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Abstract: As the development of the Internet of Things (IoT) continues, Federated Learning (FL) is
gaining popularity as a distributed machine learning framework that does not compromise the data
privacy of each participant. However, the data held by enterprises and factories in the IoT often
have different distribution properties (Non-IID), leading to poor results in their federated learning.
This problem causes clients to forget about global knowledge during their local training phase and
then tends to slow convergence and degrades accuracy. In this work, we propose a method named
FedRAD, which is based on relational knowledge distillation that further enhances the mining of
high-quality global knowledge by local models from a higher-dimensional perspective during their
local training phase to better retain global knowledge and avoid forgetting. At the same time, we
devise an entropy-wise adaptive weights module (EWAW) to better regulate the proportion of loss
in single-sample knowledge distillation versus relational knowledge distillation so that students
can weigh losses based on predicted entropy and learn global knowledge more effectively. A series
of experiments on CIFAR10 and CIFAR100 show that FedRAD has better performance in terms of
convergence speed and classification accuracy compared to other advanced FL methods.

Keywords: federated learning; data heterogeneity; catastrophic forgetting; knowledge distillation;
self-adaption

1. Introduction

With the growth of the Internet of Things and advances in Big Data-driven artificial
intelligence, the network’s data are increasingly created by geographically distributed
enterprise endpoints and IoT devices. The IoT in the context of Big Data is growing rapidly
in the industrial sector. However, centralized aggregation of industrial Big Data to cloud
servers leads to unaffordable transmission overheads and also violates the data privacy
of each enterprise or client, which results in distributed databases consisting of multiple
“data islands”. In light of the challenges posed by “data islands” in the development and
application of the Internet of Things, Federated Learning (FL) [1] was first proposed in
2016 for collaborative learning with privacy constraints. It has been widely used in the IoT
tasks such as smart cities [2], healthcare [3–5] and financial security [6]. Meanwhile, in the
industrial Internet of Things, the use of federated learning to enable collaborative training
of all parties while ensuring sensitive enterprise data is gradually becoming mainstream.

Although federated learning does not require centralized data aggregation to the
cloud, however, there will be skewed distribution of data across enterprises during practical
applications, which will lead to degradation of FL performance. For example, the data
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collected for mobile terminal input methods have different distributions for people with
different operating habits. There are also many differences in the distribution of sensor
acquisition data used by different plants to classify equipment faults or detect quality
defects, both in terms of sensor type acquisition differences and fault type distribution
differences. Wearable IoT sensor data for monitoring patient vital signs in the medical field
are also heavily used for artificial intelligence learning to enable online diagnostics such
as expert systems. However, the data collected by these edge IoT devices still suffer from
inconsistencies in the distribution of features and labels. In summary, this huge challenge
called Non-IID hinders the application of federated learning in IoT in the context of Big
Data, and this work aims to propose a generalized method to address this challenge in
federal learning for IoT applications.

Similar to the problem in continuous learning [7], this variation among distributions
causes each client to forget the global knowledge during their local updates, which in turn
severely affects the performance and convergence in federated learning [8,9]. Figure 1
illustrates the catastrophic forgetting in continuous learning and federated learning. This
phenomenon is referred to as “Client-drift” in [10]. FedProx [11] constrains the local up-
dates by adding a regularization term to the local objective function to regulate its update
direction towards the global objective. In recent years, knowledge distillation [12] is widely
used for transferring knowledge between models to serve the purpose of compressing
model size and improving model accuracy. In order to get a more robust global model,
ref. [13] combines federated learning with knowledge distillation to fine-tune the global
model after aggregation with an additional public dataset. Ref. [14] applies large model
self-distillation on the server side to better maintain global knowledge. All these methods
require an auxiliary public dataset for knowledge distillation, and FedGEMS even requires
homogenous datasets for auxiliary data. Considering the existence of the forgetting phe-
nomenon in federated learning, which is similar to continuous learning, especially in the
case of data heterogeneity, this work attempts to introduce knowledge distillation in the
local training phase, using collaborative distillation of global and local models to retain each
other’s knowledge. Inspired by Relational KD [15], the high-dimensional relational knowl-
edge naturally contained in a global model is distilled after each aggregation to achieve
better performance in combination with single-sample knowledge. Relational knowledge
distillation considers that “relationships” among knowledge are more representative of
the teacher’s “knowledge” than separate representations. Similar to the view in linguistic
structuralism [16], which focuses on structural relationships in symbolic systems, primary
information is often located in structural relationships in the data embedding space rather
than existing independently. Meanwhile, in order to weigh the effect of constraints on
single-sample knowledge versus relational knowledge, this work introduces an adaptive
coefficient module to dynamically adjust its constraints.
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Inspired by above considerations, we propose a relational adaptive distillation paradigm
called Relational Adaptive Distillation for Heterogeneous Federated Learning, abbreviated
as FedRAD. The aggregated global model is downloaded by the selected clients during
each round of communication and collaboratively distilled [17] with their own local models,
transmitting both single-sample knowledge based on classical knowledge distillation and
relational knowledge based on high-dimensional structural representations. This method
can fully exploit the potential of knowledge distillation to exploit various types of knowl-
edge in distributed data, which helps to motivate local models to learn higher dimensional
knowledge representations from global models and minimize the forgetting phenomenon
of local training in data heterogeneous scenarios. To better weigh the penalty focus of
single-sample knowledge versus relational knowledge, we further propose an entropy-wise
adaptive weight (EWAW) strategy to help local models adaptively control the impact of
distillations based on the global model’s predictions on each data batch to prevent excessive
transfer of negative knowledge. When the prediction of the global model is plausible, the
local model learns the single-sample knowledge and relational knowledge in a balanced
way. Otherwise, the local model focuses more on relational knowledge.

Our main contributions:

1. To address the phenomenon of drift and forgetting arising from local training of
FL algorithms in IoT application deployment. This work incorporates an auxiliary
constraint on loss in the local training phase in conjunction with relational knowledge
distillation, enabling the local model to learn and retain global knowledge with a
higher dimensional view to avoid forgetting.

2. To further improve model stability and robustness, this work proposes a robust local
learning method named entropy-wise adaptive weights (EWAW), where the penalty
weights between distillation losses are determined adaptively by the prediction en-
tropy of global model on each local data model, which can further improve the model
performance in each scenario by dynamically adjusting the loss weights.

3. By performing comprehensive experiments on CIFAR10 and CIFAR100, we validate
that FedRAD has superior accuracy and convergence speed compared to FedAvg,
FedProx and FedMD for scenarios with different levels of data heterogeneity and
different percentages of active clients.

2. Related Work
2.1. Federated Learning

With the emergence of various data privacy protection requirements, secure multi-
party computing [18,19] is commonly used in the past as the major method to resolve
the conflict between data confidentiality and sharing in the IoT. However, its huge error
accumulation and high computational cost in deep learning applications make it difficult
for it to be competent for deep learning scenarios. In contrast, federated learning is widely
used in deep learning as an emerging distributed learning paradigm. FedAvg [1] is a
traditional classical federated learning paradigm, where the parameters or gradients of
all local models are aggregated by the server to form a global model after some local
updates are performed by each client, and the aggregation weights are proportional to
the local data size. A key challenge of this classical paradigm is that the clients’ data are
usually non-identically distributed (Non-IID). Many works have attempted to solve the
Non-IID problem by improving the server aggregation phase or the local training phase.
Refs. [20,21] start from a clustering perspective by assuming that there are differences in
the similarity of data distributions among different clients, assigning similar clients into a
cluster and implementing global model training within each cluster to reduce the impact of
non-identical distributions. These methods are premised on the assumption of similarity
in the distribution of client data, perform poorly in scenarios where the distribution of
client data varies too much and fail to truly address the forgetting phenomenon that occurs
during local training. Refs. [11,22,23] aim to improve the local training phase by adding
a regularization term to local model as a constraint to adjust the deviation between local
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and global models and reduce the client drift phenomenon. Another technical route is to
improve the server-side aggregation phase [24,25]. Unlike this route, this paper aims to
preserve the global model knowledge in the local training phase, which belongs to improve
the local training method.

2.2. Knowledge Distillation in FL

Knowledge distillation can transfer knowledge from large teacher models to small
student models and is widely used for model compression [26,27] and collaborative learning
among students to improve performance [17,28]. In order to address data heterogeneity,
knowledge distillation applied to federated learning has proven to be an effective approach.
Many works take aim at ensemble distillation, i.e., transferring knowledge to a global
model as the student by aggregating client knowledge as the teacher. Ref. [29] use transfer
learning on public datasets and ensemble distillation on the client side to improve model
performance and reduce communication consumption. This is achieved by accomplishing
knowledge transfer while exchanging only model predictions rather than model parameters.
Ref. [13] combine federated learning with knowledge distillation to fine-tune the global
model after aggregation with an additional public dataset in order to get a more robust
global model. Ref. [14] improve on FedMD by holding a large model on the server side for
self-distillation to better preserve global knowledge, which also avoids the forgetting of
knowledge by the model. However, all these FL methods above require an additional public
dataset similar to the client’s private datasets for knowledge distillation, and these carefully
prepared public datasets are not always available. Some recent works attempt to extract
knowledge without using additional public datasets: Ref. [30] aggregates and averages the
logits in different classes transferred by each client on the server side for distribution as
distillation knowledge in order to avoid reliance on public datasets. However, this method
directly averages all logit of the same class, which tends to blur the knowledge across clients.
Ref. [31] combine split learning to split the local model into a feature extraction network
and a classification network, which use the intermediate features as inputs transmitted to
the server-side classification network for knowledge distillation. This approach reduces
the high computing power requirements for edge computing but performs poorly in the
data heterogeneity scenario. Ref. [32] propose that the triangular upper bound of the
federated learning objective function should be optimized especially in Non-IID scenarios,
where both local training and knowledge distillation are used to lower the upper bound
to improve performance. Refs. [33–35] use a pre-trained generator to generate pseudo
data as a public dataset to assist in training, e.g., FedFTG trains a generator against the
global model to generate difficult pseudo data in order to assist in training the global model
to avoid forgetting. However, these methods of using a generator to add data require
extremely high-quality generated samples, and often need a large computational cost to
obtain high-quality samples. Ref. [36] perform knowledge distillation in the local training
phase by broadcasting local data representations and the corresponding soft predictions,
which is named “hyper-knowledge”. This method has some similarity to ours, without the
need for generative model and public datasets, but is more concerned with balancing the
performance of the local and global models.

In summary, to eliminate the dependence of the above knowledge distillation-based
federated learning on public datasets and to fully exploit the potential of knowledge
distillation to improve the performance of federated learning under data heterogeneity, this
paper proposes FedRAD, which incorporates both relational knowledge and single-sample
knowledge into the loss function in a collaborative distillation way between models, and
adds adaptive weights based on prediction entropy to automatically control the penalty
weights of the two distillation losses.

3. Methodology

To address the inconsistency of learning and the consequent drift caused by the for-
getting phenomenon in federated learning, this paper proposes a novel federated learning
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method called FedRAD from the perspective of expanding the dimension of knowledge
distillation. Figure 2 visualizes the general framework of FedRAD. In detail, same as the
classic federated learning framework, FedRAD consists of two main components: (1) server
aggregation and (2) local model training. In each communication round, FedRAD randomly
selects a group of clients and broadcasts the global model to them. Then, each selected
client performs their own local model training, which is the main focus of FedRAD. After
the local training phase, FedRAD performs the server aggregation. The server collects the
selected local models and aggregates them as a new round global model by averaging the
model weights for the next communication round.
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Figure 2. The general framework of FedRAD. In the local model training phase, after receiving global
model, the selected client i’s model learns from local dataset Di by minimizing LCE loss. DKL loss
and LRKD loss are utilized to transfer single sample knowledge and relational knowledge through
collaborative distillation between local model and global model. The EWAW module calculates the
entropy-wise weights which are used to adaptively determine the two distillation loss weights and
makes the model more robust and reliable.

3.1. Inconsistency in Federated Learning

To confirm the conjecture of incoherent learning due to forgetting in federation learn-
ing, we first built an image classification system using FedAvg as the federated learning
framework. CIFAR10 (see details in Section 4.1.1) was selected as the dataset and it was
classified into IID and Non-IID scenarios using the Dirichlet distribution. We trained the
FedAvg for 20 communication rounds (avoiding the initial and ending training phases)
and then verified its per-class accuracy. After that, we analyzed the per-class accuracy
change of one client by training local models for a certain epoch. As shown in Figure 3a,
the accuracy of the client model after local training in the Non-IID scenario is increased on
certain classes which has more private data. However, the accuracy on the rest of classes is
much smaller than the accuracy of global model it just received, implying that it forgot the
received global knowledge. On the contrary, in the IID scenario, the global knowledge is
preserved due to the homogeneous data distribution.

Then we further consider how the prediction of the global model changes as the
number of communication rounds grows. The configuration of the experiment is the same
as above except for the communication rounds. We also use CIFAR10 as the dataset and
classify it into IID and Non-IID scenarios, respectively. As shown in Figure 3b, experiments
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on FedAvg for 100 communication rounds are conducted and record the prediction accuracy
of global model for each class in each round. The results show that in the IID scenario,
the global model learns very coherently and accumulates knowledge more uniformly. On
the contrary, the prediction accuracy of global model for each class in different rounds
in the Non-IID scenario is more variable, and the previous higher accuracy of a certain
class is often accompanied by a subsequent decrease. The above analysis illustrates that
similar to the forgetting phenomenon existing in continuous learning due to different data
distributions, the forgetting of global knowledge also exists in federated learning under
heterogeneous data scenarios.
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3.2. Preliminary

The objective of this work is to train a classification model in a federated learning
system without the need to train each client’s data centrally. This assumes that it contains
N clients and 1 server and client n contains its private data Dn :=

{
xn

i , yi
}

, where xi
represents the i-th sample in local dataset and yi is its corresponding label, yi ∈ {1, 2, . . . , K}.
Classical federated learning can be described as solving the following optimization problem:

min
w
L(w) :=

N

∑
n=1

|Dn|
|D| Ln(w), where Ln(w) =

1
|Dn|

|Dn |

∑
i=1

LCE(w; xi, yi) (1)

The global objective function L(w) is obtained by a weighted average of local objective
functions from N clients, and the weights of clients are usually proportional to their private
data amount |Dn|. At each communication round, the server distributes global model
parameters aggregated in the previous round to the selected clients in order to solve
Equation (1), and the clients perform local updates with their local objective function LCE
on their respective local datasets Dn. Then server aggregates the updated parameters of
the local models and forms a new global model.

However, this simple parameter-based aggregation approach does not perform well in
the Non-IID scenario because the sample distribution is usually inconsistent across clients.
The distribution fitted by each client’s local objective function is not consistent with the
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global objective function, which can easily lead to the forgetting phenomenon and, thus,
the discarding of the global aggregation knowledge.

3.3. Codistillation in Local Training

During each communication round t, clients selected by the server get the global model
from server side, while at the same time maintaining their own local models throughout the
entire federated learning process. Both the local model’s loss and the global model’s loss
during the local training phase are made up of cross-entropy loss and distillation loss, i.e.,
single-sample distillation loss and relational distillation loss. The local model is trained to
gain single-sample distillation knowledge and relational distillation information from the
global model, and the downloaded global model is trained in a similar manner to extract
local model knowledge as well. This is accomplished through the process of collaborative
distillation, which is performed by both sides. At the end of this iteration, each client will
transmit the server their latest version of the global model. The server will then aggregate
all of these versions into a new global model before beginning the process again. The loss
of the local model and the global model are reformulated as follows:

Llocal = αLCE + (1− α)
[
λDKL(pg(x) ‖ pn(x)) + (1− λ)LRKD

]
(2)

Lglobal = αLCE + (1− α)
[
DKL(pn(x) ‖ pg(x)) + LRKD

]
(3)

where α is a hyperparameter which controls the ratio between the cross-entropy loss and
the global distillation loss. It can be set to a high value in the initial training phase to fully
utilize the knowledge from the local dataset. As the number of communication rounds
increases, exponential decay is applied to α to fully exchange the knowledge between the
local and global models, enhancing the effects of collaborative training. λ in the local loss
is an adaptive weighting factor, which is used to automatically weigh the proportion of
single-sample knowledge and relational knowledge in each batch from the perspective of
prediction entropy; the detailed process is described in Section 3.4. The global model in the
local side uses the local model to extract single-sample knowledge and relational knowledge
in the same proportion so that it can be used in the subsequent round of aggregation.

The cross-entropy loss is calculated using the predicted value and the ground truth
labels. Taking the local model n as an example, zn, zg represent the logit output of client’s
local model and global model respectively, and the dataset of local model n is Dn =
{x, y}, y ∈ {1, 2, ..., K}. Then, the cross-entropy loss of the global model and local model
during local training is defined as:

LCE = ∑
x∈Dn

−ylog[p(x)] (4)

where predictions p(x) = pg(x) for the global model and p(x) = pn(x) for the local model
respectively, where pg(x) and pn(x) are:

pg(x) =
exp(zg/T)

K
∑

k=1
exp
(
zg,k/T

) , pn(x) =
exp(zn/T)

K
∑

k=1
exp
(
zn,k/T

)
where k represents the category and T represents the distillation temperature for controlling
the effect of positive and negative category knowledge.

DKL is the Kullback–Leibler (KL) Divergence, which is used to measure the similarity
of the distributions between the global model output and the local model output so that
the global model and the local model could distill each other’s single-sample prediction
knowledge:

DKL
(

pg(x) ‖ pn(x)
)
= ∑

x∈Dn

−pg(x)log
[

pg(x)
pn(x)

]
(5)
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DKL
(

pn(x) ‖ pg(x)
)
= ∑

x∈Dn

−pn(x)log
[

pn(x)
pg(x)

]
(6)

3.4. Relational Distillation

High-dimensional spatial relationships between model predictions often consider the
Euclidean distance of a binary versus the angular relationship of a triple. In the federated
learning scenario, the processing capabilities of edge clients are limited, so it only takes
into account mining the knowledge of distance relations between model predictions. This
is because mining this knowledge is more efficient than mining other details. For a given
pair of sample data

(
xi, xj

)
in each mini-batch, the distance relationship is measured by the

Euclidean distance:

ψD(zi, zj) =
1
µ
‖ zi − zj ‖2, µ =

1
|D2| ∑

xi ,xj∈D,i 6=j
‖ zi − zj ‖2 (7)

where D represents a batch of data and µ is the average distance of all sample predictions
in one batch. In order take into consideration the relative distance that exists between
the outputs, the magnitude of the distance between them has been adjusted using the
normalization factor µ. The overall RKD loss is defined as follows:

LRKD = ∑
xi ,xj∈Di ,i 6=j

lδ
(

ψD

(
zg

i , zg
j

)
, ψD

(
zn

i , zn
j

))
(8)

where lδ is huber loss which combines MSE and MAE, reducing the high penalty tendency
of MSE for outliers and the excessive gradient of MAE for small loss points, thus making it
a more robust loss function.

3.5. Adaptive Weighting Coefficient

A sample
(

xi, xj
)

is passed through the downloaded global model to obtain the
prediction output pg(xi), and the outputs of M samples in each batch are used to calculate
the mean value of their entropy to evaluate the prediction performance and confidence of
the global model for that batch on the local data:

H(pbatch) = −
1

|batch|

M

∑
i=1

pg(xi)logpg(xi) (9)

According to [37,38], a lower entropy represents a higher confidence level, and vice
versa. The mapping function is therefore used to control its weighting coefficients, ulti-
mately defined as:

λ =
η(

eH(pbatch) + 1
) (10)

To map the results to the matching interval, the hyperparameter η is set to 1.6, which
aims to map different entropy values to suitable weight intervals (see experiments in
Section 4.3). This choice is made in order to ensure that the results are accurate. Due to this,
the proportion of weights assigned to single-sample knowledge as opposed to relational
knowledge for each batch is adaptively decided based on the level of entropy. In situations
where the global knowledge of each round does not contain enough trustworthy infor-
mation for accurately predicting the local data, the weight of the more reliable relational
knowledge of the high-dimensional space is scaled up, and, on the contrary, the weight of
the single-sample knowledge is appropriately decreased. This process occurs so that the
global knowledge of each round can more accurately predict the local data.

Algorithm 1 shows a detailed description for FedRAD. In each round t, we first
sample a subset based on fraction C of clients, then each client receives the global model and
perform their client update phase in parallel for E local epochs. In this phase, the local model



Sensors 2023, 23, 6518 9 of 17

and global model in each of the selected clients are trained by collaborative distillation and
are updated by minimizing Equations (2) and (3), respectively. And in the server update
phase, the server aggregates the selected clients’ models by averaging the model weights.
The above process continues cyclically until the communication round reaches the preset T.

Algorithm 1: FedRAD.

Input: T: communication round; N: client number; C: the fraction of active clients in each round;{
Di}i∈{1,...,N} : local datasets of clients; pg(x), pn(x): prediction of global model and local model

respectively; η: learning rate; E: local epochs
Output: w = [w1, · · · , wN ] ∪ wg
1. Initialize model parameters w
2. Server update:
3. for each round t ∈ {1, 2, . . . , T} do
4. St ← random subset (C fraction) of the N clients
5. for each clients i ∈ St in parallel do
6. wt

g,i ← Client update
(

i, wt
g

)
7. end for
8. Server Aggregation: wt+1

g = 1
|St |∑i∈St

wt
g,i

9. end for
10. Client update

(
i, wt

g

)
:

11. for each e ∈ {1, 2, . . . , E} do
12. for batch b = {x, y} ∈ Di do
13. Llocal = αLCE + (1− α)

[
λDKL

(
pg(x) ‖ pn(x)

)
+ (1− λ)LRKD

]
� in

Equation (2)
14. Lglobal = αLCE + (1− α)

[
DKL

(
pn(x) ‖ pg(x)

)
+ LRKD

]
� in

Equation (3)
15. wt

i ← wt
i − η∇Llocal

16. wt
g,i ← wt

g,i − η∇Lglobal
17. end for
18. end for

In detail, on the basis of local dataset training in Equation (2), i.e., minimizing the LCE
loss, FedRAD incorporates single-sample knowledge and relational knowledge distilla-
tion into mutual learning between the local model and the distributed global model. By
minimizing the DKL loss and LRKD loss, respectively, the global model and local model
can more robustly retain each other’s knowledge in the output space. λ is the adaptive
weighting coefficient which is automatically calculated by Equation (10) and can adaptively
determine the two distillation loss weights in order to obtain a more robust and reliable
model performance.

4. Experiment
4.1. Implementation Details
4.1.1. Datasets and Data Allocation

CIFAR10 and CIFAR100 are selected to serve as benchmark datasets for evaluating
FedRAD and other baselines. CIFAR10/100 are 10/100 classification datasets, respectively.
CIFAR10 consists of 50,000 training images and 10,000 test images in 10 classes, which
have 5000 and 1000 images per class. CIFAR100 has the same total number of images as
CIFAR10, but it has 100 classes. CIFAR100 has 500 training images and 100 testing images
per class. All images of CIFAR10/100 are 3-channel color images (32 × 32). These two
datasets have moderate classification difficulty, sufficient categories and a span of difficulty
between them. It is also easy to divide the classes into different distributions and there is
no potential structure to influence the experimental results. Therefore, these two datasets
are widely used in federated learning.

This work uses Dirichlet distribution to simulate different data distribution scenar-
ios with unbalanced label classes, controlling the degree of Non-IID by a parameter β.
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A smaller β indicates a greater degree of data heterogeneity, following some similar ap-
proaches [33,39]. We divide the Dirichlet division into 10 clients and simulate scenarios
with IID and different degrees of Non-IID by choosing 100, 0.1 and 0.03 for β, which covers
IID, normal Non-IID and extreme Non-IID scenarios. When beta is 100, each client has
almost the same number of data classes, which simulates data homogeneity. When β is 0.03,
however, it indicates that each client has almost only roughly two classes of data (using the
CIFAR10 dataset). The relevant divisions are shown in Figure 4.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 18 
 

 

CIFAR10 consists of 50,000 training images and 10,000 test images in 10 classes, which 
have 5000 and 1000 images per class. CIFAR100 has the same total number of images as 
CIFAR10, but it has 100 classes. CIFAR100 has 500 training images and 100 testing images 
per class. All images of CIFAR10/100 are 3-channel color images (32 × 32). These two da-
tasets have moderate classification difficulty, sufficient categories and a span of difficulty 
between them. It is also easy to divide the classes into different distributions and there is 
no potential structure to influence the experimental results. Therefore, these two datasets 
are widely used in federated learning.  

This work uses Dirichlet distribution to simulate different data distribution scenarios 
with unbalanced label classes, controlling the degree of Non-IID by a parameter 𝛽 . A 
smaller 𝛽 indicates a greater degree of data heterogeneity, following some similar ap-
proaches [33,39]. We divide the Dirichlet division into 10 clients and simulate scenarios 
with IID and different degrees of Non-IID by choosing 100, 0.1 and 0.03 for 𝛽, which co-
vers IID, normal Non-IID and extreme Non-IID scenarios. When beta is 100, each client 
has almost the same number of data classes, which simulates data homogeneity. When 𝛽 
is 0.03, however, it indicates that each client has almost only roughly two classes of data 
(using the CIFAR10 dataset). The relevant divisions are shown in Figure 4.  

 
(a) β = 100 (b) β = 0.1 (c) β = 0.03 

Figure 4. Classes allocated to each client at different Dirichlet distribution β for CIFAR-10 (on the 
top) and CIFAR100 (on the bottom) with 10 clients. The size of each dot reflects the magnitude of 
the samples number: (a) scenario of IID data; (b) scenario of Non-IID data in general; (c) scenario of 
Non-IID data in extreme case. 

4.1.2. Baselines 
FedRAD is designed to improve the forgetting phenomenon in federated learning 

with heterogeneous data, and we select some representative algorithms as baselines: Fe-
dAvg [1], FedProx [11] (regularization to improve model performance with heterogeneous 
data), FedMD [29] (knowledge distillation to improve model performance), FedDistill+ [34] 
(shares average logits through distillation) and FedGen (uses a generator to get expanded 
samples through clients’ prediction rules for knowledge distillation). For FedMD, as it 
requires a public dataset to be pre-trained for knowledge transfer, a portion of the 

Figure 4. Classes allocated to each client at different Dirichlet distribution β for CIFAR-10 (on the
top) and CIFAR100 (on the bottom) with 10 clients. The size of each dot reflects the magnitude of
the samples number: (a) scenario of IID data; (b) scenario of Non-IID data in general; (c) scenario of
Non-IID data in extreme case.

4.1.2. Baselines

FedRAD is designed to improve the forgetting phenomenon in federated learning with
heterogeneous data, and we select some representative algorithms as baselines: FedAvg [1],
FedProx [11] (regularization to improve model performance with heterogeneous data),
FedMD [29] (knowledge distillation to improve model performance), FedDistill+ [34]
(shares average logits through distillation) and FedGen (uses a generator to get expanded
samples through clients’ prediction rules for knowledge distillation). For FedMD, as
it requires a public dataset to be pre-trained for knowledge transfer, a portion of the
CIFAR100 data is used as the public dataset in the CIFAR10 scenario. Similarly, a portion
of the CIFAR10 data is used as the public dataset in the CIFAR100 scenario, and the
accuracy median values of local models are illustrated. For FedDistill+, we also share the
parameters of client models like FedAvg in order to make a fair comparison instead of
just using FedDistill. The network of the generator used in FedGen is composed of two
embedding layers (for inputs z and y, respectively) and two fully connected (FC) layers
with LeakyReLU and BatchNorm layers between them, while the noise data z’s dimension
d is 100 and 256 for CIFAR10 and CIFAR100, respectively.
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4.1.3. Models

For CIFAR10 and CIFAR100, as well as for the different methods, ResNet18 [40] is
chosen as the basic backbone. All models are implemented on Pytorch and run on an
RTX3090 GPU.

4.1.4. Hyperparameters

For all methods, the local training epoch is set to 5 and the number of communication
rounds is set to 100, while the number of participating clients per round is set to 10 (with
the activation ratio set to 1). For methods involving distillation, the distillation temperature
T is set uniformly to 1. In local training phase, the batch size is set to 128 and the learning
rate is set to 0.01 with an exponential decrease of 0.98. For FedProx, we adjust its proximal
term in the range (0.001,0.01,0.1). The aggregation of knowledge in FedMD is performed
using the averaging process used in the original paper.

4.2. Comparative Analysis of Accuracy and Efficiency
4.2.1. Test Accuracy

Table 1 shows the performance of different methods on CIFAR10 and CIFAR100
datasets, all experiments are repeated with 3 random seeds settings. As shown in Table 1,
FedRAD outperforms the other methods in both homogeneous and heterogeneous data
scenarios. Additionally, FedRAD outperforms FedProx, which uses proximal term to
restrict the direction of updates, because it maintains both the global and local models
locally and exchanges relational knowledge and single-sample knowledge between global
and local models continuously, ensuring the model memory of global knowledge in a
higher dimensional view. On the contrary, FedProx is more rigorous in restricting the
update direction of the local model and less flexible in preserving global knowledge, which
also has an impact on its convergence speed. On the other hand, although FedMD also uses
knowledge distillation to exchange knowledge between local models, it performs poorly
on heterogeneous data scenarios as it ignores high-dimensional relational knowledge and
focuses only on single-sample knowledge. Although FedDistill+ combines parameter
aggregation and knowledge distillation, the lack of dissemination of high-dimensional
relational knowledge continues to make its performance weaker than FedRAD. Since
FedGen uses a lightweight generator to add proxy data and it chooses to generate pseudo
data on the feature level, its performance depends heavily on the generator’s quality.
Meanwhile, the feature space of the data, although more compact than the input space,
often does not carry enough knowledge to outperform other feature mining approaches,
e.g., relational knowledge distillation. Figure 5 shows the learning curves of each method
on CIFAR10 and CIFARI100 for the general data heterogeneity scenario (β = 0.1). FedMD
performs better than FedAvg at the beginning due to the addition of a pre-training process
and knowledge transfer from the public dataset; however, the lack of knowledge mining at
the convergence stage leads to a weaker performance than FedProx and a more prominent
forgetting phenomenon. All the results show that FedRAD has a significant effect on the
improvement of model accuracy in the data heterogeneity scenario.

Table 1. The top-1 test accuracy (%) of different FL methods on CIFAR10 and CIFAR100.

Method
Accuracy (%)

CIFAR10 CIFAR100
β = 100(IID) β = 0.03 β = 0.1 β = 100(IID) β = 0.03 β = 0.1

FedAvg 86.54 45.13 61.14 74.60 28.34 53.71
FedProx 85.69 49.33 64.81 75.14 32.78 53.77
FedMD 84.76 44.15 63.35 71.27 28.92 52.32

FedDistill+ 86.34 49.21 65.46 75.11 32.55 54.49
FedGen 86.17 49.41 64.76 74.66 32.91 54.56

FedRAD 86.28 52.23 67.37 74.74 34.88 56.12
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4.2.2. Communication Rounds

Table 2 shows the number of communication rounds consumed by different methods
to achieve the target accuracy. Experiments are conducted at different degrees of Non-IID
for CIFAR10 and CIFAR100. The results show that FedRAD takes the smallest communica-
tion rounds to achieve the proposed accuracy for different distribution scenarios in both
datasets. FedRAD reaches the target accuracy faster than FedMD and FedProx. Compared
to FedMD, FedRAD achieves better convergence speed due to a more complete retention
of knowledge while having a resilient exchange of knowledge for learning through collab-
orative distillation in the local training phase, which can better overcome the forgetting
phenomenon in federated learning. Unlike FedProx, which directly restricts updates to
local models with global model parameters to alleviate forgetting, FedRAD uses knowledge
distillation to constrain the update direction, while prediction entropy is evaluated for
each batch to adaptively adjust the penalty weights between single-sample knowledge and
relational knowledge. The impact of adaptive coefficients based on prediction entropy on
the accuracy of model is further analyzed in Section 4.3.

Table 2. Evaluation of different FL methods on CIFAR10 and CIFAR100 (β = 0.1) in terms of the
number of communication rounds to reach target test accuracy.

Method
Communication Rounds

CIFAR10 CIFAR100
Acc = 55% Acc = 60% Acc = 40% Acc = 50%

FedAvg 35 55 25 57
FedProx 26 36 21 43
FedMD 32 46 27 56

FedDistill+ 25 35 22 43
FedGen 26 38 20 41

FedRAD 17 24 11 26

4.3. Hyperparameters and Ablation Experiments
4.3.1. Data Heterogeneity

In order to assess the robustness of FedRAD under different degrees of data hetero-
geneity, the accuracy of different methods is tested under different Non-IID scenarios
(adjusting for the hyperparameters of the Dirichlet distribution β). Figure 6a and Table 3
show the test accuracy of each federated learning method under different β in the CIFAR10
dataset. FedRAD achieves the best performance in various Non-IID distribution scenar-
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ios, outperforming other baselines. As the degree of data heterogeneity decreases (i.e.,
β increases), the accuracy of all methods tends to increase. FedProx performs similarly
to FedAvg in some heterogeneous scenarios; one reason is that it simply imposes a regu-
larization constraint on the local model based on the global model weights, rather than
optimizing the local model with more specific constraints from a knowledge distillation
perspective. It is also noted that FedRAD improves more than other methods in scenarios
where the data are more heterogeneous, while FedMD does not improve significantly in
this case, further validating the need for collaborative distillation to mine high-dimensional
relational knowledge in the absence of single-sample knowledge. FedDistill+ aggregates
the client model parameters and performs one-sample knowledge distillation for the global
model, but it is also weaker than FedRAD in different distribution scenarios, which further
illustrates the need for relational knowledge distillation in a Non-IID environment. Fed-
Gen’s performance in different Non-IID scenarios depends on the inductive bias it conveys
to the clients, and the effect often depends on the quality of the feature space provided by
the generator.
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Table 3. The top-1 test accuracy with different data heterogeneity β on CIFAR10.

Method
Accuracy (%)

β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5 β = 0.6 β = 0.7

FedAvg 61.16 67.41 70.33 73.11 73.42 74.04 74.24
FedProx 64.81 71.21 72.85 74.07 75.52 75.28 75.36
FedMD 63.35 68.32 69.81 71.78 71.66 72.37 72.98

FedDistill+ 65.46 70.07 72.41 73.95 75.73 75.71 75.97
FedGen 64.16 69.81 72.58 74.01 75.15 75.03 75.16

FedRAD 67.37 72.65 75.07 76.18 77.25 77.18 77.21

4.3.2. Hyperparameters

As the key parameter that maps the prediction entropy to the corresponding coefficient
interval, the hyperparameter η determines the penalty weight of single-sample distillation
loss versus relational distillation loss under different sample predictions. To assess the
effect of the key hyperparameter η on FedRAD, η is selected from (1.0,1.2,1.4,1.6,1.8,2.0)
and experimented with in the CIFAR10 (β = 0.1) case. When η = 1, the entropy, even if
small, i.e., when the prediction certainty is high, the single-sample knowledge distillation
can still only obtain 1/2 of the weight coefficient. Figure 6b shows the accuracy of multiple
experiments with different hyperparameter η choices in a box plot, which shows that
FedRAD achieves the best performance with η = 1.6, and the results also illustrate the
robustness of FedRAD. As the value of η varies, the model accuracy is heavily concentrated
between 0.66 and 0.68, which is not sensitive to the value of the hyperparameter η.
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4.3.3. Partial Client Participant

In order to evaluate the adaptability of FedRAD, experiments are conducted on
CIFAR10 for different numbers of clients participating in each communication round.
Specifically, the training data of CIFAR10 are assigned to 100 customers, and the proportion
of active clients C is chosen as (0.1,0.2,0.3,0.4). Table 4 shows the test accuracy for each
method with different proportions of active clients C. Figure 6c shows the test accuracy
on different C. It can be seen in the figure that FedRAD achieves the best performance in
each case. Additionally, when more clients participate in each communication round, each
method’s performance improves.

Table 4. The top-1 test accuracy with different proportion of active clients on CIFAR10 (β = 0.1).

Method
Accuracy (%)

C = 0.1 C = 0.2 C = 0.3 C = 0.4

FedAvg 55.14 56.62 57.86 58.11
FedProx 56.29 57.35 57.93 58.36
FedMD 52.70 54.62 56.49 56.91

FedDistill+ 56.71 57.24 58.68 59.05
FedGen 56.05 57.12 57.23 59.09
FedRAD 57.88 59.14 59.81 60.07

4.3.4. Ablation Study in FedRAD

Table 5 shows the accuracy of FedRAD after 100 rounds of training on CIFAR10
(β = 0.1) with some key modules removed. Where LRKD stands for the rational knowledge
distillation module, EWAW stands for entropy-wise adaptive weight and EDA stands
for exponential decay of cross-entropy weight α. Removing the LRKD indicates that the
collaborate distillation in Equations (2) and (3) only distill the single-sample knowledge,
and the EWAW is naturally non-existent. In the early training phase, a large α allows
models to initially learn knowledge from the dataset, and as the training rounds increase, α
is decayed exponentially with EDA to expand the proportion of collaborative learning by
knowledge distillation. It can be seen that the elimination of any part has some effect on the
final test accuracy, especially when the adaptive coefficient adjustment EWAW is removed.
This shows that it is crucial to evaluate the sample’s predictive entropy to adaptively adjust
its penalty weight with respect to relational knowledge, to better propagate and retain
more reliable knowledge and to reduce the forgetting of local models in federated learning.

Table 5. Impact of each module in FedRAD.

Method Accuracy (%)

Baseline FedRAD 67.37

Module

no LRKD 64.45
no EWAW 66.09

no EDA 66.74
no EWAW + EDA 65.71

In summary, the series of experimental results show that FedRAD outperforms the
benchmark method in terms of accuracy and convergence speed under different degrees
of data heterogeneity and different client activity ratio scenarios, and has both strong
robustness and adaptability. The results of the ablation experiments show that relational
knowledge distillation in local training phase plays an important role and will influence
the model performance, especially in Non-IID cases where the single prediction confi-
dence is low. In addition, among the two modules, EWAW and EDA, EWAW improves
FedRAD’s accuracy more significantly; meanwhile, EWAW is not sensitive to the value
of hyperparameter η, and FedRAD achieves better performance in different parameter η
selection scenarios.
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5. Discussion

In the context of the rapid development of the Internet of Things and artificial intel-
ligence driven by Big Data, more and more companies are seeking to use data from all
parties for collaborative progress. Although the advent of federated learning has eliminated
the need for enterprises or data terminals to upload large amounts of data to a central
node, saving communication overhead and protecting data privacy, the data available to
edge devices in the IoT often have large distribution differences, severely hindering the
deployment and development of various IoT applications.

In this work, the proposed FedRAD makes full use of the knowledge distillation
mining capability and achieves good performance in terms of model convergence speed
and accuracy. For application scenarios with different degrees of data heterogeneity (β)
and different proportions of active clients (C), FedRAD achieves a large advantage over
other baselines, especially in extreme distribution heterogeneity cases. In terms of privacy
protection, all training is done on the local side and no user data will be leaked. Overall,
FedRAD is suitable for various scenarios of IoT application deployments due to its excellent
performance in different scenarios, and it is able to solve the challenges caused by data
heterogeneity such as intelligent transportation and industrial IoT collaboration.

The limitations of FedRAD are mainly in communication cost: FedRAD still uses the
exchange of model network weights like FedAvg, which moderately increases the amount
of communication compared to methods that only transfer predicted results. In addition,
there is also a small increase in computational overhead due to the increased computation
of relational knowledge distillation and prediction entropy for model training on the local
side. Our future work will focus on how to further reduce communication overhead.

6. Conclusions

As a distributed learning paradigm that does not require centralized data and does
not violate privacy, federated learning is prevalent in the deployment of Big Data-driven
IoT applications. However, the data held by sensors and data collection terminals in IoT
often have different distributions, which leads to degradation of FL performance. In order
to address the phenomenon of drift and forgetting in FL, this paper proposes a generic
method called FedRAD that enables models to learn knowledge from each other from a
higher dimensional output space by incorporating single-sample knowledge and relational
knowledge in a collaborative distillation approach to local training. Furthermore, an
entropy-wise adaptive weights adjustment module (EWAW) is introduced to dynamically
trade-off the constraint capacity between different distillation knowledge in different
distribution scenarios. Experiments on two benchmark datasets, CIFAR10 and CIFAR100,
demonstrate the well-adapted nature of FedRAD and its superiority in accuracy and
convergence speed compared with the rest of the SOTA methods.

The future work will focus on how to reduce the communication overhead between
IoT edge endpoints and server; one possible idea is to combine split learning to reduce the
proportion of weights while making better use of knowledge distillation. Meanwhile, the
method focuses on the local training phase, which is orthogonal to some of the methods
used to improve the global aggregation phase, which could be combined with GAN in the
future to improve the global model on the server side and further improve the forgetting
phenomenon from the global side.
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