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Abstract: Voice-controlled devices are in demand due to their hands-free controls. However, using
voice-controlled devices in sensitive scenarios like smartphone applications and financial transactions
requires protection against fraudulent attacks referred to as “speech spoofing”. The algorithms used
in spoof attacks are practically unknown; hence, further analysis and development of spoof-detection
models for improving spoof classification are required. A study of the spoofed-speech spectrum
suggests that high-frequency features are able to discriminate genuine speech from spoofed speech
well. Typically, linear or triangular filter banks are used to obtain high-frequency features. However,
a Gaussian filter can extract more global information than a triangular filter. In addition, MFCC
features are preferable among other speech features because of their lower covariance. Therefore,
in this study, the use of a Gaussian filter is proposed for the extraction of inverted MFCC (iMFCC)
features, providing high-frequency features. Complementary features are integrated with iMFCC to
strengthen the features that aid in the discrimination of spoof speech. Deep learning has been proven
to be efficient in classification applications, but the selection of its hyper-parameters and architecture
is crucial and directly affects performance. Therefore, a Bayesian algorithm is used to optimize the
BiLSTM network. Thus, in this study, we build a high-frequency-based optimized BiLSTM network
to classify the spoofed-speech signal, and we present an extensive investigation using the ASVSpoof
2017 dataset. The optimized BiLSTM model is successfully trained with the least epoch and achieved
a 99.58% validation accuracy. The proposed algorithm achieved a 6.58% EER on the evaluation
dataset, with a relative improvement of 78% on a baseline spoof-identification system.

Keywords: anti-spoofing; ASVspoof; convolutional neural network; genuine speech detection; voice
conversion

1. Introduction

Automation plays an essential role due to more responsive and efficient operations
and tighter fraud-detection compliance. Automation saves time, effort, and money while
decreasing manual errors and focusing on our primary goals. Automatic speaker authen-
tication is a system that uses samples of human audio signals to recognize people. Entry
controls to limited locations, access to confidentiality, and banking applications, including
cash transfers, credit card authorizations, voice banking, and other transactions, can all
benefit from speaker verification. With the increasing popularity of smartphones and voice-
controlled intelligent devices, all of which contain a microphone, speaker authentication
technology is expected to become even more prevalent in the future.
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However, this technology’s vulnerability to manipulation of the voice using presenta-
tion attacks, also known as voice spoofing, poses a challenge. Various spoofs, such as speech
synthesis (SS), voice conversion (VC), replay speech, and imitation, can be used to spoof
automated voice-detection systems [1]. These possible attacks in speaker-based automation
systems have been intensively examined in Reference [2], for example, microphone-based
voice generation, feature extraction, and classifier- or decision-level attacks. In a replay
attack, the perpetrator tries for physical access by playing a previously recorded speech that
sounds like a registered speaker’s speech. The system is particularly vulnerable to replay
attacks, as voices can easily be recorded in person or through a telephone conversation and
then replayed to manipulate the system. Since replay attacks do not need a lot of training or
equipment, these attacks are the most common and likely to happen. The ASVspoof 2017
dataset addresses the issue of replay spoofing detection. Previous works have extracted
features that reflect the acoustic level difference between genuine and spoof speech for
replay speech detection.

Mel frequency cepstral coefficients (MFCCs), linear prediction coefficients (LPCs),
linear prediction cepstral coefficients (LPCCs), line spectral frequencies (LSFs), discrete
wavelet transform (DWT) [3,4], and perceptual linear prediction (PLP) are speech feature
extractions commonly used in speaker recognition as well as speaker spoofing identifica-
tion [5]. A wavelet transform was used to obtain spectral features, and these features were
integrated with CNN’s spatial features in Reference [6] for ECG classification. In Refer-
ence [7], the authors analyzed a 6–8 kHz high-frequency subband using CQCC features to
investigate re-recording distortion. To record the distortions caused by the playback device,
Singh et al. [8] derived the MFCC from the residual signal. A low-frequency frame-wise
normalization in the (constant Q transform) CQT domain was suggested in Reference [9] to
capture the playback speech artifacts. Deep feature-utilizing neural networks have also
been studied for the recognition of playback speech in addition to these manually created
elements. For instance, Siamese-embedded spectrogram and group delay were employed
to teach deep features to the CNN [10]. However, feature extraction is highly dependent
on DNN training, and it might be difficult to generalize it to ASV tasks that are performed
outside of their intended domain.

The speech signal is processed in a ten-millisecond time frame without overlapping
for future extraction from the speech. The speech signal is cleaved into two zones: the
silent and speech zones. An area with low energy and an excessive zero-crossing rate
is considered a silent zone, and an area with high energy is regarded as a speech zone.
Huang and Pun [11] experimented with the same person’s genuine and spoofed speech
signals using a replay attack. Figure 1 shows the actual and replayed speech signal, and
it is observed that there is a difference in the silent segment shown in the red box. Thus,
the use of a silent zone with a high-frequency region can discriminate the spoofed speech
easily. A precise recording system is required for a replay attack. The background noise
of a recording device is easily noticeable in a silent zone due to its low energy relative
to a highly energized speech zone. However, finding a silent zone accurately is tricky.
Therefore, the endpoint method of finding a zero-crossing rate and energy can be used
to approximate the silent zone [12]. By adjusting the threshold of the zero-crossing rate
detection and short-term energy, a speech and silent zone can be judged systematically.
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Figure 1. Time-domain speech signal of the same person’s (upper) genuine waveform and (lower)
spoofed waveform.

Although the MFCC and CQCC are considered reliable features, the classifier’s perfor-
mance can be significantly improved by combining them with complementary features,
which can be done at the feature or score level [13]. Pitch, residual phase, and dialectical
features are a few examples of complementary features. These complementary features,
i.e., high pitch and corresponding phase, can easily be obtained at high frequencies [14].

The objective of this paper is to identify spoof speech against replayed attacks. This
paper presents a new approach to concatenating high-frequency features with complemen-
tary features for better classification results. Generally, linear or triangular filter banks and
their inversion are used to obtain high-frequency speech regions using filter banks. We
emphasized the high-frequency features using a Gaussian filter in the proposed work.

One of the properties of the Gaussian filter is that it is a linear filter, which means that it
preserves the correlation between different frequency components of the input signal. This
is important in subband processing because it allows the different subbands to retain their
correlation, which can be helpful in subsequent processing steps such as feature extraction
or classification. The Gaussian function gives the frequency response of a Gaussian filter:

H( f ) = e−
f 2

2σ2 (1)

where f is the frequency and σ is a parameter known as the standard deviation. This
function has a bell-shaped curve centered at zero frequency and has a smooth transition
to zero as the frequency increases. When the input signal is passed through a Gaussian
filter, the filter response is applied uniformly across all frequencies, with higher frequencies
being attenuated more than lower frequencies. This means that the different subbands
created by the Gaussian filter will have a similar frequency response, with each subband
containing a range of frequencies filtered by a bandpass filter but with the same Gaussian
shape. This merit of the Gaussian filter can improve the accuracy of the processing result.

In summary, the following characteristic of Gaussian filters motivated us to use them
for feature extraction: Firstly, the Gaussian filter allows for smooth switching between the
subbands, maintaining the correlation between bands. Secondly, independent selection of
the Gaussian filter’s mean and variance allows for controlled overlap between two consec-
utive subbands. Finally, the ease of filter design parameter calculation from the midpoint
and endpoints of the original triangular filter bank is used in MFCC feature extraction.
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Nowadays, the convolution neural network (CNN) works amazingly in classification appli-
cations. However, the architecture and hyper-parameters of the CNN are critical because
they control the training algorithm’s behavior, and it significantly impacts performance and
training time. Therefore, the BiLSTM network, which considers the connection between
the past and present features, was selected and optimized using the Bayesian algorithm.
The optimization of BiLSTM gave minimal architecture with optimized hyper-parameters
and helped with significantly improving the classification accuracy. The proposed model
was validated with the well-known dataset ASVSpoof 2017. The key contributions are
summarized as follows:

• A deep study on various feature sets used for classification is presented, and a multiple-
feature integrated BiLSTM network is proposed.

• A conventional MFCC was obtained using a linear filter bank. We propose a new
Gaussian-filtered inverted MFCC feature compared with conventional MFCC that
provides a smooth transition between the subbands and maintains correlation within
the same subband.

• RNN is the most effective method for spoof classification because it can handle short-
term spectral features while responding to long-term temporal occurrences. LSTM
networks overcome the vanishing gradients and long-term reliance problem of RNNs.
BiLSTM was used in the proposed algorithm because the bidirectional strategy further
improves recognition quality compared with the unidirectional approach.

• A Bayesian optimization algorithm, to optimize the hyper-parameters of BiLSTM
while reducing its computational complexity and hidden layers, is presented.

• We used cutting-edge deep learning algorithms and compared their performance
using assessment measurements.

• We present several issues based on the experimental evaluation and recommend
possible solutions.

2. Related Work

Enormous studies on genuine and spoof speech signal classification have been pro-
posed in past years. Major classification algorithms have two stages: a design of features
extraction algorithm from the speech signal and a classifier to discriminate these features
for speech classification. Many feature sets have been proposed with statistical and deep
learning-based classifiers. A few widely used feature sets are as follows: Mel frequency
cepstrum coefficients (MFCCs); inverse MFCCs (IMFCCs) [15]; linear frequency cepstrum
coefficients (LFCCs); constant Q cepstrum coefficients (CQCCs) [16]; log-power spectrum
using discrete Fourier transform (DFT) [17]; Gammatonegram, group delay over the frame,
referred to as GD-gram [18]; modified group delay; All-Pole Group Delay [19]; Cochlear
Filter Cepstral Coefficient—Instantaneous Frequency [20]; cepstrum coefficients using
single-frequency filtering [21,22]; Zero-Time Windowing (ZTW) [23]; Mel-frequency cep-
strum using ZTW [24]; and polyphase IIR filters [25]. The human ear uses Fourier transform
magnitude and neglects the phase information [26]. Therefore, the phase spectrum has yet
to gain attention in classification.

Along with features, the classifier also plays an important role. Many machine learning
models have been proposed, including the Gaussian mixture model (GMM), K-nearest
neighborhood (KNN), the hidden Markov model [27], support vector machine (SVM) [28],
and convolution neural networks (CNNs). Multi-layer perceptron [29], deep CNN (DNN),
and recurrent neural network (RNN) [30] are examples of widely used neural networks.
The LSTM network is a type of RNN giving more memory power for an extended period,
and it has been widely used in many applications. Ghosh et al. [31] used LSTM to remove
the muscular artifacts from EEG signals. An energy-efficient speech recognition algorithm
using LSTM was proposed in Reference [32]. This LSTM was implemented in CMOS,
reducing energy requirements 2.19 times to the baseline model. The spikes’ temporal
dependencies were captured from the EEG signals using LSTM for the brain–computer
interface, which can help to evaluate emotion recognition [33].
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In 2015, the first challenge, “Automatic Speaker Verification Spoofing and Counter-
measures” [34], provided the dataset of spoofed speech signals based on synthetic speech,
voice conversion, and other unknown attacks. The base algorithm using CQCC features
and GMM as a classifier was presented with 24.77% EER. In this challenge, CQCC-based
features showed promising results with an Equal Error Rate (EER) of 0.255% in Refer-
ence [35]. However, this ASPSpoof 2015 dataset does not contain replay attacks. Therefore,
the dataset was revised, and the new dataset of ASVSpoof 2017 [2] was published, focusing
on replay attacks. Again, using CQCC features and GMM as a classifier, the base algorithm
secured a 24.77% EER, where GMM was trained using training and development datasets.

Xue et al. [36] presented a fusion approach using facial and speech features using
convolution neural networks. The results were tested on ASVSpoof 2019 datasets, achieving
a 9% EER rate. In Reference [37], the authors observed that the block-based approach missed
the instantaneous spectral features. Therefore, single-frequency filtering was proposed,
presenting high spectral and temporal resolution. Their model performed well, with
a 0.05% EER on BTAS test data. A similar approach was presented in Reference [38],
where instantaneous frequency and instantaneous energies were obtained using Hilbert
transform, and genuine speech was differentiated from spoofed speech using empirical
mode-decomposition features. They integrated these features with CQCC and group delay
to improve performance. Their work also focused on replay attacks only. The voice quality
features were combined with CQCC features to identify the replay attacks in speech signals
in Reference [39]. Their work is limited to binary classification with replay attacks only.
Chaudhari et al. [40] discussed three features, including LPC, CQCC, and MFCC, with
GMM classifiers. They showed that combining MFCC and CQCC features enhanced the
performance with a 10.18% EER. Glottal flow and an acoustic-based total of 106 features
obtained from the speech signals were used in SVM and XGBoost classifier in Reference [41].
The XGBoost outperformed the SVM, resulting in a 98.8% classification accuracy. However,
this model used extensive feature sets in the classification. Compatibility testing among a
large number of devices is also challenging. Naith [42] conducted a test for Android and
IoS devices. A total of 42 speakers participated in the creation of 219 datasets, a good and
sufficient participation number for such empirical studies.

The integration of the well-established speaker modeling model “i-vector space” and
the synthesis-channel subspace model was proposed with two-stage probabilistic linear
discriminant analysis [43]. However, they tested the model with two voice-conversion
attacks only. A capsule network is modified by replacing the ReLU with a leaky ReLU
layer and a modified routing algorithm for better attention to the speech artifacts [44].
They focused on text-to-speech-based attacks in spoofing. The authors in Reference [45]
extracted features using two partitioned datasets in logical and physical access. Later, they
assembled the features by normalizing them and trained the CNN model by evaluating the
loss function.

In Reference [46], cepstral features were obtained using single-frequency filtering.
GMM and deep learning classifier models were compared. Later, a score-fusion approach
was employed to improve the performance of the model by 17.82% EER in the evaluation
dataset. Zhang et al. [30] employed a CNN and recurrent neural network (RNN) simul-
taneously. They trained this network using perceptual minimum variance distortionless
response (PMVDR), teager energy operator-based critical auto-correlation envelope (TEO),
and a spectrogram separately. They observed that spectrum-based features worked well
with their network on ASVSpoof 2015 datasets, with an average EER of 0.36% compared
with PMVDR and TEO, with EERs of 1.44% and 2.31%. Patil et al. [47] improved the
potential of TEO using the signal mass in the front stage, and different classifiers, includ-
ing GMM and light-CNN trained with 20 epochs, were tested in the second stage with
ASVSpoof 2017 datasets. The GMM model performed well, with EERs of 5.55% and 10.75%
on the development and evaluation datasets, respectively. In Reference [48], a group delay
concatenated over the consecutive frames of the speech signal was used as a feature in
the ResNET18 classifier. It showed a remarkable improvement, with zero EER on the
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development and evaluation datasets ASVSpoof 2017. However, the authors tested the
model on a subset of the dataset, and the model’s validation for different types of attacks
was not presented in the paper. Various extensions of ResNET using the Squeeze Excitation
Network, including SENET34, SENET50, Mean-Std ResNET, and Dialted ResNET, pro-
posed using CQCC features sets by Lai et al. [49]. The EER rate was reduced to 0.59 for the
physical access dataset and to 6.70 for the logical access dataset of ASVSPoof 2019. They
observed that further meta-data analysis and refinement in the algorithm is required.

Analysis of the deep RNN network was presented by Scardapane et al. [50]. They
evaluated four architectures with MFCC features, log-filter bank features, and a concate-
nation of these two feature sets using ASVSpoof 2015 datasets. They observed that three
LSTM layers trained with MFCC features gave better EERs than a log-filter bank. In con-
trast, a network combining three dense layers and three LSTM layers with MFCC features
performed well, with 2.91% EER. Mittal and Dua [51] presented a hybrid deep CNN using
static and dynamic CQCC features sets. Hybrid CNN combined the CNN-LSTM model
with a time-distributed wrapper integrated into the LSTM network. This hybrid approach
achieved a 0.029% EER on the evaluation dataset with high computation power. A stan-
dard time-delayed CNN (TD-CNN) was modified with a statistical pooling operation
instead of max pooling, and angular softmax was used in the architecture in Reference [1].
The training of the TD-CNN model using third- and fourth-order moments achieved a
3.05% EER.

Dinkel et al. [52] tried to remove the crucial feature extraction step. First, they used the
row form of speech frames as an input to the LSTM model to obtain features in the form of
likelihood, and later, CNN was used for classification. However, no validation for unknown
attacks was presented. Mittal and Dua [53] converted the CQCC features in 3D-tensor
into 2D space, and a 2D-CNN was used for classification. A 3D tensor was obtained by
reshaping the 30 statics and first- and second-order CQCC features. An RNN network
was trained with cross-entropy and KL divergence loss for audio spoof classification in
Reference [54]. Three variants of RNN were proposed in Reference [55]. MFCC, CQCC, and
log-magnitude STFT features were used in the RNN, and they obtained a 25% improvement
compared with the base model of GMM.

A light-CNN has been proposed by Wu et al. [56] with feature genuinization. In the
first phase, features obtained from genuine speech were used to train the genuinization
transformer. In the second phase, this transformer was converted to enhance the genuine
and spoof features’ separation. This transformer was integrated with light-CNN and
validated using the ASVspoof 2019 dataset with an EER rate of 4.07%. Li et al. [57]
presented a high-frequency feature-based deep CNN model. They extracted long-term
variable Q transform (L-VQT) features, and the light-DenseNET model was trained using
these features. They validated the model using the ASVSpoof 2019 dataset with various
CNN classifiers, including a 0.352% and 3.768% EER on the development and evaluation
datasets, respectively.

The literature study reveals that CQCC features and a lateral variant of the CQCC
improved the spoofed-speech classification error rate with a statistical or machine learning
model to a certain extent compared with other features. High-frequency features with CNN
were more prominent in identifying speech with unknown attacks. In CNN, DenseNET,
light-CNN, and recurrent neural networks, including RNN, LSTM, and BiLSTM networks,
have mainly been used in spoof classification.

3. Materials and Methods
3.1. Materials

This paper uses ASVSPOOF 2017 dataset provided by [2] for spoofing classification.
This dataset focused on replay attacks faced under unseen conditions, i.e., playback devices
and replay environments. This dataset is a mixture of both known and unknown scenarios.
The audio data were digitized using 16-bit PCM with a 16 kHz sampling rate. Spoofing
of audio was created in the wild using different microphones and playback devices in
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different environments. Creating a dataset from the played spoofing attacks under the
uncontrolled setup made it difficult to analyze. This dataset contained replay attacks
under different environments. High-quality recording devices can record audio under very
low noise conditions, and therefore, they are difficult to identify. The data were divided
into three categories: training, development, and evaluation datasets. The speech of the
training dataset was captured at a single place, whereas the development set was gathered
at two additional sites in addition to the training dataset’s location. A total of 42 speakers
participated in dataset creation. Training (train) and development (dev) datasets were
developed with 3 and 10 spoofing attacks. The evaluation (eval) dataset recorded audio
with 57 types of spoofing attacks. The dataset had a total of 3565 genuine recordings and
14,465 spoofed recordings. Finally, the evaluation, training, and development sets were
gathered at two more locations. The summary of the dataset is presented in Table 1 [58].

Table 1. ASVSpoof2017 dataset summary and its utilization in the experiment.

Dataset Summary Use of Dataset in the Experiment

Speech format Precision: 16 Bit PCM,
Sampling rate = 16 kH

Precision: 16 Bit PCM,
Sampling rate = 16 kHz

Spoofing types in
train/dev/eval 3/10/57 3 /10/ 57

Total speakers in
train/dev/eval 10/8/24

18 from train,
24 from eval

No. of genuine speech
in train/dev/eval 1507/760/1298

2267 from train and dev to train the network,
1298 from eval dataset

No. of spoofed speech
in train/dev/eval 1507/950/12,008

2457 from train and dev to train the network,
12,008 from eval dataset

The spectrum properties of spoofed audio signals for various replay attacks are de-
picted in Figure 2 using high-/mid-/weak-quality recording devices and playback devices.
The spoofing classification for the speech recorded using a high-quality recorder under
very low noise conditions (i.e., Figure 2c) was more challenging. The system or model
shall overcome the attack reliance in the detection process. The model’s capability highly
depends on the sorts of attacks that can be represented by similar patterns and used in the
model’s training process. However, it needs previous knowledge of the assault type, which
is not a reasonable assumption. Thus, the system must discriminate the spoof audio even if
that attack’s data were not utilized for training the model.

3.2. Proposed Method
Feature Extraction Techniques

Genuine and spoof audio can be discriminated using spectral characteristics. The
authors in Reference [17] presented several spectral features to classify genuine audio from
spoofed audio. The proposed methods use a combination of several features to train the
BiLSTM network. These features are listed below:

Gaussian-Filtered Inverted MFCC (GIMFCC): A replica of the human hearing system
was implemented using MFCC computation to imitate the ear’s working principle. Band-
pass filters with linear spacing at low frequencies and logarithm spacing at high frequencies
were employed in MFCC calculation to keep phonetically crucial aspects of the speech
signal. The speech signal consisted of tones, each with varying frequencies. In addition,
each tone had a fundamental frequency and Mel-scale-based subjective pitch.
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Figure 2. Spectrogram of speech signal under various attacks. (a) Genuine speech. (b) Spoofed speech
using high-quality recording and playback. (c) Spoofed speech using high-quality recording and
weak-quality playback. (d) Spoofed speech using mid-quality recording and low-quality playback.

Let
{

y[n]Nn=1
}

represent a speech frame obtained after framing and hamming win-
dowing. Its power spectrum is calculated using N-point discrete Fourier transform (DFT)
as follows:

Y(k) =

√√√√∣∣∣∣∣ N

∑
n=1

y[n]e
(
−j2πkn

N

)∣∣∣∣∣ (2)

In the calculation of MFCC, triangle filters spaced uniformly in Mel scales were
used [59]. The response of the triangle filter is as follows:

Hi(k) =


0 k ≤ ki−1

k−ki−1
ki−ki−1

ki−1 ≤ k ≤ ki
ki+1−k
ki+1−ki

ki ≤ k ≤ ki+1

0 otherwise

(3)

where 1 < i < Q, Q is the number of filters, and ki is the end frequencies of a particular filter.
The triangle filters do not consider the correlation between the subband [13]. Gaussian
filters providing symmetric and gradually decaying responses can compensate for the
possible correlation loss. The Gaussian filters in the same band can be expressed as

H(k)GMFCC
i = e

(
k−ki√

2σi

)
(4)

where σi =
ki+1−ki

α is the standard deviation, α controls the variance, and ki is a frequency
point representing the mean of ith Gaussian filter.

In calculating conventional MFCC, more emphasis is given to the region of low-
frequency signals. However, more promising results can be obtained from the high-
frequency regions [11,60]. Therefore, the new filter-bank response was obtained by flipping
the original response at the mid-point of the frequency range of the speech signal. The
flipped response can be expressed as:

Ĥi(k) = HQ+1−i(N/2 + 1− k) (5)
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Power spectrum obtained from Equation (5) is passed through these flipped Gaussian
filter banks, referred to as Gaussian-inverted MFCCs (GIMFCCs), and output can be
expressed as

EGIMFCC(i) =
N/2

∑
k=1
|Y(k)|2Ĥi(k) (6)

Later, the cepstrum coefficients are calculated from the filter bank’s output using
Equation (7).

CGIMFCC(k) =

√√√√ 2
Q

Q−1

∑
i=1

log[EGIMFCC(i + 1)]cos
(

πk(i− 0.5)
Q

)
(7)

Dynamic GIMFCC: The above cepstral coefficients contain the information for the
given frame and are considered static features. Further information can be obtained by cal-
culating the first (i.e., delta) and second (delta-delta) derivatives of these coefficients, where
delta–GIMFCC provides the speech-rate information and delta-delta-GIMFCC provides
speech-acceleration information. These delta features can be calculated using Equation (8).

∆CGIMFCC(k) =
∑T

t=−T kiCGIMFCC(k + i)

∑T
t=−T |i|

(8)

where T is the frame number used for coefficient calculation. Thus, these two features are
also appended with GIMFCC in the proposed method to improve the performance with neg-
ligible computational cost. Figure 3 shows the inverted MFCC feature extraction process.

Figure 3. Block diagram representing extraction of Inverted MFCC features emphasizing high-
frequency regions.

GTCC and its variant: The human audio response has been modeled using Gammatone
filters in many past applications. The Gammatone filter is a function of a sinusoidal tone
centered at the Fc frequency and Gamma distribution function, which can be written as

g(t) = Atn−1e−2πBtcos(wct + θ) (9)

where A is the amplitude; n is the filter order; wc is the central frequency; θ is the phase
shift; and B represents the filter bandwidth.

The suggested GTCC coefficients are computed similarly as in the MFCC coefficient
extraction process, where Gammatone filters have been used instead of triangular filters.
The coefficients can be expressed as:

GTCC(k) =

√√√√ 2
Q

Q−1

∑
i=1

log[EGTCC(i + 1)]cos
(

πk(i− 0.5)
Q

)
(10)



Sensors 2023, 23, 6637 10 of 24

where EGTCC is the power spectrum obtained by passing the speech frame through Gam-
matone filters g(t). Further features using ∆(c)GTCC and ∆∆(c)GTCC are also extracted, as
explained in the previous subsection.

Spectral Features: Emotion is another influencing factor in the speech signal. It changes
the vocal cord vibration, and the speech signal’s spectral features vary. The spectral centroid
gives the geometric center of the spectrum. It is a weighted sum of frequency components
where weights are assigned based on normalized energy. The spectral flatness determines
the degree of periodicity. Spectral entropy accesses the degree of spectral probability’s
randomness. It can be analyzed for both voice and unvoiced frames. Thus, it helps
to characterize the high-frequency regions. In addition to that, other spectral features,
including flatness, skews, a roll of points, and pitch, are also incorporated to improve the
classification.

The overall process of extracting various features from the speech signal is shown
in Figure 4. These features are used in the proposed optimized BiLSTM network for
further classification.

Before applying the proposed inverted high-frequency MFCC features to construct
ASVSpoof systems, their ability to distinguish between authentic and spoof voice segments
was studied using the t-stochastic neighborhood embedding (t-SNE) [61] visualization.
The t-SNE was plotted from the feature sets of the training dataset. Figure 5 shows that
the genuine and spoof class features are separated. Thus, t-SNE provides a significant
difference between these two classes.

Figure 4. Process flow for feature extraction from the speech signal.
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Figure 5. Features’ t-SNE visualization for training dataset.

3.3. Proposed Optimized BiLSTM

The recurrent neural network (RNN) is widespread in sequential data processing and
classification. The conventional deep network uses the features independently, ignoring the
correlation between the present and the following features. In contrast, RNN incorporates
the dependencies between the features by storing previous input information at each hidden
layer to generate the subsequent output. However, RNN only applies for short periods;
LSTM is designed to handle extended periods. A BiSLTM network consisting of two LSTMs
is intended to improve the performance further. One LSTM processes input in the forward
direction, and the second LSTM processes data in the backward direction. Thus, using data
in both forward and backward directions makes the network more efficient than other deep
networks. Hence, the proposed method uses a BiLSTM-based deep learning model.

First, let us define the input sequence as x = x1, x2, . . . , xT , where T is the sequence
length. The forward LSTM layer takes this input sequence and produces a hidden state
sequence h f = h f 1, h f 2, . . . , h f T , while the backward LSTM layer takes the input sequence
in reverse order and produces a hidden state sequence hb = hb1, hb2, . . . , hbT .

The hidden state sequence h f was computed using the following equations:

it = sigmoid(Wxixt + Whiht−1 + bi)
ft = sigmoid(Wx f xt + Wh f ht−1 + b f )
ot = sigmoid(Wxoxt + Whoht−1 + bo)
gt = tanh(Wxgxt + Whght−1 + bg)
ct = ft × ct−1 + it × gt
ht = ot × tanh(ct)

(11)

where i, f , o, and g are the input, forget, output, and cell gates, respectively. Wxi, Whi, Wx f ,
Wh f , Wxo, Who, Wxg, and Whg are weight matrices; bi, b f , bo, and bg are bias vectors; and tanh
and sigmoid are activation functions.

Similarly, the hidden state sequence hb is computed using the following equations:

i′t = sigmoid(W ′xix
′
t + W ′hih

′
t+1 + b′i)

f ′t = sigmoid(W ′x f x′t + W ′h f h′t+1 + b′f )
o′t = sigmoid(W ′xox′t + W ′hoh′t+1 + b′o)
g′t = tanh(W ′xgx′t + W ′hgh′t+1 + b′g)
c′t = f ′t × c′t+1 + i′t × g′t
h′t = o′t × tanh(c′t)

(12)

where x′t = xT−t+1 and h′t = hT−t+1 are the inputs to the backward LSTM layer, and the
weight matrices and bias vectors have a prime symbol to distinguish them from those of
the forward LSTM layer.
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Finally, the output of the BiLSTM network was obtained by concatenating the hidden
state sequences from both directions:

hBiLSTM
t = [ht, h′t] (13)

where [ ] denotes concatenation.
BiLSTM can capture the long-term dependencies between the data, thus avoiding the

vanishing exploding gradient problem. The internal long-term memory helps BiLSTM
learn the data explicitly compared with standard deep learning models. However, BiLSTM
is more complex, increasing the computational cost due to using two LSTMs. Therefore,
an optimum network with few hidden layers and optimum hyper-parameters must be
identified before classification.

Deep learning architecture has two model parameters: trainable parameters, i.e., weights
adjusted in the training process, and hyper-parameters, i.e., learning rate, hidden layers,
neurons in each layer, etc. The selection of these model parameters is critical and plays
an essential role in the algorithm’s performance. Previously, grid search algorithm was
used to evaluate these parameters. In the grid search method, parameters are divided into
even ranges, and the model is assessed for all possible combinations of these parameters;
therefore, it is highly time-consuming. Another alternative is the random search, where a
random assortment of parameters is evaluated to find the best values. However, it does not
guarantee optimum values due to the selection of random combinations.

Bayesian optimization is a well-known function to optimize discrete, non-differentiable,
and time-consuming algorithms. It is based on the evaluation of the objective function,
where the objective function is modeled using the Gaussian process. It employs the Gaus-
sian probabilistic approach to predict the performance and maximize the efficiency in the
following samples [62]. Thus, it can find the best parameters in minimal time, in contrast
to grid search and random search. In addition, grid and random searches do not have
any learning from the accessed set of parameters in the tuning process [63]. Therefore,
Bayesian optimization is used in the proposed method to find the best architecture and
corresponding parameters for the BiLSTM network. The overall process for spoof audio
classification with an optimized BiLSTM network is shown in Figure 6. The dataset is
split into training, testing, and evaluation datasets. The training dataset trains the model
(optimal BiLSTM). The model’s parameters are changed in accordance with the findings
of the comparison and the particular learning. The results of the observations in a second
dataset, known as the test dataset, are successively predicted using the fitted model. When
the model’s hyper-parameters are adjusted, the test dataset evaluates a model fit on the
training dataset. Ultimately, a final model is objectively assessed using the evaluation
dataset. Various features, including MFCC and its variant, GTCC and its variant, Spectral
features, and Pitch information, were used to train the optimized BiLSTM network.

Figure 6. Process flow of the proposed algorithm.
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Optimization of BiLSTM using Gaussian-oriented Bayesian approach: A Bayesian
model can find the optimum values of all parameters in minimal time. The process of
optimization is categorized into three steps:

Step 1: The first step is to build the Gaussian model for predicting the results of the
feature adjustment of the parameters. The hyper-parameters are completely unknown
initially; the Gaussian model can realize the scale of setting the hyper-parameters. This
scale helps to figure out how much deviation is needed to have drastically different results.
For each prediction, the scale generates the Gaussian-distributed curve. The sharpness and
variance of this curve suggest how the prediction is close to the consistent training process.
The Gaussian curve, which is sharp with smaller variance, provides better consistency in
the prediction and optimum tuning of the parameters. Let f (x) be a model function over
the known values of training data x and F(x∗) be the model function of a set of test data x∗.
Then, the multivariant Gaussian distribution function can be expressed as[

f (x1)
f (x∗)

]
∼ N

([
µ(x1)
µ(x∗)

][
γ(x∗, x∗) γ(x∗, x)
γ(x∗, x) γ(x, x)

])
(14)

where µ(x) is the mean and γ(x, x) is the covariance of the training data. µ(x∗) and
γ(x∗, x∗) are the mean and covariance of the test data.

This calculation can be extended for a large set of datasets or to multiple dimensions
as follows:  f (x1)

...
f (x`)

 ∼ N


 µ(x1)

...
µ(x`)


 γ(x1, x1) . . . γ(x1, x`)

...
. . .

...
γ(x`, x1) . . . γ(x`, x`)


 (15)

The posterior probability of the `th point is calculated using previously obtained `− 1
observation points as follows:

µ` = ∑(x`, x1:`−1)∑(x1:`−1, x1:`−1)
−1 f (x1:`−1) (16)

σ2
` = ∑(x`, x`)−∑(x`, x1:`−1)×∑(x1:`−1, x1:`−1)

−1 ∑(x1:`−1, x`) (17)

The above two equations of mean and variance compute the distribution at any desired
point x`. This creates the Bayesian model for a given objective function.

Step 2: The second step is to find the hyperparameter to maximize the objective
function, i.e., accuracy, or to minimize the objective function, i.e., error. In the proposed
model, the classification error in the testing dataset was used as an objective function.
Therefore, we modeled the error function using the Gaussian process. After the nth
iteration, the minimum value of posterior function f ∗ for some test data x∗ is obtained.
After one more iteration, the posterior value of the function is updated, i.e., the updated
posterior value of the function is f (x) at point x. If maximum iteration has been reached,
iteration is stopped here, and the optimum values are calculated by finding min( f ∗, f (x)).
Thus, the expected difference between the updated posterior value f (x) and the previous
value f ∗ suggests a reduction in the error. This is expressed as

Expected improvement = E[ f ∗ −min( f ∗, f (x))] (18)

Equation (18) can be re-written in Equation (19), where n indicates the completed
iterations, f ∗ gives optimum value obtained through n iterations, p is the probability
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density function and P is a cumulative density. The objective function is evaluated at a
point maximizing an expected improvement.

Expected improvement = [ f ∗ − µn(x)]+ + σn(x)p
(

f ∗ − µn(x)
σn(x)

)
−[ f ∗ − µn(x)]P

(
− f ∗ − µn(x)

σn(x)

) (19)

Step 3: All hyper-parameters obtained in all iterations are stored for evaluation. This
step needs an evaluation of the objective function using these stored parameters. The
least minimum objective function for a specific iteration gives the most optimum values of
hyper-parameters of the network.

The overall algorithm to find optimum parameters for the BiLSTM network is as follows
(Algorithm 1):

Algorithm 1 Bayesian optimization algorithm to tune BiLSTM parameters

1: Specify the range of parameters to be optimized
2: Define objective function using network’s validation accuracy and error
3: while n 6= 0 do
4: Search hyper-parameter space.
5: Create BiLSTM network using hyper-parameters.
6: Train the BiLSTM using the training dataset.
7: Evaluate the performance of BiLSTM using the Testing dataset.
8: Score history of BiLSTM.
9: Update the probability model of BiLSTM.

10: end while

4. Experimentation and Analysis
4.1. Experiment Setup

Traditional methods use only a training dataset to train the model. In the proposed
model, both training and development datasets are combined and used to train and test the
BiLSTM. A total of 3779 (i.e., 80%) audio signals from the training and development datasets
were used for training, and the remaining 945 (i.e., 20%) audio signals were used to test the
model. The evaluation dataset was used to quantify the accuracy of the proposed model.
Traditional statistical methods, e.g., the Gaussian Mixture model, use the logarithm of
likelihood ratio to classify the given speech signal as a genuine or spoof type. However, the
Equal Error Rate (EER) is the most popular metric to quantify the classifier’s performance
in machine learning. EER computation involves false acceptance and rejection, i.e., genuine
signals identified as spoofing signals and vice versa. The confusion matrix [64] provides all
necessary quantitative parameters to validate the model. The confusion matrix is based
on four parameters: true positive (TP), false positive (FP), true negative (TN), and false
negative (FN). Where TP gives the correct prediction of the positive class, i.e., genuine
audio signals, TN gives the correct prediction of the negative class, i.e., spoof audios, FP
gives the incorrect prediction of the positive class, and FN gives the incorrect prediction of
the negative class. EER gives an overall accuracy of the classifier and it is a ratio of incorrect
predictions (FP + FN) to the total number of the dataset (TP + FP + FN + TN). A lower
value of EER presents a better classification accuracy of the classifier.

The first step is the segmentation of the speech signal. A short-time zero-crossing rate
is calculated in the ten ms period of a Hamming window. Based on the particular threshold,
silent and tail segments are detected with a period of 512 ms. The segment is duplicated for
an insufficient length of the segment. Then, features are extracted from each segment and
used in the BiLSTM network. During the training step, weights are initialized randomly.
The parameters’ range is initialized and supplied to the Bayesian model for optimization.
The proposed BiLSTM algorithm was designed in MATLAB V2022, installed on a Pentium
I7 processor with 8 GB RAM, a 1.90 GHz PC.
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4.2. Analysis

The top layer of the BiLSTM is the sequence input layer. We created a BiLSTM structure
by placing two BiLSTM layers, each comprising a fully connected layer of 50 neurons, a
softmax, and a classification layer. Finding optimum parameters is a challenge in the struc-
turing of neural networks. Therefore, the design incorporated the Bayesian optimization
model. The layer information of BiLSTM is shown in Table 2.

Table 2. Proposed BiLSTM network’s parameters.

Layer Layer’s Name Main Parameters Other Parameters

1 Sequence Layer Size of training features -
2 BiLSTM 50 Returned Sequences = True
3 BiLSTM 50 Returned Sequences = True
4 Fully Connected Layer - -
5 Dense - Activation softmax
6 Classification Layer 2 -

The Bayesian approach needs a range of parameters to be optimized. The proposed
method optimizes the number of hidden layers, learning rate, momentum, and regulariza-
tion parameters. The validation error minimization was used as an objective function to
find the optimum values of these parameters. A total of 400 × 428 features size was used,
where 400 is the length and 450 is the feature dimension. At the training time, the weights
were randomly initialized. We buffered the feature vectors into sequences of 20 feature
vectors with ten overlaps. The mini-batch size was kept at 256. The adaptive learning rate
was used, and the drop factor of the learning rate was kept at 0.1. Figure 7 represents the
minimization of the objective function based on the tuning of various parameters in the
BiLSTM network.

Figure 7. Minimization of the objective function over a number of iterations to find optimum
parameters of BiLSTM network.

The initial range and optimum value obtained using the approach are presented in the
following Table 3. These parameters were used in the BiLSTM structure for classification.
After optimization, the number of trainable parameters was only 252,202.



Sensors 2023, 23, 6637 16 of 24

Table 3. Range of hyper-parameters initialized and obtained optimum value.

Hyper-Parameter Range Optimum Value

Section Depth 2 to 6 2
Learning Rate 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1 10−3

Momentum 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 0.90, 0.98 0.5
L2-Regularization 1 × 10−10 to 1 × 10−2 1 × 10−4

Figure 8 represents the training and validation accuracy obtained over the epoch num-
ber, and the confusion matrix for the validation dataset is shown in Figure 9. Diagonal cells
show correctly classified observations, and off-diagonal cells show incorrectly classified
observations in the confusion matrix. Because of the optimisation, the obtained structure
of BiLSTM was minimal, and within only four epochs, the training of the network was
fulfilled with a 99.58% validation accuracy and a 2.64% EER.

Figure 8. Analysis of accuracy and loss over epochs in the training of optimised BiLSTM network
using ASVSpoof2017 dataset.

Figure 9. Confusion matrix for validation dataset.
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The training dataset contains genuine and replay attacks based on spoof speech
using strong recording devices. The validation dataset contains genuine speech and
spoofed speeches, where spoofed speeches are generated using both mid- and high-quality
recording devices. The BiLSTM model was trained using both training and development
datasets to verify the accuracy against replay attacks. The confusion matrix plotted in
Figures 9 and 10 shows the models’ succession to tackle all types of attacks over the
validation dataset and evaluation dataset.

Figure 10. Confusion matrix for evaluation dataset including all attacks.

The evaluation dataset contains recorded speech using all three (i.e., low, mid, and
high) qualities recorded as well as playback devices recording. This makes it challenging.
Out of 1298 genuine speeches, 94.9% are correct, and 5.1% are wrong.

The accuracy, precision, and recall analysis for two categorical attacks are listed in
Table 4. The experiment received a higher recall rate in comparison to precision. Thus,
the proposed model succeeded in finding correct attacks more accurately. The ROC curve
obtained by plotting the true positive against the false positive is shown in Figure 11. This
curve validates the accuracy of true classification, covering 96% of the area under the curve.

Table 4. Accuracy, precision and recall analysis for development and evaluation datasets.

Dataset/Attack Types Accuracy Precision Recall

Validation dataset 97.35 95.78 99.08
Evaluation dataset 98.58 94.92 90.98

In our method, feature integration and BLSTM optimization play an important role.
Initially, we explored the impact of the features in the optimized classification model.
Three main features were used in the experiment, including MFCC, GTCC, and spectral
features. The results of MFCC, the integration of MFCC with GTCC, and the proposed
Gaussian-oriented MFCC features sets and their integration with the remaining feature are
shown in Figure 12. The MFCC features did not work well; however, integrating MFCC-
oriented high-frequency features with GTCC performed well for the development dataset.
In contrast, the Gaussian features were better for obtaining a better performance.
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Figure 11. Receiver operating characteristic curve.

Figure 12. Performance of optimized BILSTM using different feature sets.

Table 5 shows a comparison between the proposed model and other models in the
literature. In Reference [65], the authors adopted the conventional CNN-based LCNN-FFT
model where the local interpretable model-agnostic explanations (LIME) algorithm was
used to find characteristics from the audio signals’ spectral and temporal data. Later, they
preprocessed the audio by removing the artifacts from the signals and improved the EER
rate of the evaluation dataset to 7.8%. This LIME-based model is computationally complex
and needs audio preprocessing. Yoon et al. [66] proposed a new replay attack for the speaker
verification system. Initially, they tested various models on the ASVSpoof2017 dataset.
They observed that the LSTM classifier using spectrogram features and the RestNET-18
classifier using GD-gram features failed to differentiate the genuine speech from the spoof
speech. According to them, the authors of the dataset have not addressed the new replay
attacks through their statistical or prototype models.

In Reference [67], a cochlear filter is proposed to obtain cepstral coefficients using
instantaneous frequency (CFCCIF). Further, they used quadrature-phase signals using the
Hilbert transform with CFCC to improve the feature. They used various CNN models,
including light-CNN and ResNet. They obtained a 2.33% EER on the development dataset.
However, the EER for the evaluation dataset was 12.88%. One of the weaknesses of this
model is that it does not resolve all paradoxes related to instantaneous frequency and its
estimation. Bharath and Rajesh Kumar [68] also presented a high-frequency feature-based
algorithm. Initially, the glottal excitation spectrum is obtained using adaptive inverse
filtering. Finally, CQCC features are extracted from the obtained spectrum for spoofing
classification. The EER for the development and evaluation datasets was reduced greatly
by the suggested approach to 3.68% and 8.32%, respectively. One of the weaknesses of the
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CNN is its uncertainty, which may occur due to the use of the softmax layer in the CNN. A
Bayesian approach was proposed in Reference [69], which strengthened the assessment of
uncertainty in CNN. However, their EER was quite high for a development dataset.

Table 5. Comparison of % EER for various features and classifier models using development and
evaluation datasets.

Ref Features Classifier Dev EER (%) Eval EER (%)

[70] Inverted constant Q-features and CQCC DNN 2.629 7.777
[67] CFCCIF and quadrature-phase signals ResNET 2.33 12.88
[71] LC-GRNN features from spectrogram PLDA 3.26 6.08
[72] MFCC + Fbank LSTM, GRU RNN 6.32 9.81

[68]
Iterative adaptive inverse filtering
-based glottal information + CQCC

Gaussian
mixture model

3.68 8.32

[69] CQCC LCNN 21.73 8.20

[73]
Normalized log-power magnitude
spectrum using Q-transform and FFT

Conventional
CNN + RNN

3.95 6.73

[65]
Local interpretable model
-Agnostic explanations LCNN-FFT 7.6 10.6

[66] Spectrogram LSTM - 21.0602
[66] Group delay-Gram ResNET-18 - 35.35

[11]
Linear filter bank-based
high frequency features

DenseNET
+ BiLSTM

2.79 6.43

[74]
MFCC + CQCC
High-frequency features

DenseNET
+ LSTM

3.62 8.84

[47] Improved TEO LCNN 6.98 13.54

[43]
CQCC + deep learning
features LSTM 7.73

Proposed
Static + dynamic GIMFCC
+ GTCC+ spectral features

Optimized
BiLSTM

1.02 6.58

In Reference [47], TEO features were improved with signal mass consideration. The
TEO operator only uses energy in low-frequency regions, and signal mass compensates for
the energy of high-frequency regions, providing a more precise signal energy estimation. A
lightweight CNN model achieved a 6.98% and 13.54% EER. In contrast, the GMM model
performed well, with a 10.75% EER on the evaluation dataset. Chen et al. [72] validated the
two recurrent models, i.e., RNN, LSTM, and Gated Recurrent Unit (GRU) network. They
evaluated these models using the MFCC and FBank features. The GRU model performed
best with FBank features, with an EER of 6.32% and 9.81% for the development and
evaluation datasets. In Reference [74], a silent segment was extracted from the speech signal
using a zero-crossing rate, and its CQCC high-frequency features in the 3 to 8 kHz frequency
range were obtained. In addition, they proposed a DenseNet-LSTM network compared
with CNN-RNN as a classifier. This model succeeded in lowering the EER to 3.62% and
8.84% on the development and evaluation datasets, respectively. Later, the authors in
Reference [11] modified the classifier to a DenseNet-BiLSTM network with an attention
mechanism. Their model outperformed the LSTM and GMM models with an EER of 6.43%
on the evaluation dataset. However, in both models, high-frequency features heavily rely
on segment-based linear filter banks, which are sensitive to the background sound and
playback devices. A convolutional feature using a light convolutional gated RNN (LC-
GRNN) was extracted in Reference [71]. Three machine learning models were tested for
all possible attacks, including SVM, linear discriminant analysis (LDA), and probabilistic
LDA. Among all classifiers, probabilistic LDA performed better. However, the major
drawbacks of RNN are its vanishing gradient and long-term dependency. Huang et al. [75]
used CQCC features and features obtained using deep learning from the raw data. These
two features were used in the LSTM network for classification and achieved a 7.73% EER
on the evaluation dataset.
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High-frequency features work well, as depicted in Reference [11]. They used a triangle
filter as a linear filter bank to obtain high-frequency features, and they used a combination
of DenseNET and BiLSTM as a classifier, achieving a 6.43% EER. Due to the prominent
characteristics of the Gaussian filter, as explained in Section 1, The Gaussian filter-based
high-frequency features with complementary features intuitively worked well with the
optimized BiLSTM model. Due to the discriminating high-frequency features of spoofed
and genuine speech signals, the BiLSTM model could discriminate speech with the best
classification accuracy and lower EER. In addition, BiLSTM overcomes the weakness of
RNN, tackling the problem of the vanishing gradient, and, therefore, performed well
compared with the RNN. The proposed model succeeded in obtaining an overall 1.02%
and 6.58% EER on the validation and evaluation datasets, which were the least among all
the models, as presented in Table 5.

5. Conclusions

The manipulation of genuine speech is a common threat and a prime concern for
the system’s vulnerability. Though baseline features are reliable, the fusion of features
and better classifiers is expected to strengthen the system. The present study reveals that
high-frequency features can easily differentiate spoof speech from genuine speech. In
addition, the complementary features based on the high-frequency region of speech in
the signal can help to improve the classification accuracy. This work presents the use
of high-frequency features for spoof-speech detection. A Gaussian filter offering good
correlation among the subband and allowing a smooth transition between the subbands is
proposed to extract high-frequency features in contrast to linear or triangular filter banks.
Inverted MFCC-based high-frequency features using a Gaussian filter are obtained from
the high-frequency region of speech signals. To use these features efficiently, BiLSTM-based
CNN architecture offering a correlation between the past and present features is explored.
Further, optimizing the BiLSTM network using the Bayesian algorithm showed a minimal
architecture with the best hyper-parameters. The integrated features with the optimized
BiLSTM network performed better than base and state-of-art algorithms.

The proposed model was evaluated using the ASVSPoof 2017 dataset. In the base
algorithm of GMM, the training dataset was used in training the algorithm. In contrast, both
the training and development datasets were used in the training process of the network, and
performance was evaluated for both development and evaluation datasets in the proposed
approach. The proposed model achieved a 1.02% and 6.58% EER with a relative reduction
of 78%. The state-of-the-art comparison with other CNN classifier-based algorithms states
that the proposed model achieved better performance with minimal architecture.

The limitation of our work is that we did not investigate the performance of our
method in cross-dataset scenarios. Future research will enhance the anti-spoofing coun-
termeasures’ capacity to generalize under many circumstances. In addition, the effect of
noise is more considerable at high frequencies because it contains information, so any small
noise significantly impacts the signal [11]. Although the experimental results show the
efficiency of the proposed features, these features may need to perform better for noisy
signals. Features describing the glottal source are another alternative MFCC, which can
be calculated using single-frequency filtering, zero-time windowing, and zero-frequency
filtering. Therefore, further investigation in the presence of noise, as well as adopting
alternate features, is required.

Author Contributions: Conceptualization, H.M. and J.F.A.-A.; methodology, H.M. and Q.N.; soft-
ware, H.M. and F.A.A.; validation, A.H.K., S.E.-N. and N.A.A.; investigation, F.A.A. and Q.N.;
resources, S.E.-N.; writing—original draft preparation, N.A.A.; writing—review and editing, H.M.
and J.F.A.-A.; supervision, H.M.; project administration, N.A.A. and Q.N.; funding acquisition, N.A.A.
All authors have read and agreed to the published version of the manuscript.



Sensors 2023, 23, 6637 21 of 24

Funding: This project was supported by Princess Nourah bint Abdulrahman University Researchers
Supporting Project number (PNURSP2023R410), Princess Nourah bint Abdulrahman University,
Riyadh, Saudi Arabia.

Data Availability Statement: The authors confirm that the data supporting the findings of this study
are available within the article [2].

Acknowledgments: The authors are thankful to Princess Nourah bint Abdulrahman University
Researchers Supporting Project number (PNURSP2023R410), Princess Nourah bint Abdulrahman
University, Riyadh, Saudi Arabia.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

MFCC Mel Frequency Cepstral Coefficients
GIMFCC Gaussian-Inverted MFCC
GTCC Gammatone Cepstrum Coefficient
LPC Linear Prediction Coefficients
LFCC Linear Frequency Cepstrum Coefficients
ECG Electrocardigram
CQCC Constant Q Cepstral Coefficients
CQT Constant Q Transform
GMM Gaussain Mixture Model
CNN Convolutional Neural Network
RNN Recurrent Neural Network
LSTM Long short-term memory
BiLSTM A bidirectional LSTM
SVM Support Vector Machine
EER Equal Error Rate
XGBoost Extended Gradient Boost
ReLU Rectified Linear Unit
ResNET Residual Neural Network
PCM Pulse Code Modulation
t-SNE T-Stochastic Neighborhood Embedding
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69. Süslü, Ç.; Eren, E.; Demiroğlu, C. Uncertainty assessment for detection of spoofing attacks to speaker verification systems using a
Bayesian approach. Speech Commun. 2022, 137, 44–51. [CrossRef]

70. Yang, J.; Das, R.K. Long-term high frequency features for synthetic speech detection. Digit. Signal Process. 2020, 97, 102622.
[CrossRef]

71. Gomez-Alanis, A.; Peinado, A.M.; Gonzalez, J.A.; Gomez, A.M. A light convolutional GRU-RNN deep feature extractor for
ASVSpoofing detection. In Proceedings of the Interspeech, Graz, Austria, 15–19 September 2019; Volume 2019, pp. 1068–1072.

72. Chen, Z.; Zhang, W.; Xie, Z.; Xu, X.; Chen, D. Recurrent neural networks for automatic replay spoofing attack detection. In
Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB,
Canada, 15–20 April 2018; pp. 2052–2056.

73. Lavrentyeva, G.; Novoselov, S.; Malykh, E.; Kozlov, A.; Kudashev, O.; Shchemelinin, V. Audio Replay Attack Detection with
Deep Learning Frameworks. In Proceedings of the Interspeech, Stockholm, Sweden, 20–24 August 2017; pp. 82–86.

74. Huang, L.; Pun, C.M. Audio replay spoof attack detection using segment-based hybrid feature and densenet-LSTM network. In
Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Brighton, UK, 12–17 May 2019; pp. 2567–2571.

75. Huang, L.; Zhao, J. Audio replay spoofing attack detection using deep learning feature and long-short-term memory recurrent
neural network. In Proceedings of the AIIPCC 2021, The Second International Conference on Artificial Intelligence, Information
Processing and Cloud Computing, VDE, Hangzhou, China, 26–28 June 2021; pp. 1–5.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2020.2974290
http://dx.doi.org/10.1016/j.csl.2022.101423
http://dx.doi.org/10.1016/j.eswa.2022.116597
http://dx.doi.org/10.1016/j.specom.2021.12.003
http://dx.doi.org/10.1016/j.dsp.2019.102622

	Introduction
	Related Work
	Materials and Methods
	Materials
	Proposed Method
	Proposed Optimized BiLSTM

	Experimentation and Analysis
	Experiment Setup
	Analysis

	Conclusions
	References

