ke(η)ηdη +
∫

kb(η)ηdη, (6)

and here, ke(η) and kb(η) are the elongation and bending stiffness. Using the hyper-elastic
potential energy, the stiffness matrix can be calculated as:

K(q) =
dUelastic

dq
(7)

Furthermore, a Rayleigh damping matrix is defined as R, and so, the damping matrix
in the equation of motion is:

D(q̇) = Rq̇ (8)

As mentioned previously, there exists a rich literature on the dynamic modeling of
PCC models [22,27,28]. In this study, the dynamic model presented in [29] was used for
model-based control of the soft robots on desired trajectories. In this modeling, the general-
ized input vector was chosen as τ(u) = Hu, u being the input pressure to the soft robot
and H being a map from the input space to the joint actuation space. H was chosen as in
Equation (9), where γi = (i− 1).2π/d and d is the number of pneumatic bellows. Further-
more, α1 > 0 and α2 > 0 are system parameters representing the effective transferal of the
differential pressure to the joint forces and will be identified later using experimental data.

H =

 α1 α1 α1
−α2cos(γ1) −α2cos(γ2) −α2cos(γ3)
α2cos(γ1) α2cos(γ2) α2cos(γ3)

 (9)

The objective of this research was to achieve trajectory tracking of the soft manipulator
in the Cartesian space. Using the inverse kinematics model, the equivalent goal would
be for the robot to reach a desired posture in the state space, which theoretically means
limt→∞ q = qd. It is worth emphasizing that the IK method is independent of the controller.
Any controller that works in the state space can be used with this IK method, which gives
this method priority over learning methods. As mentioned earlier in Equation (5), the two
matrices of K(q) and D(q̇) characterize the hyper-elastic and visco-elastic properties of
the system. Due to this property of soft robots, as discussed in [30], soft robots have a
self-stabilizing feature that proves to be advantageous for controlling purposes. With this
analysis, the controller used for trajectory tracking is:

τ = q̈ + K(qd) + G(qd)

where, q̈ = q̈d − kv(q̇d − q̇)− kp(qd − q)
(10)

where the two terms of K(qd), the stiffness matrix, and G(qd), the gravity matrix, are the
feedforward terms and q̈ was chosen so that the feedback controller was a PD controller.
Here, qd is the desired trajectory in the state space, which was designed using the inverse
kinematics model. Furthermore, q̈d = 0, and as the trajectory tracking was assumed to be
slow, q̇d = 0. The graphical interpretation of this controller is pictured in Figure 2.

3. Simulations

Using the proposed methods in Section 2, a set of simulations that can demonstrate
how the IK method can be used for trajectory tracking of soft robots is presented. The Github
code for the IK simulations is available at: https://github.com/MahboubehKeyvanara/
Inverse-Kinematics-of-Soft-Robots (accessed on 11 May 2023).

https://github.com/MahboubehKeyvanara/Inverse-Kinematics-of-Soft-Robots 
https://github.com/MahboubehKeyvanara/Inverse-Kinematics-of-Soft-Robots 
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3.1. Single-Segment Soft Robot

In the first step, the proposed inverse kinematics solution was applied to a single-
segment 3D soft robot that follows a four-sided flower trajectory, as shown in Figure 3.
Since an analytical solution is possible in this case, the obtained results from our method
can be compared with analytical parameters for validation. Here, the analytical solution
is from [31]. As presented in Figure 3, the IK model followed the desired trajectory with
an average error of 8.41× 10−6 mm, which is less than 0.001% of the workspace. It can
also be seen that the calculated bending and deflection angles were identical for both the
analytical and presented IK models. The only difference between these two solutions was
the length of the robot. This difference was expected as the actual curvature is longer than
the rigid link approximation. A possible solution to overcome this difference is, as shown
in Figure 3C, to increase the number of links, which considerably decreased this error.
For instance, modeling each segment with 10 links resulted in an error of 0.035 mm, which
is less than 0.05% of the robot’s length. By increasing the number of links from 10 to 100,
the error was reduced to almost zero. Therefore, increasing the number of links, as expected,
reduced the error in length.

Figure 3. The inverse kinematics model results for a single-segment soft robot over a given trajectory
divided into 1000 points. The curvature of the robot is divided into 6 small rigid links. (A) The soft
robot’s configuration (robot is shown in blue) and calculated end-effector position using the IK model.
(B) The calculated parameters at different points of the trajectory (θ, φ, L) using the IK model and
analytical solution and the error between the desired position and the IK model over the trajectory.
(C) The error between the calculated length in analytical solutions from the proposed method for
various numbers of links. (D) The computational cost of solving the inverse kinematics model for
the 1000 points versus the number of rigid links in each segment. By decreasing the number of links,
the computational cost decreases, but the length error increases considerably.
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However, increasing the number of links increased the computational times. For ex-
ample, the computational cost for ten links and 1000 points over the given trajectory was
7.21 s (Figure 3D), while with one link, it was 7.13 s and 7.56 s for 100 links. Although the
computational cost increased with more links, this increase was negligible compared to
the effect on the length error. In addition, the average calculation time for each point
was 7.21 ms for the ten-link scenario, which is less than reported for kinematics in similar
studies such as [32].

3.2. Multi-Segment Soft Robot

Unlike for the single-segment robot, the analytical solution is not possible for multi-
segment soft robots since the number of DoFs exceeds the number of kinematics equations;
thus, the calculated parameters cannot be compared with a particular result. Here, we
studied a three-segment soft robot tracking a 3D trajectory, as shown in Figure 4. The
proposed IK method generated a continuous path for the three-segment soft robot even
though the path was quite complex in 3D. As can be seen, the average error between
the end-effector and the desired position over the given trajectory was 1.05× 10−5 mm.
This small error is lower than the reported error in similar prior work [7,17]. In addition,
as shown in the calculated parameters (Figure 4B), there were no abrupt changes in the
change of length, the bending angles, or the deflection angle, which led to the smooth
motion of the robot over the given trajectory.

Figure 4. The inverse kinematics model results for a three-segment robot, where each segment is
modeled with six small rigid links. (A) The robot configuration and calculated end-effector position
using the IK model. The first segment of the robot is shown in blue, the second segment in black,
and the third segment in red. (B) The calculated parameters (θ, φ, L) of all segments using the IK
model and the error between the desired position and the IK model solution. The average error in
this case is 1.95× 10−5% of the workspace. (C) The computational time of the inverse kinematics
versus the number of links in each segment. Video available at: https://youtu.be/Tl1P8RlE88A
(accessed on 11 May 2023).

Moreover, using the additional constraint defined in Equation (3), it is also possi-
ble to design trajectories for a robot with a constant tip angle. To further study this,

https://youtu.be/Tl1P8RlE88A
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a four-segment 2D soft robot followed the desired trajectory of Xd = 175 + 50cos(t) and
Yd = 100 + 50sin(t). This trajectory was given as the input to the IK code. The IK method
was employed without the additional tip angle constraint in Figure 5A. It can be seen
that the state variables were calculated at every step so that the change of these variables
with respect to the previous step on the trajectory was minimum, and hence, the energy
consumption was minimum. This is a key factor in generating smooth trajectories with-
out unwanted jumps in the robot’s state variables. Since, in this example, the robot had
redundancy with respect to the task space, except for following the desired trajectory, it
was possible to add tip angle constraints on the robot with lower priority. As explained in
Section 2.2, an extra constraint was added to the robot’s trajectory with the aim of having a
constant tip angle throughout the trajectory tracking. Figure 5B depicts how different the
robot moved as it was constrained to keep the tip angle constant.

Figure 5. Comparison of two different IK solutions on the same trajectory for a four-segment planar
soft robot . (A) The robot only has the task of following the desired trajectory of a circle (the robot
is shown in blue and the trajectory is shown in pink). (B) The robot has a second task of keeping
the tip angle a constant value of 30◦ with respect to the horizon while tracking the circle. (C) The
simulation results of the robot being controlled on the desired trajectory pictured in (B); the grey line
is the desired trajectory, and the pink dashed line is the trajectory followed by the robot. The initial
state of the robot is q0 = [0, 0, 0, 0, 0, 0, 0, 0]. (D) The norm of error between the desired trajectory and
the position of the end-effector.

It has been shown that the IK model is able to generate smooth 2D and 3D results even
on complex trajectories. The next step was to demonstrate how it can be used as an input
to dynamic models. To be able to control the robot on the desired trajectories, the physical
and material parameters of the robot need to be identified. The soft manipulator used
in this research had the following physical parameters: the mass m0 = 17.3 g, and the
relaxation length of l0 = 64.4 mm. Considering preliminary uni-axial tension tests, the 3D-
printed elastomer material was estimated to be linear isotropic with a Young’s modulus
of E = 80 MPa and a Poisson’s ratio of ν = 0.49. Considering the geometry and material
of the soft robot, the hyper-elastic and visco-elastic material parameters and the Rayleigh
damping matrix were chosen similarly to [29] (their Table 1), and no further identification
was required.
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For the first simulation, a circular trajectory was chosen for the four-segment 2D
soft robot (Figure 5). Here, using the IK model, the desired state variables for each robot
segment were calculated, and using the model-based controller, the robot was controlled
on the desired trajectory. To control the robot, a combination of feedforward and feedback
control, as explained in Section 2.3, was employed. For the sake of brevity, only the results
of the controller applied to the trajectory of Figure 5B are reported in Figure 5C,D. The PD
controller used in this case was formulated as τ = M× [q̈− kv × (q̇d − q̇)− kp × (qd −
q)] + C(q, q̇) + D(q̇) + K(qd) with kp = 80× I8 with kv = 3× I8. The robot started
tracking the trajectory from the initial state of zero, and as shown in Figure 5D, the norm
of the error of following this trajectory was less than 12%. It is important to emphasize
that the selected trajectory for the robot posed a significant challenge due to the consistent
tip angle of the robot. As a result, controlling a four-segment soft robot on this particular
trajectory is demanding. Yet, the results presented in Figure 5 verified that the IK model
generated smooth trajectories and controlling a multi-segment soft robot on a trajectory
with a second desired task did not have abrupt changes. Compared to existing learning
methods such as [17], the presented approach also had the advantage of being independent
of the controller used.

4. Experiments

So far, various simulations have been utilized to demonstrate the results of the IK
model. This section, however, is dedicated to showcasing the practical application of the
model through a series of experiments.

4.1. Experimental Setup

An experimental setup, including a soft robot and a hardware system to control
the robot, was developed to show how the IK model and designed controllers can be
implemented on a soft robot. Different experiments were run using single-segment and
multi-segment soft robots. The single-segment robot is presented in Figure 2. Each soft
segment comprised three parallel embedded pneumatic bellows. By inflating or deflating
each bellow, the segment can change its posture. Actuating all the bellows simultaneously
results in a change in the robot’s length. Moreover, by pressurizing the bellows unequally,
the robot can form a pose that produces a curve with constant curvature. Hence, this robotic
system was suitable for experiments in this research case, as it can be a PCC model.

A soft robotic control unit (SRC), as in [33], was used for fast and accurate model-
based control. In this control unit, the control and data acquisition were performed using a
Raspberry Pi 4 (2GB RAM). A proportional piezo-actuated pressure regulator (Festo, VEAB-
L-26-D7-Q4-V1-1R1) with a custom Raspberry Pi Hat simultaneously allowed pressure
measurements. The main software of this setup was written in Python and designed to read
multiple sensors, simultaneously control several VEAB regulators, and communicate with
other devices via TCP/IP. Due to large continuous deformations and potential changes in
the dynamics, sensing and adding sensors is quite challenging in soft robotics. For this
reason, to record the angular deflections of the soft robot, a 9-DoF inertial measurement
unit (Bosch, BNO055) was attached to the robot’s end-effector. The IMU sensor contained a
3-DoF gyroscope, a 3-DoF accelerometer, and a 3-DoF magnetometer. A Kalman filter was
applied to the sensor data and filtered the noise and other inaccuracies from the measure-
ments. Raw IMU data (including the measurements of acceleration, magnetic orientation,
and angular velocity) were processed onboard by the embedded microprocessor in the
BNO-055 sensor and output as roll–pitch–yaw (RPY) angles. The information from the
IMU sensors was read directly from the SRC software and could be used throughout the
real-time control of the soft robot. This control setup connected the sensor via I2C to
the SRC. In order to read the Cartesian movements of different points on the backbone
curve of the soft robot, an OpenMV H7 R2 camera was employed. Using colored markers
and color-detection methods, the position of the markers on the backbone was recorded,
and with that, the length of the robot was determined. Hence, all the state variables of the
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robot can be known throughout the experiments using both vision (strain) and the IMU
sensor (bending). In this setup, the regulators had a 100–150 ms delay, and the control rate
could reach a max of 300–400 Hz. The overview of the design of the real-time control of
soft robots is depicted in Figure 2.

First, the parameters for the mapping matrix defined in Equation (9) were identified
to start the experiments. A series of experiments was run to identify the mapping matrix.
In each experiment, a set of quasi-static pressures was added to the robot. With each
set of pressure, the robot reached a final point in the Cartesian space. This point could
be identified using the data from the OpenMV camera ([X, Y, Z]markers) and IMU sensors
([roll, pitch, yaw]). Through this calibration, the state variables of the dynamic model were
identified. These state variables were fed into the model, and the required input pressures
for the robot were calculated via the simulations, which were then compared with the
pressure input of the experiments. With this comparison, the parameters were identified
for the mapping matrix of Equation (9), as α1 = 8× 10−4 and α2 = 7.91× 10−7. It is worth
mentioning that, since the IMU sensors were also used for each single-segment soft robot,
only one position dataset from the cameras was sufficient to find the state variable. Here,
we used Zmarkers.

4.2. Results

Here, the results of four experiments performed using single-segment and multi-
segment soft robots are presented. Specifically, two experiments were conducted using
a single-segment soft robot by employing the control block diagram shown in Figure 2,
and two experiments were performed using a two-segment soft robot.

For the first experiment, a controller was designed to keep the single-segment robot’s
end-effector on the trajectory of Xd = 20cos(6t), Yd = 20sin(6t), Zd = 60. In every step
of the real-time control, first, the control of the robot was simulated using the feedback
controller presented in Equation (10). At this step, there was a set of three pressures that
indicated how much each bellow needed to be pressurized to follow the desired trajec-
tory. These values were fed directly into the robot using pressure regulators. As the robot
was pressurized, the IMU sensors and camera data sent feedback to the model to help
calculate the error with respect to the desired state variables. From there, a new set of
pressure signals was calculated. The designed controller in this study was programmed in
MATLAB/Simulink and communicated via TCP/IP with the SCR unit at 250 Hz. As the
experiments were run, it could be verified that the robot could follow the desired trajectory.
Figure 6 (top row) pictures the designed values for the pressure of each bellow and com-
pares them with the pressure produced by the regulators in each bellow. It depicts how
these two values overlapped after the initial transient state was finished, meaning the ex-
perimental setup generated the pressure inputs very close to the designed pressure values,
which helped the trajectory tracking for the soft robot. Furthermore, using the data from
the camera and the IMU sensors, it was possible to study the state variables of the robot as
it tracked the trajectory. Figure 6 (bottom row) compares these state variables between the
designed values from the IK solution, the model simulations, and the controlled values in
the experiments. This figure also verifies that trajectory tracking could be achieved with
combining the IK model, the dynamic model, and the experimental setup.

For the second experiment, a controller was employed to control the robot on the
desired trajectory previously presented in Figure 3. The trajectory was added to the
dynamic model, and the desired pressures were added to the robot to perform the desired
trajectory tracking. The top view of the final trajectory tracking of the robot is presented
in Figure 7A. The error between the desired trajectory and the following one was less
than 3 mm (Figure 7B), which is acceptable considering the trajectory’s complexity for a
three-bellowed robot. In this experiment, as shown in Figure 3, the robot experienced a
length change, which verified the IK model’s validity for trajectories that involve a change
in the length of the robot. For both experiments, the initial condition was zero, q0 = [0, 0, 0],
and the control parameters were chosen as kvp = 0.16× I3 and kv ≈ 0× I3.
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Figure 6. Experimental tracking results for a single-segment soft robot on a circular trajectory.
(Top row) Pressure values; dashed lines are the designed values, and blue lines are the regulator
measurements. (Bottom row) State variables of the robot in two different planes indicating the state
variables of the dynamic model. The grey plots are the results of the IK model, which are the desired
trajectory; the dashed lines show the simulation results of the controller, and the blue lines show the
robot’s movements in the experiments.

Figure 7. Experimental tracking results for a single-segment soft robot on a four-sided flower. (A) Top
view of the control of the robot on the designed trajectory of Figure 3. The dashed pink plot is the
desired trajectory, and the grey plots are different experiments. The continuous blue plot is the
average of the trajectory followed by the robot. (B) The norm of the error between the trajectory
followed by the tip point and the desired one.

Multiple experiments were also conducted to demonstrate that the IK model is com-
patible with dynamic models for multi-segment soft robots. For these experiments, a two-
segment soft robot was employed. This robot is shown in Figure 8. The robotic setup was
composed of two single-segment robots identical to the previous experiments. The con-
necting parts to these robots were fabricated using a stereolithography printer (ELEGOO
Saturn2). The air tubes were connected to each segment separately using these connecting
parts, and the pressure inside each bellow was controlled using six pressure regulators.
Two experiments were conducted using this setup. These experimental validations were
particularly important as there is limited work in the current literature on the IK of multi-
segment extensible soft robots in 3D. Here, in the first experiment (Figure 8), the robot
was controlled to follow a spiral trajectory with a Cartesian equation of Xd = 0.05cos(0.4t),
Yd = 0.05sin(0.4t), Zd = −0.11− 0.0005t, and in the second experiment, it was controlled
to follow a hyperbolic paraboloid trajectory with the equation of Xd = 0.05cos(0.4t),
Yd = 0.05sin(0.4t), Zd = −0.11− 0.05sin(0.4t)cos(0.4t). In both experiments, the simu-
lations were run to design the required controllers and were then added to the robot to
perform open-loop experiments. The initial condition of the robot was the zero state. These
trajectories were chosen due to their complexity for IK calculations and control. As can
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be seen in these figures, the IK model generated a continuous smooth trajectory in 3D
for the two-segment soft robot. It is important to mention that generating more-complex
controllers can improve the robot’s trajectory tracking, and the errors in these figures were
not due to the deficiency of the IK model, but the employment of open-loop control.

Figure 8. Experimental tracking results for a multi-segment soft robot. On the left, a 3D-printed
two-segment soft robot is used for the experiments. Each segment of the soft robot has three bellows.
The red marker is used for trajectory tracking of the robot’s end-effector. The robot is mounted in
the −Z direction to compensate for gravity. On the right are experimental results for the desired
spiral trajectory and saddle trajectory. The black lines show the robot’s shape in the simulations (four
positions are superimposed in the image). The pink trajectories show the desired trajectory, and the
blue trajectories show the followed trajectory by the robot (Supplmentary Marerial).

5. Conclusions

The objective of this study was to develop an inverse kinematic model for soft exten-
sible actuators using a piecewise constant curvature approach, applicable to both single-
segment and multi-segment configurations in both 2D and 3D environments. In this
method, each segment of the soft actuator was modeled with multi-rigid links, which were
connected through rotatory and prismatic joints. The approach used a simple procedure
to minimize the error between the desired position of the end-effector and the forward
kinematics equations. In this energy-efficient method, adding a second desired task, such
as tip angle control, is possible using additional constraints. The presented method was ver-
ified through simulations and different experimental results, which validated the method’s
applicability to different trajectories. One main advantage of the presented method is the
possibility to use any controller for the robot, independent of the IK method itself. This sets
it apart from learning methods, as it gives the flexibility to choose a controller that best suits
the problem at hand. Regardless of the type of controller and the dynamic model, the IK
model has a low computational cost and high accuracy for trajectory tracking. For future
work, we will focus on achieving a more-comprehensive range of models for the soft robot
and propose a model that is not only limited to PCC. Furthermore, we will use other opti-
mization methods, such as a generic algorithm, to find the globally optimized points, which
could result in higher precision. To conclude, this research provided a fast and accurate
inverse kinematics model for trajectory tracking of extensible soft robots, a new approach
toward tip angle control, and an overview of its implementation for real-time control.
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