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Abstract: This paper presents the design and synthesis of a dynamic output feedback neural network
controller for a non-holonomic mobile robot. First, the dynamic model of a non-holonomic mobile
robot is presented, in which these constraints are considered for the mathematical derivation of a
feasible representation of this kind of robot. Then, two control strategies are provided based on
kinematic control for this kind of robot. The first control strategy is based on driftless control; this
means that considering that the velocity vector of the mobile robot is orthogonal to its restriction,
a dynamic output feedback and neural network controller is designed so that the control action
would be zero only when the velocity of the mobile robot is zero. The Lyapunov stability theorem is
implemented in order to find a suitable control law. Then, another control strategy is designed for
trajectory-tracking purposes, in which similar to the driftless controller, a kinematic control scheme is
provided that is suitable to implement in more sophisticated hardware. In both control strategies,
a dynamic control law is provided along with a feedforward neural network controller, so in this
way, by the Lyapunov theory, the stability and convergence to the origin of the mobile robot position
coordinates are ensured. Finally, two numerical experiments are presented in order to validate the
theoretical results synthesized in this research study. Discussions and conclusions are provided in
order to analyze the results found in this research study.

Keywords: mobile robot; non-holonomy; driftless control

1. Introduction

Mobile robots have been widely implemented since their introduction several decades
ago due to the vast applications of these kinds of robots. It is important to mention also that
mobile robots have been implemented for several tasks in military and civil missions. For
these reasons, it is important to design and synthesize several kinds of control strategies
for these robots, taking into consideration the imperatives for trajectory-tracking, path
following, leader–follower missions, etc. Due to the simplicity of the mobile robot dynamics
and their implementation in hardware platforms, it is important to remark that kinematic
control is abundant for these kinds of robots. The control strategies for robots are diverse;
among these control strategies are the strategies based on robust control, sliding mode
control, fuzzy control, and neural control, among others. Restriction in the dynamics of
mobile robots which are found commonly are of non-holonomic type. These kinds of
restrictions are based considering the kinematic and dynamics properties of the mobile
robot. That is why these restrictions provide a way to develop driftless control strategies in
order to provide an easy way to implement these control approaches.

Taking into consideration that the dynamic modeling of mobile robots is very impor-
tant to this research study, it is crucial to mention the following research papers in which
this topic is considered. So, for example, in papers like [1], the dynamic modeling with its
uncertainties is shown. Then, in [2], a non-holonomic wheeled mobile robot with unknown
dynamics is represented mathematically for control purposes. Then, in [3], a non-holonomic
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mobile robot is modeled with unknown dynamics. In [4], a remarkable paper which is very
important for this research study, the researchers analyze the dynamics of a lightweight
mobile robot for longitudinal motion. Meanwhile, in [5], the dynamic modeling and sliding
mode control of a tractor mobile robot is presented. Then, in [6], a complete book chapter
about the dynamic modeling of mobile robots is presented considering the longitudinal
and lateral slip. All these research studies consider the dynamic modeling of a mobile robot.
However, it is important to mention that while in general, the dynamics of mobile robots is
quite simple, sometimes, in order to obtain the mathematical representation of a mobile
robot’s dynamics, it is important to consider unmodeled and unknown dynamics. The
studies the literature have yet to clarify that the dynamic controllers and neural controllers
are sufficiently robust for kinds of mobile robots.

Holonomic constraints are crucial to mention in this research study, taking into consid-
eration that these kinds of constraints, especially the non-holonomic constraints, are found
in mobile robots. These constraints are related to the velocity vector field of the mobile
robot, and the mathematical explanations of these kind of constraints are mentioned in the
content of this research paper. For these reasons, it is important to mention the following
research papers found in the literature. For example, in papers like [7], non-holonomic
constraints for geometric control theory are explained. Meanwhile, in [8], an interesting
research paper about the singularities of holonomic and non-holonomic robotic systems
is presented. In [9], the researchers studied holonomic and non-holonomic deformations
in the AB equations, which are useful for atmospheric fluid modeling. Then, in [10], the
dynamical invariant-based quantum gates are presented. In [11,12], researchers presented
the model predictive control of a holonomic mobile robot and an adaptive robust controller
for mechanical systems with non-holonomic trajectories, respectively.

A mobile robot’s dynamic model constraints allow us a way to obtain efficient control
strategies by the driftless control method. The driftless control method consists of obtaining
a zero control effort only if the velocity of the mobile robot is equal to zero. In the literature,
there are different driftless control techniques for different kinds of robots or mechanisms,
so for example, in [13], the calculation of the control effort of two input driftless control
systems is presented. Then, in [14], the switched driftless control of a kind of non-holonomic
system is shown. Meanwhile, in [15], a driftless oscillation control for a nonlinear systems
is provided. Then, in [16], the researchers studied the controllability of a driftless nonlinear
time-delayed system. In [17,18], the involutive flows of a nonlinear driftless control system
and the asymptotic control for wheeled mobile robot with driftless constraints are evinced,
respectively.

One of the most important theoretical fundamentals for this research study is the de-
sign and implementation of dynamic output feedback controllers, taking into consideration
that a hybrid control strategy based on dynamic output feedback control is implemented
for these kinds of mobile robots. In papers like [19], a dynamic output feedback control
for a switched affine system based on L−∞ control is presented. It is important to men-
tion [20,21], in which the dynamic output feedback control of a networked control system
is presented and a mixed dynamic output feedback control for an active suspension system
with actuator saturation and time delays are presented, respectively. It is important to men-
tion that in the second paper, a hybrid control strategy with dynamic output feedback and
fuzzy type-2 controllers is implemented, taking into consideration that this control strategy
provides an optimal framework for the present research study. In [22], the dynamic output
feedback control of a Luré system is proposed. Then, in [23,24], the consensus of a linear
multi-agent system by reduced order dynamic output feedback and the robust stabilization
for an uncertain singular Markovian-jump system via dynamic output feedback control
is achieved.

It is important to mention that neural control is a suitable control strategy taking into
consideration that a hybrid control strategy for a mobile non-holonomic robot is presented.
For example, in [25], a neural fault-tolerant controller with input constraints for an output
manipulator with output constraints is presented. Meanwhile, in [26], indirect neural
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control for an unmanned surface vessel is presented considering injection and deception
attacks. Then, in [27,28], a quasi-optimal neural control for solar thermal systems and
neural-based fixed optimal control for the attitude tracking of a space vehicle with output
constraints are evinced, respectively. Finally, in [29,30], a space manipulator neural output
constrained control for a space manipulator using a Lyapunov tan-barrier functional and
the neural network control of nuclear plants are evinced, respectively.

It is also important to mention two phenomena found in practice in mobile robotics
regarding the control, stabilization and trajectory tracking of mobile robots in the presence
of input saturation and time delays. It is important to consider the following references
regarding the trajectory tracking control of mobile robots with input saturation. For exam-
ple, in [31], the adaptive stabilization and control of mobile robots with input saturation
is shown. This paper is important for this present research study considering that non-
holonomic constraints are included in the development of the control strategy. In this
paper, input saturation is not considered because of the design of driftless and non-driftless
control approaches, which are novel. In [32], the input saturation is considered for the
control allocation of a mobile robot. Then, in [33], the visual tracking of a mobile robot is
performed with the saturated inputs of velocity and acceleration. In [34], the robust control
tracking design of a mobile robot with input saturation is presented.

The time-delay phenomenon is found in many kinds of linear and nonlinear dynamic
systems. Mobile robots are not the exception in which time delays are found. It is important
to mention the following references regarding this topic. For example, in [35], the control
synchronization of mobile robots with input time delays is evinced. Meanwhile, in [36], the
control of mobile robots with time delays is presented. Then, in [37], a predictive control
for mobile robots with time delays is presented. Finally, in [38], the control of mobile robots
with time-varying delays and noise attenuation is shown.

It is good to clarify that all the numerical simulations were performed in GNU Oc-
tave 4.2.2. The implementation of multibody dynamics commercial software or a real-time
experimental setup will be implemented as a future direction of this research study. Despite
this, it is important to mention the following references regarding the multibody dynamics
simulation implementing commercial software. It is found in references like [39], where
an 8 × 8 vehicle is simulated by the implementation of multibody dynamics commercial
software. Meanwhile, in [40], a railway vehicle is simulated by the implementation of the
previous mentioned commercial software. Finally, in [41,42], the researchers explained
other multibody analyses for different kinds of mechanisms or vehicles.

This paper presents the implementation of a hybrid control strategy which consists of
a neural and dynamic output feedback controller for a non-holonomic mobile robot. We
show two control strategies: the first one is a driftless control system based on the dynamic
output feedback and neural controller, and the second one is a full controller based also
on neural and feedback output control. The dynamic output feedback and neural control
are designed implementing a Lyapunov functional suitable to obtain the control law in
both cases. The neural network implemented in this research study is a feedforward neural
network in order to facilitate the controller design. The two control strategies ensure the
stability for trajectory tracking purposes and the convergence to zero for the error variable,
which comprise the difference between the desired trajectory and the measured trajectory.
It is important to mention that two numerical experiments are provided in order to validate
the theoretical results of this research study. Discussion and conclusions are provided at
the end of this research study.

It is important to remark that the main contribution of this research study is that
non-holonomy is one of the complexities found in some kinds of mobile and robotics
systems. So, for this reason, this research study provides two control approaches related
to non-holonomy in mobile robotic systems. The first approach consists of a driftless
controller that is simple and easy to implement in specific in available hardware in many
research laboratories in the world. The driftless control strategy provides the easiness of
being implemented in mobile robotics due to its compactness and low computational effort.
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In addition, the driftless control strategy provides the important characteristic that when
the control input is zero, the mobile robot’s velocity is zero. Meanwhile, the non driftless
control strategy is more adequate when a robust and compact strategy is necessary for
the trajectory tracking of the mobile robot. The neural networks are tuned offline, so the
implementation of this control strategy is straightforward due to the implementation in
real-time hardware only requiring matricial and vectorial operations, making the controller
adequate for a more viable control strategy for these kinds of mobile robots.

It is important to mention that the neural controller component of this hybrid con-
trol strategy comprises a standard feedforward neural network. The difference between
the neural network implemented in this research study and the neural network used for
comparison purposes is that the latest one is tuned and implemented standalone in com-
parison with the dynamic and neural network controller. It is important to mention that the
neural network implemented for comparison purposes is marginally stable in comparison
with the neural network which comprises the proposed hybrid control strategy, which is
asymptotically stable.

The strengths of the proposed control strategy rely on the improvements of the per-
formance in comparison that other control strategies found in the literature, such as PID
control, sliding mode control and neural network control when these strategies are imple-
mented standalone in comparison to when these strategies are implemented as a hybrid
control strategy. It is important to mention that the theoretical results are validated nu-
merically, corroborating that this control strategy surpasses other control strategies found
in the literature. It is worthwhile to mention that one advantage of the proposed control
strategy is that the neural network controller is tuned offline in order to obtain the optimal
performance; meanwhile, as long as the neural network controller component meets the
stability results, the closed-loop stability is ensured. It is worthwhile to mention that the
dynamic controller part along with the neural controller part improves the closed-loop
performance in comparison with other control techniques. Finally, it is observed that a
novelty of this research study is that the proposed controller is designed for driftless and
non-driftless control.

2. Related Work

In this section, some related work that is worthwhile to mention in this research study
is presented. This literature review consists of the following items related to non-holonomic
mobile robots and their control:

• Kinematics of mobile robots.
• Non-holonomic mobile robots.
• Dynamic output feedback of mobile robots.
• Neural control of mobile robots.
• Miscellaneous control strategies for mobile robots.

It is important to mention the following references related to the kinematics of mobile
robots because they are crucial for this research study. For example, in [43], a kinematic
Lyapunov-based controller is presented for mobile robots. Then, in [44], a kinematic-
based control strategy for a spherical mobile robot driven by a 2D pendulum is shown.
Meanwhile, in [45], a singularity free kinematic model of a degenerated mobile robot is
obtained. Meanwhile, in the following references [46–48], the kinematic control and two
kinematic models of mobile robots are presented.

In this section, it is important to mention the following research study taking into
consideration that a kinematic and dynamic model design for non-holonomic mobile robots
is important for this research study. Among these research studies, we found the following.
In [49], the distance-based control of a non-holomic mobile robot swarm is presented.
Meanwhile, in [50], the motion and force control of mobile robots is presented by means
of a fuzzy wavelet neural network controller. Then, in [51], the distributed formation
control for a swarm of mobile robots is presented, taking into consideration the velocity
constraints and iterative learning. Meanwhile, in [11,52], a model predictive path following
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the control strategy for holonomic mobile robots and the real-time identification of different
types of non-holonomic mobile robots are presented, respectively. In [53], the trajectory
tracking of a non-holonomic mobile robot is presented by means of sliding mode control
with disturbances.

Dynamic output feedback control has been implemented specifically for mobile robots.
For this reason, it is important to mention the following control strategies, which are found
in the literature considering the importance that they have for this research study. In [54,55],
the researchers mentioned the cooperative output control of a mobile flexible manipulator
and also the distributed output feedback control of non-holonomic mobile robots with only
the leader’s position measurement. Then, in [56,57], an output trajectory tracking of mobile
robots and an adaptive tracking control by means of output feedback for mobile robots
are presented, respectively. Then, in [58], an output tracking of a non-holonomic mobile
robot with fractional order visual feedback is evinced. In [59], a finite-time output feedback
tracking control of a non-holonomic mobile robot is presented.

It is important to mention in this research study some neural robot control strategies
which are found in the literature. So, for example, in papers like [60], a vision approach
with deep neural networks to control autonomous mobile robots is presented. Meanwhile,
in [61], the kinematics of a cable-driven parallel robot is achieved by the implementation
of neural networks. Then, in [62], the trajectory tracking of a self-balancing robot by
adaptive neural networks is performed. Then, in [63], a fault diagnosis for the harmonic
reducer of industrial robots is achieved by means of neural networks. Other examples
of the implementation of neural networks are found in [64,65] in which in the first case,
the integrated consensus control of multi-robots using neural model predictive control is
outlined. Meanwhile, in the second reference, a neural control for a robotic manipulator
with an input deadzone is presented.

To finalize this section, the following references are related to miscellaneous robot
control strategies related in any other way to mobile robot control. In papers like [66,67],
model predictive and model control are implemented for the control of different kinds
of robots. Then, in [68,69], two control strategies are presented for the trajectory tracking
of mobile robots. Finally, in [11,70], model predictive and adaptive full state constrained
tracking control for mobile robots are presented, respectively.

3. Notation

In this section, the notations used in this research study are presented in order to
facilitate the paper’s readiness and clarify the theoretical results obtained in this research
study. All the operators used in this research study are evinced in this section in order to
elucidate the mathematical background used.

1. 〈., .〉 is the inner product defined in a Hilbert space.

2. [ f , g] = ∂g
∂x f − ∂ f

∂x g is the Lie bracket.

3. ∂ f
∂x =


∂ f1
∂x1

. . . ∂ f1
∂xn

...
. . .

...
∂ fn
∂x1

. . . ∂ fn
∂xn

 is the Jacobian of a vector field.

4. ‖.‖ is the 2-norm defined in a Euclidean space.

4. Problem Formulation

In this section, the kinematic model of the mobile robot is presented. It is important
to mention that only a generic mobile robot is implemented in this research study. The
intention is to drive the robot according to a pre-specified trajectory. The kinematics of the
mobile robot is given by the following equations:

sin(θ)ẋ− cos(θ)ẏ = 0

sin(θ + φ)ẋ− cos(θ + φ)ẏ = 0 (1)
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As can be noticed in Figure 1, the coordinates and mobile robot length are defined
as shown in the figure. In order to facilitate the mathematical tractability of this kine-
matic model in order to obtain the proposed control strategies, the following equivalent
kinematic model is obtained, as shown in [71]. Consider the following change of variable
q = [x, y, θ, φ]T , so (1) can be obtained as:

〈ω1, q̇〉 =
[

sin(θ) cos(θ) 0 0
]
q̇ = 0

〈ω2, q̇〉 =
[

sin(θ + φ) −cos(θ + φ) −dcos(φ) 0
]
q̇ = 0 (2)

Figure 1. Schematic drawing of the mobile robot used in this research study.

In order to verify the holonomy of the previous mentioned system, the following
definition is needed [71]:

Definition 1. Consider two vector fields given by f ∈ Rn and g ∈ Rn, so the Lie brackets between
these two vectors are given by:

[ f , g] =
∂g
∂x

f − ∂ f
∂x

g (3)

In which x = [x1, x2, . . . , xn]T in which:

∂ f
∂x

=


∂ f1
∂x1

. . . ∂ f1
∂xn

...
. . .

...
∂ fn
∂x1

. . . ∂ fn
∂xn

 (4)

So, by defining the following vector fields:

g1 =


0
0
0
1

 g2 =


−cos(φ)
−sin(φ)
− 1

d
sin(θ)
cos(θ)
0

 (5)
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Somehow, the Lie bracket of g1 and g2 is given by:

[g1, g2] =

 −sin(φ)
−cos(φ)

− 1
d cos(θ)sin(φ)cotan(φ)

 (6)

So, the previous Lie bracket does not span the set of g1 and g2 and the system is
non-holonomic [71].

5. Control Strategies Definitions

In this section, we define the two control strategies proposed in this research study.
This section is divided into the following subsections in order to evince the main theoretical
results:

• Neural controller definition.
• Driftless control strategy.
• Non-Driftless control strategy.

5.1. Neural Controller Structure

The neural controller structure consists of the following components:

ỹj =
n

∑
i=1

(
wjiσ(p + θi) + θj

)
(7)

In which wji represents the hidden unit weights of the neural network, θi represents
the input weights, θj represents the bias of the neural network, and σ(.) is the activation
function, which in this case is a sigmoidal function, and p = ∑k

r=1 qr for the inputs qr and
the j output. The neural network (7) can be written in vector matrix form as follow:

ỹ =
n

∑
i=1

[
w1i
w2i

]
︸ ︷︷ ︸

wi

σ(p + θi) +

[
θ1
θ2

]
︸ ︷︷ ︸

θ

ỹ =
n

∑
i=1

wiσ(p + θi) + θ (8)

In which wi ∈ R2 is the hidden unit weights and θ ∈ R2 is the bias vector.

5.2. Driftless Control of the Mobile Robot

For the dynamic neural network control of the mobile robot, consider the following
dynamic neural controller:

ẋc = K1e + K2xc +
n

∑
i=1

wiσ(p + θi) + θ (9)

In which xc ∈ R2 is the controller variable, K1 ∈ R2×2 and K2 ∈ R2×2 are the gain
matrices and p is the neural network controller input. In order to establish the driftless
control system, the following scheme is implemented:

q̇ = g1u1 + g2u2 =
[

g1 g2
]︸ ︷︷ ︸

G

[
u1
u2

]
︸ ︷︷ ︸

U

(10)

In the following theorem, we define the driftless control law for the mobile robot:



Sensors 2023, 23, 6875 8 of 19

Theorem 1. The driftless dynamic system (10) is stabilized by the following control law:

U = −G−1 q
α‖q‖2 ηxT

c K1e− G−1 q
α‖q‖2 ηxT

c K2xc

− q
α‖q‖2 ηxT

c

[
n

∑
i

wiσ(p + θi) + θ

]
− G−1q (11)

in which η ∈ R+ and αη ∈ R+ are positive gain constants and e = qd − q is the error variable in
which qd is the desired trajectory of the mobile robot.

Proof. Consider the following Lyapunov function:

V =
η

2
xT

c xc +
α

2
qTq (12)

Obtaining the first time derivative of the previous Lyapunov function yields:

V̇ = ηxT
c ẋc + αqT q̇ (13)

Now, making the required substitution in the previous equation yields:

V̇ = ηxT
c K1e + ηxT

c K2xc

+ ηxT
c

[
n

∑
i

wiσ(p + θi) + θ

]
+ αqTGU (14)

So, making the required substitutions of (11) into the previous equation yields:

V̇ = −αqTq < 0 (15)

and the proof is completed.

5.3. Non Driftless Control of the Mobile Robot

To achieve this, it is necessary to define the dynamic model of the mobile robot in the
following way:

[
sin(θ) −cos(θ) 0 0

sin(θ + φ) −cos(θ + φ) −dcos(φ) 0

]
︸ ︷︷ ︸

G


ẋ
ẏ
θ̇
φ̇


︸ ︷︷ ︸

q̇

=

[
u1
u2

]
︸ ︷︷ ︸

U

(16)

in which U ∈ R2 is the control input. Now, consider the following neural dynamic
controller:

ẋc = K1e + K2xc +
n

∑
i=1

wiσ(p + θi) + θ (17)

In which K1 ∈ R4 and K2 ∈ R4 are appropriate gain matrices. Meanwhile ė = q̇d − q̇ is
the error dynamics and qd ∈ R4 is the desired trajectory of the mobile robot. The following
theorem evinces how the dynamics of the mobile robot can be stabilized.

Theorem 2. The dynamic system of the mobile robot (16) is stabilized by the following control law
as shown in:
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U = Gq̇d − G
e

β‖e‖2 ρxT
c K1e− G

e
β‖e‖2 ρxT

c K2xc

− G
e

β‖e‖2 ρxT
c

[
n

∑
i=1

wiσ(p + θi) + θ

]
+ Ge (18)

In which ρ ∈ R+ and β ∈ R+ are appropriate control parameters.

Proof. Consider the following Lyapunov functional:

V =
ρ

2
xT

c xc +
β

2
eTe (19)

So, taking the derivative of the previous Lyapunov function and making the appropri-
ate substitutions yields:

V̇ = ρxT
c

[
K1e + K2xc +

n

∑
i=1

wiσ(p + θi) + θ

]
+ βeT

[
q̇d − G−1U

]
(20)

Now by substituting (18) into the previous equation yields:

V̇ = −βeTe < 0 (21)

So the system is globally stable, and the proof is complete.

6. Numerical Experiments

In this section, two numerical experiments are performed to test and validate the
theoretical results found in this research study. The numerical experiments conducted in
this research study are intended to verify the following performance indicators:

• Minimization of the tracking error.
• Speed of response of the controller.
• Improvement in comparison with other control strategies.

The experiments performed in this research study are the following:

• Driftless control strategy.
• Non-driftless control strategy.

The conditions in which these experiments are performed is basically d = 0.5 m taking
into consideration that these control strategies are intended for kinematic control purposes.

6.1. Numerical Experiment 1

For this experiment, the following gain constants are implemented: η = 1× 10−6,
α = 1× 10−6. Now, consider the neural network parameters defined as:

Wi =
[

0.084825 0.087038 0.073776 0.098989
]

θi =


0.071581 0.096176 0.026009 0.086780
0.048502 0.041201 0.083732 0.015706
0.044176 0.037104 0.033042 0.024069
0.081635 0.010157 0.035023 0.089209



θ =


0.080926
0.066993
0.044356
0.046736

 (22)
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The experiment consists of driving the position variables x and y to the origin starting
from an initial condition in order to obtain the maximum accuracy until the final desired
value must be reached to obtain the maximum performance.

In Figures 2 and 3 present the evolution in time of the mobile robot when it is driven
from the initial condition to the origin in finite time. It is important to notice that the action
of the controller drives these variables to the origin in approximately 1 s proving that the
controller is effective despite the conditions in which the experiment is performed.

Meanwhile, Figures 4 and 5 show the evolution in time of the angles of the mobile
robot in order to drive the position variables x and y to the desired final value in finite time.
The action of the neural controller and the dynamic surface controller are demonstrated to
be fast and accurate in order to follow a predefined trajectory.

Meanwhile, Figure 6 shows the trajectory of the mobile robot in 3D. It is corroborated
in this figure how the trajectory is completed considering not only the position of the mobile
robot but also the orientation of the mobile robot.

Finally, Figures 7 and 8 show the evolution in time of the control inputs U1 and U2. It
is verified that a small control input is necessary to drive the position and orientation of the
mobile robot in finite time.

Figure 2. Position of the mobile robot in the x frame.

Figure 3. Position of the mobile robot in the y frame.
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Figure 4. Evolution in time of the variable φ.

Figure 5. Evolution in time of the variable θ.

Figure 6. Evolution in time of the mobile robot trajectory.
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Figure 7. Evolution in time of the variable U1.

Figure 8. Evolution in time of the variable U2.

6.2. Numerical Experiment 2

In this numerical experiment, we tested and validated the theoretical results regarding
the synthesis of a non-driftless control of a mobile robot. This strategy, similar to the
first experiment, consists of designing a neural-dynamic controller for trajectory-tracking
purposes. In this experiment, the proposed control strategy is compared with the following
strategies:

• Neural controller.
• Neural proportional-derivative PD controller.

The simulation parameters are the following; ρ = 0.1, β = 0.1, K1 = 1× 10−1, K2 =
1× 10−8. Meanwhile, the neural controller component has the following weights:

Wi =
[

1.1557× 10−2 7.6815× 10−3 7.8527× 10−2 7.4791× 10−2 ]
θi =


0.083379 0.02538 0.051005 0.092401
0.018102 0.090383 0.044346 0.067841
0.063258 0.062726 0.079339 0.090871

0.0421146 0.01078 0.006508 0.0038533



θ =


0.044756
0.083565
0.041632
0.076618

 (23)
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Figures 9 and 10 show the evolution in time of the position variables x and y of the
mobile robot. It is evinced that the controller synthetized with the proposed control strategy
is more accurate in comparison with the neural and neural PD controllers. The proposed
control strategy is more accurate in comparison with the strategies used as a comparative
benchmark. The reason is because of the addition of a dynamic controller component that
makes this control strategy more accurate and faster than the other control strategies.

Meanwhile, Figures 11 and 12 corroborate how the error variables reach the origin in
finite time. As evinced in the previous figures, it is verified that the error variables yielded
by the proposed control strategies reach the origin faster and more accurately than the
neural and neural PD control strategies.

Figure 9. Position of the mobile robot in the x frame.

Figure 10. Position of the mobile robot in the y frame.
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Figure 11. Evolution in time of the error variable e1.

Figure 12. Evolution in time of the error variable e2.

Then, Figure 13 presents the trajectory of the mobile robot in 3D. It is evinced that the
trajectory tracked by proposed controller is significantly better than the neural and neural
PD controllers.

Figure 13. Evolution in time of the mobile robot trajectory.
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Finally, Figures 14 and 15 show the evolution in time of the control efforts for the
variables U1 and U2. It is important to notice that the control effort for both control inputs
is significantly smaller in comparison with the control effort generated by the neural and
neural PD control strategies. This is an advantage when the controller is implemented
in a real experimental setup. If the control effort is smaller, then unwanted effects like
saturation are avoided.

Figure 14. Evolution in time of the variable U1.

Figure 15. Evolution in time of the variable U2.

7. Discussion

According to the theoretical and experimental results of this research paper, it is
important to mention and discuss some important results and findings obtained. First,
considering that the driftless control strategies with neural networks have not been reported
extensively in the literature, in this research study, we proposed a combined neural network
and dynamic controller for the trajectory tracking of mobile robots. We verified that the
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driftless control strategy is less costly in terms of control effort in comparison with other
control strategies. In addition, the driftless control strategy presented in this research paper
is useful for non-holonomic dynamics, which in this case is a mobile robot.

This paper demonstrates that the driftless control strategy provides an efficient mobile
robot navigation strategy that is fast, reliable and accurate. It is worthwhile to mention
that the neural network component of the proposed strategy provides an adequate control
strategy that can be implemented and tuned relatively easily. The weights of the neural
network do not need to be tuned offline by training methods like the Newton or Gaussian
method, but it is important to remark that the neural networks used in this research
study can be tuned by different optimization algorithms with less computational effort.
The stable trajectory tracking of the mobile robot by implementing the neural network
controller component ensured a precise stabilization by meeting the appropriate weight
requirements, so several training and optimization algorithms can be implemented.

The dynamic controller part ensures that the stability of the driftless controller must be
accurate and fast by meeting the adequate requirements of closed loop global stability. The
controller was synthesized by selecting an appropriate Lyapunov function and obtaining
the adequate control law. It is important to remark that the controller was carefully
designed in order to be implemented in hardware easily, so the proposed control approach
was relatively simple, considering also that the dynamics of the mobile robot is relatively
simple but recognizing the complexity of non-holonomy of the mobile robot dynamics.
This control strategy provides a smaller computational effort taking into consideration
that the proposed controller is compact and the neural network controller only requires
matricial and vectorial operations.

Meanwhile, the non-driftless controller is also reliable, accurate and fast, taking into
consideration that this dynamic controller is more robust but requires slightly higher control
effort than the driftless control system, but it is even more adequate for trajectory tracking
in comparison with the driftless control system. It is important to notice that depending on
the application of the mobile robot, one of these two control strategies is suitable. For this
reason, in this research study, both strategies are investigated, taking into consideration that
the control effort in some cases is required to be smaller to avoid some effects like saturation
that can produce unwanted effects. In cases where the required hardware is available, the
non-driftless control strategy is more adequate, so the driftless control strategy is suitable
when the adequate hardware is not available.

8. Conclusions

This research paper presents a driftless and non-driftless control strategy based on
neural dynamic controllers for the trajectory tracking of a mobile robot. Considering the
non-holonomic characteristics of the mobile robot dynamics, an appropriate, relatively
simple and implementable control strategy is provided in order for these results would be
implementable in real-time hardware. The Lyapunov stability theorem is implemented for
the design of the two control approaches in order to obtain a globally closed-loop stable
system. Numerical examples validate the theoretical results obtained in this research study,
proving that the theoretical results yield an appropriate performance of the mobile robot in
order to track a predefined trajectory.

As a future direction, the next steps are to design a robust controller for the mobile
robot considering different types of uncertainty for dynamic and kinematic control. Con-
sidering that uncertainties are found in real systems in practice, the dynamic modeling
and design of a robust control strategy will be proposed. Besides, the consideration of
disturbances and the implementation in a real experimental setup will be proposed in the
future. The design of a novel disturbance rejection control will be also considered.
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