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Abstract: Human Activity Recognition (HAR) has gained significant attention due to its broad range
of applications, such as healthcare, industrial work safety, activity assistance, and driver monitoring.
Most prior HAR systems are based on recorded sensor data (i.e., past information) recognizing
human activities. In fact, HAR works based on future sensor data to predict human activities are
rare. Human Activity Prediction (HAP) can benefit in multiple applications, such as fall detection or
exercise routines, to prevent injuries. This work presents a novel HAP system based on forecasted
activity data of Inertial Measurement Units (IMU). Our HAP system consists of a deep learning
forecaster of IMU activity signals and a deep learning classifier to recognize future activities. Our
deep learning forecaster model is based on a Sequence-to-Sequence structure with attention and
positional encoding layers. Then, a pre-trained deep learning Bi-LSTM classifier is used to classify
future activities based on the forecasted IMU data. We have tested our HAP system for five daily
activities with two tri-axial IMU sensors. The forecasted signals show an average correlation of 91.6%
to the actual measured signals of the five activities. The proposed HAP system achieves an average
accuracy of 97.96% in predicting future activities.

Keywords: human activity prediction; inertial measurement unit; deep learning forecasting;
sequence-to-sequence encoding; attention

1. Introduction

Human Activity Recognition (HAR) has garnered significant attention due to its
potential to improve the quality of life in daily tasks by providing real-time monitoring
and feedback across various fields. These applications range from activity and health-
care assistance [1,2], fitness [3], muscular rehabilitation [4], occupational safety [5], smart
home monitoring [6], and driver monitoring [7]. For HAR, traditional machine learning
techniques, such as support vector machines (SVM), K-Nearest Neighbors (KNN), and
random forest trees [8,9], have been used in these applications. Deep learning models
such as Convolutional and Recurrent Neural Networks (C/RNN) [10–12] have recently
gained popularity for their superior feature extraction and recognition abilities. How-
ever, most HAR works are based on past sensor data. HAR works based on future data
(i.e., activity prediction) are still rare [13], although activity prediction could be crucial in
several real-world scenarios, such as fall predictions or sports routines, to prevent injuries.
Prior HAP works can be categorized into two main kinds: video-based and sensor-based
prediction. Most video-based HAP works rely on past activity video frames to predict
future action frames and classify them to predict future activities. In [14,15], custom Gener-
ative Adversarial Networks (GANs) were used for early activity prediction. These works
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predicted future frames from the observed videos with a generator. They classified the
predicted frames among a set of possible activities in indoor controlled environments.
Meanwhile, in [16], a Long Short-Term Memory Networks (LSTM) model was used to
obtain an anticipated action prediction using an egocentric camera mounted on the head of
the subjects. In [17], a long-term prediction was achieved through a CNN-RNN model that
first classified activities from the video and then predicted the future labels.

In sensor-based HAP works, recent systems have been proposed in both HAR and
HAP to overcome the limitations of video-based works, including privacy concerns, object
occlusion, and dependency on environmental contrast (i.e., lighting, fixed viewpoints,
and object overlapping). These works are primarily based on Inertial Measurement Units
(IMU) sensors, including accelerometers, gyroscopes, and magnetometers in wearable
devices (i.e., smartwatches, rings, and sports straps). Although sensor-based HAR systems
have been popular due to the growth in wearable devices in daily life [18,19], sensor-
based HAP works are rare and have not been actively investigated. Recently, multivariate
motion signal predictions from IMU sensors have been proposed through attention models,
capable of retaining pattern and feature information across multiple channels [20–24].
Therefore, these forecasting models on time series data can be used in HAP to generate
future activity signals, making HAP feasible by classifying the forecast signals. In [21], a
CNN network mixed with a Fourier transform was proposed to convert time series data
into 3D representation to predicted future signals obtaining a Mean Square (MSE) value
of 0.134. The system was evaluated in a fall detection study, predicting a fall up to 0.6
s before the event. In [22], an adversarial network based on a transformer model and
attention layers was used to forecast motion signals and predict the fatigue level during
sports training routines. They obtained a Pearson correlation of 0.92 and a fatigue accuracy
of 83%. Furthermore, forecasting and data augmentation models have been proposed using
GAN frameworks in multiple time series applications such as financial, sensor signals, and
weather predictions [25]. In [26], the SynSigGAN model was proposed using a GridBiLSTM
module as the generator and a CNN module as the critic network. This model achieved an
RMSE value of 0.25 in generating future data. Also, similar models to SynSigGAN, namely
TimeGAN [27], NR-GAN [28], and RCGAN [29], have been proposed for multichannel
data generation and forecasting. A recent attempt has included transformer encoders as
the generator and critic network in TTS-GAN [30], obtaining better results than traditional
GAN structures based on RNN or CNN models. However, these GAN-based approaches
still present drawbacks during the training stage. For instance, these models are difficult to
train and finetune, being sensitive to hyperparameters, making the models unstable during
the training. Despite the recent approaches in multivariate data forecasting, multiclass
human activity prediction based on multiple signal channels has not been investigated yet.

In this work, we present a multiclass HAP system employing a deep forecaster model
to predict future activity signals and a deep classifier model to recognize future activities
based on the forecasted data. For the deep forecaster, we propose an encoder–decoder
network based on Sequence-to-Sequence (Seq2Seq) Long Short-Term Memory (LSTM)
with Multi-head Attention (MA) and Positional Encoding (PE) layers. These attention
mechanisms make it possible to preserve the spatial features and temporal dependencies
across the IMU sensor channels. For the forecaster comparison, we have tested four
extra models with time series data, including two based on classic deep learning networks,
namely Conv2LSTM and Seq2Seq-LSTM, and two GAN-based models, namely SynSigGAN
and TTS-GAN. For multiclass HAP, we have studied five daily activities (i.e., walk, run,
Nordic walk, ascend stairs, and descend stairs) collected from six accelerometer channels
of two IMU sensors located at the chest and ankle of five subjects. Once the forecasted
data is obtained, we use a pre-trained Bi-LSTM classifier, validated in [31], to predict
future activities based on the forecasted signals. The principal contributions of the present
work are as follows. First, we demonstrate the feasibility of the proposed HAP system by
forecasting and classifying IMU activity signals up to 2.56 s into the future. Our HAP system
achieves an average accuracy and precision in activity prediction of 97.96% and 97.92%.
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These results open up new potential in applications such as fall detection, healthcare
assistance, sports monitoring, and more areas where activity prediction could play a critical
role. Second, we have proposed a deep learning forecaster based on the Seq2Seq, MA,
and PE structures to predict future activity signals. We have demonstrated the forecaster’s
capability by comparing it against the conventional forecasters, outperforming them by a
minimum of 31.90% in terms of RMSE error and correlation coefficient.

The remainder of this paper is organized as follows. Section 2 introduces the method-
ology of our proposed HAP system. Section 3 describes the experimental and validation
results of the forecaster and classifier of the HAP structure. Section 4 presents the discussion
of our work against some prior works and lists possible applications and future works.
Finally, Section 5 concludes our work.

2. Methodology

Figure 1 illustrates the framework of our proposed HAP system. First, activity signals
are measured from two tri-axial IMUs at the chest and ankle of the subjects. The activity
signals are then preprocessed and fed into the forecasting models. Finally, the output of the
forecasters (i.e., forecasted activity signals) are fed into the pre-trained classifier to predict
future activities such as walk, run, Nordic walk, stairs ascend, and stairs descend. The
following subsections present the details of each process, including the preprocessing steps
of the IMU signals, the forecaster models, and the activity classifier.

Figure 1. The framework of our proposed HAP system.

2.1. IMU Dataset

We conducted our work on a public benchmark dataset for activity recognition in the
Physical Activity Monitoring Dataset (PAMAP2) [32]. This database contains IMU multi-
variate time series data of various activities. It comprises 18 daily activity records collected
from nine subjects: one female and eight males, with an average age of 27.22± 3.31 years.
Four types of sensors were utilized in the dataset, including one temperature sensor and
three IMU modules positioned on the subject’s arms, chest, and ankles, recorded at a
sampling rate of 100 Hz. Each IMU contains a set of the tri-axial gyroscope (rad/s), magne-
tometer (µT), and accelerometer (ms2) sensors with a resolution of 13 bits and scales of±6 g
and ±16 g. Each activity was recorded continuously using wireless sensors, containing
missing and erroneous values due to data dropping, loss of communication, hardware
setup errors, and system crashes. We have applied a set of preprocessing steps to the IMU
signals to remove and clean them, as described in the following subsection.

We have selected five daily activities (i.e., walk, run, Nordic walk, stairs ascend, and
descend) from five subjects (i.e., 101, 102, 105, 106, and 107) to train, validate, and test the
forecasters and classifier models. For each subject, two tri-axial accelerometers from the
chest and ankle were selected, resulting in six channels of motion time series data with a
scale of ±16 g. To evaluate the proposed HAP system, a total of 195 min of record for all
the subjects are used to obtain the training data of the forecaster, resulting in 2283 activity
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epochs with a time length of 5.12 s. Then, 39 min of unseen records are used to test data,
resulting in 456 epochs. Half of each epoch is used to train the forecasters and the remaining
half to test them. Thus, the forecaster is expected to produce future activity signals based
on the first half of the epoch. In the classifier’s training, the second half of each epoch is
used to produce the label of each activity. The classifier is expected to produce a correct
activity label based on the forecasted signals as input.

2.2. Preprocessing Steps

A set of preprocessing steps has been applied to the activity data before training the
forecast models. First, for data cleaning, the dropout data technique is applied to remove
the first and last 35 s of data records, NaN values, and outlier sections by dropping out
and replacing them with the average signal value. Second, a low-pass filter with a cutoff
frequency of 15 Hz is applied to each channel to remove noise, as performed in [33]. Third,
the mean values are removed, and global normalization is applied to limit the signal data
between −1 and 1; after this step, a moving average filter of five points is used to filter
and obtain a smooth signal. Subsequently, a window overlap sliding technique [34] is
used with the five activities to balance and augment the data of each activity. Finally, data
segmentation in epochs of 5.12 s for all the accelerometer channels is carried out to obtain
the signal needed as input for the deep learning forecasters.

2.3. Forecasting IMU Activity Signals

We have implemented three forecasting models in the proposed HAP system, as
shown in Figure 2. Three multivariate deep learning models for signal forecasting use
the past IMU records to forecast the unseen signals of six channels. The first model is a
hybrid convolution-to-recurrent network named Conv2LSTM. The second model uses a
Sequence-to-Sequence LSTM structure named Seq2Seq-LSTM. Finally, our proposed model
uses a double-layer Seq2Seq-LSTM structure with MA and PE layers named Seq2Seq-LSTM-
PE-MA. The improvements to the third model are based on multi-head attention layers
of the base transformer model, which has been successfully used for Natural Language
Processing (NLP) [35]. Additionally, we adapted and trained two extra GAN-based models,
namely SynSigGAN [26] and TTS-GAN [30]. Detailed descriptions of each model are given
in the following subsections.

Figure 2. Deep Learning Forecasters: (a) Hybrid CNN-to-RNN (Conv2LSTM), (b) Sequence-to-
Sequence LSTM (Seq2Seq-LSTM), (c) Sequence-to-Sequence with Attention and Positional Encoding
(Seq2Seq-LSTM-PE-MA).

2.3.1. Conv2LSTM

The first deep learning forecaster is shown in Figure 2, which uses a model composed
of CNN and RNN layers based on the structure proposed in [36]. Initially, the measured
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signals are given as input for two CNN layers to extract relevant features from the IMU
activity signals. Subsequently, the obtained features pass through two RNN layers of Long-
Short-Term Memory (LSTM) units to capture the temporal dependencies and patterns in
the signal over time, giving the model data sequence information of each channel. Using
this structure, the model learns and retains significant activity features from the signal
extracted in the CNN layers. Regularization is applied with a dropout layer to prevent
overfitting. Finally, the last time distributed dense layer is used to process the predicted
output using the hidden state results from the last LSTM layer.

The structure of the Conv2LSTM module is presented in Figure 2a and is composed of
two 1D convolutional layers with 32 output filters, a kernel size of six, and a ReLU activation
function. In sequence, with two LSTM layers of 256 output units and a hyperbolic tangent
function. The behavior of the CNN layers is presented in Equation (1).

h(i)
t = f

(
k−1

∑
j=0

w(i)
j xt+j + b(i)

)
(1)

where h(i)
t is the output at time step t of the i-th convolutional layers. f is a nonlinear activa-

tion function, in our case ReLU. w(i)
j is the weight for the j-th filter in the i-th convolutional

layer. xt+j is the input at the current time step. b(i) is the bias term for the i-th convolutional
layer. Finally, k represents the size of the filter. Meanwhile, for the RNN layers, Equation
(2) represents the final output equation.

h(i)
t = σ(Woxt + Uoht−1 + bo) ∗ tanh(ftct−1 + itgt) (2)

where U0, W0 are the output gate weights. b0 the bias value. ct is the cell state value at
time t. it is the input value. gt is the input modulation gate. Finally, a dropout rate of 0.5 is
applied before the last convolutional layer with an output dimension of 256.

2.3.2. Seq2Seq-LSTM

Seq2Seq models [37] are proposed as an effective technique in multiple applications
involving time series data forecasting [5,38]. These structures are commonly constituted by
an encoder–decoder layer implemented with RNN units such as LSTM or GRU. This work
uses a Seq2Seq framework composed of LSTM units for multivariate IMU data forecasting.
In this model, the encoder processes the past signal time steps individually, producing
a sequence of hidden states in which the last one summarizes the observed input data.
This information is then stored in a fixed-length context vector alongside a unique start-of-
sequence token (the last value of the input for data forecasting) to be used as input for the
decoder. Subsequently, the decoder generates the output predicted signal using the context
vector and start token. The predicted output of each step is then fed back to the next RNN
unit; this process is repeated until the entire forecast output sequence length is completed.

The Seq2Seq-LSTM model is shown in Figure 2b. It comprises an encoder–decoder
structure of one RNN layer with 100 LSTM units and a hyperbolic tangent as an activation
function. Between the encoder and decoder, a repeat vector that works as one 1D memory
layer is added to store the hidden state from the last LSTM unit of the encoder module,
preserving the input features. Equation (3) represents the behavior of the module, where
ht−1 represents the last hidden state, xt the current time series value, t− 1 the prior time step
value, and Z the fixed-length context vector obtained. The decoder model is represented in
the following Equation (4).

ht = fenc.(xt, ht−1) & Z = ht (3)

h′t = fdec.
(
yt−1, h′t−1, Z

)
& ŷ = h′tW + b (4)
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where h′t represents the last hidden state, Z the encoder output, yt−1 and h′t−1 the previous
output and hidden state at time t, respectively, and ŷ is the final forecasted output.

2.3.3. Seq2Seq-LSTM-PE-MA

The third model, Seq2Seq-LSTM-PE-MA, is illustrated in Figure 2c. This model has
two main implementations from the transformer baseline model the PE and MA layers.
This structure has been used in transformer models in recent years for multiple applications
due to the ability to parallelize the training and inference process, capture complex patterns,
and include long-term dependencies [39]. This model uses the attention mechanism of the
PE and MA layers to improve the forecast performance of time series sensor data. The
PE module is located at the bottom of the encoder structure. It captures the sequential
order of the input time series data providing a notion of data position to the model. This
enhancement is achieved by adding the output of this module as a fixed vector to the input
time series data previously resized by a 1D convolutional layer. The structure for the PE
module is based on the traditional transformer structure made by sine and cosine functions
described in Equation (5) to generate the position sequence.

PE(pos,2i) = sin

(
pos

10, 000
2i

dmod

)
& PE(pos,2i+1) = cos

(
pos

10, 000
2i

dmod

)
(5)

where PE represents the positional encoding. pos is the position. dmod is the dimension of
the embedding input. i is the dimension. With these equations, the wave forms a geometric
progression from 2π to 10, 000 ∗ 2π. This selection follows the criteria made in [40]. The
next improvement is the addition of one RNN layer with LSTM units that returns the full
sequence of outputs to the second layer on the encoder and decoder modules.

The second transformer model adaptation is based on the MA layer located after the
decoder module. This layer performs a self-attention dot product calculation in multiple
heads, simultaneously allowing to attend different time series data sections. In this model,
we use 16 heads for the attention calculation. A scaled dot-product attention is performed
and calculated on each head using Equation (6).

Attention(Q, K, V) = softmax

(
QKT
√

dk

)
V (6)

where Q, K, and V represent the queries, keys, and values that are parameters obtained
from the input data. dk is the dimension of the keys. This output indicates the priority
weights of each value vector and head after being concatenated, regularized, and linearly
transformed. The obtained attention is finally added to the decoder’s forecasted signal
output. This process increases the correlation between the forecasted and input signal,
improving the future classification task by preserving the signal features using the feature
position knowledge during the training.

2.3.4. SynSigGAN

The framework SynSigGAN was initially proposed as a data augmentation model
for univariable time series applications that involve biosignal data such as the electrocar-
diogram (ECG), electromyography (EMG), and photoplethysmography (PPG) [26]. This
model proposed a general GAN structure using a bidirectional grid LSTM network (Bi-
GridLSTM) of two layers as the generator and a standard CNN network of three layers
for the critic network. The objective of the generator module is to create a new signal
by utilizing an initial random latent space representation of the original data, with the
intention of generating synthetic data that closely resembles the ground truth sample.
Conversely, the critic network acts as a binary classifier to determine if the data generated
is real or fake. Therefore, BiGridLSTM aims to minimize the log(1− D(G(z)) and the
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value function expressed in Equation (7) where D and G represent the critic and generator
network, respectively.

min
G

max
D

Fv(D, G) = Ex∼pd(x)
[log D(x)] + Ez∼pz(z)

[log(1−D(G(z)))] (7)

2.3.5. TTS-GAN

The TTS-GAN framework was initially used in data augmentation and forecasting
works to create synthetic time series data [30]. This model proposes a general GAN structure
using the base encoder Transformer module to replace the generator and critic network
composed of two main blocks. The first block comprises a multi-head self-attention layer
with an embedding size of 100 and five parallel attention heads. Then, the second block
uses a feed-forward MLP with a GELU activation function. Both blocks use a normalization,
dropout layer, and residual connection to prevent the model overfitting and vanishing
problem. Finally, a Convolutional 2D layer with a kernel size of (1, 1) is used as the last
layer of the generator encoder to reduce and match the data dimension of the predicted
result with the ground truth samples. This model uses the Mean Square Error (MSE) loss to
update the parameters during the generator and the critic network training as represented
in Equations (8) and (9).

Dloss = MSE(D(gt), gtlbl) + MSE(D(G(z)), predlbl) (8)

Gloss = MSE(D(G(z)), gtlbl) (9)

where Dloss and Gloss represent the loss value to minimize in the critic and generator
network. D(x) is the decision output of the critic network. G(z) is the predicted signal of
the generator. gt the ground truth signal and gtlbl and predlbl are the labels of the ground
truth and predicted signals, respectively.

2.4. Bi-LSTM Network for Activity Classification

In order to recognize future activities using the signals obtained from the forecast
models, we used a Bidirectional Long Short-Term Memory (Bi-LSTM) model. The classi-
fication model proposed in this work is detailed in [31]. This model has been proven to
obtain high classification accuracy in many prior HAR applications. Figure 3 shows the
model structure composed of two principal components: the Bi-LSTM layers and a fully
connected layer with a Softmax as an activation function.

Figure 3. Bi-LSTM classifier used for activity prediction.

The classifier is designed to capture the temporal dependencies of the input data
by processing in both forward and backward directions considering the past and future
context data. Meanwhile, the full connection layer produces a probability distribution
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over the five proposed activities by giving the highest probability to the predicted activity.
Equation (10) represents the Bi-LSTM operation.

hf
t = LSTMf

(
xt, hf

t−1, cf
t−1

)
; hb

t = LSTMb

(
xt, hb

t−1, cb
t−1

)
→ htotal =

[
hf

t, hb
t

]
(10)

where LSTMf and LSTMb represent the forward and backward layers. xt is the input
sequence at the time step t. hf

t, and hb
t are the hidden state for the forward and backward

layers, and cf
t and cb

t are the cell states. The final output htotal represents the concatenated
values of both layers. The classifier model contains two Bi-LSTM layers with 64 and
32 units, a subsequent ReLU activation function, a hidden layer with 352 neurons, and one
SoftMax layer with 5 output neurons.

3. Experiment Results

The following subsections detail the training procedures for both the predictor and
classifier models and describe the evaluation and performance metrics for both sections.
Finally, the experimental results for HAP are presented.

3.1. Training and Evaluation Procedures

The forecaster models were trained using 2283 epochs of 5.12 s for each subject in the
dataset. The first half of 2.56 s from the entire epoch was used as input during the forecaster
training procedure. Meanwhile, the second half of the epoch as the training target was
used to evaluate the model performance by comparing the forecasted output against the
ground truth signals (i.e., new target signals). All the forecaster models were trained for
240 iterations with a batch size of 25 using the Adams optimizer and mean square error as
a loss function with a learning rate of 0.0003 to ensure fast convergence.

In contrast, the Bi-LSTM classifier model was trained using a set of 2283 epochs using
the second half of the training epochs to match the size of the forecasted output data.
During the training, the Adams algorithm as an optimizer and Categorical Cross Entropy
as a loss function across 240 epochs were used with a batch size of 10 and a learning rate
of 0.0005. First, we used 456 unseen measurement epochs to obtain the reference activity
label. In the second step, we used 289 epoch results from each forecaster as input to obtain
the corresponding predicted activity labels. The training process for both models was
conducted in a computer with an Nvidia RTX 2070 GPU of 8 Gb of VRAM memory using
Python 3.8 with Tensorflow and Keras libraries.

3.2. Evaluation Metrics

In order to assess the performance of the forecast models, we selected two evaluation
metrics to compare the model’s output with the ground truth IMU signals [21,23,41]. These
metrics are the root mean square error (RMSE) and correlation coefficient (CORR). Using
these metrics, we have determined the accuracy of the forecaster models in predicting
future IMU signals. The RMSE measures the average squared differences between the
ground truth and the forecasted signals providing information about the average deviation
between the signals; this metric is calculated with Equation (11).

The correlation coefficient CORR measures the strength of the linear relationship
between the signals by being sensitive to the trend difference. The coefficient ranges from
−1 to + 1, where a value of ±1 suggests a perfect correlation, and as the value goes toward
0, the correlation weakens. The sign of the coefficient indicates if there is a positive or
negative relation. This metric is described in Equation (12).

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (11)
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CORR =
∑n

i=1(yi − y)(ŷi − ŷ)√
∑n

i=1(yi − y)2 ∑n
i=1(ŷi − ŷ)2

(12)

where n is the number of observations of the forecast signal. yi are the ground truth values
of the ith observation in the signal. ŷi are the predicted values of the ith observation. y is
the mean of the ground truth data. ŷ is the mean of the signal-predicted values.

For the evaluation of the Bi-LSTM classifier, three standard metrics, accuracy, precision,
and F1-score, are used. The accuracy measures the total percentage of correct positive and
negative predicted labels; meanwhile, the precision indicates the truly positive predictions
made by the model among the positive predictions. Finally, the F1-score indicates the
harmonic mean between the precision and recall providing a balanced assessment of the
model performance. We use the classification results divided into true positive predictions.
Tp, true negatives, Tn, false positives, Fp, and false negatives Fn to calculate these metrics
using the formulas described in Equation (13). Through these metrics, we compare the
performance of the HAP system using ground truth data or each forecasted signal as input
of the classifier.

Acc. =
Tp + Tn

Fp + Fn + Tp + Tn
; Prec =

Tp

Fp + Tp
; F1− score =

Tp

Tp + 1
2
(
Fp + Fn

) (13)

3.3. IMU Signal Forecaster Performance

Table 1 shows the five forecasters performances in terms of RMSE and CORR results
obtained from Subject #101. Performance improvement is observed from SynSigGAN
to the proposed framework Seq2Seq-LSTM-PE-MA across all the activities. Regarding
average RMSE from the activities, the proposed Seq2Seq-LSTM-PE-MA model improved by
68.73% with respect to the SynSigGAN model, 63.24% to Conv2LSTM, 53.75% to the base
Seq2Seq-LSTM model, and 31.90% against the TTS-GAN model. Moreover, concerning
the average CORR, the proposed model improves by 36.46% to the SynSigGAN, 28.87% to
Conv2LSTM, 19.74% to the Seq2SeqLSTM, and 8.30% against the TTS-GAN model.

Table 1. Evaluation results of the forecasters with Subject #101.

Models
Forecast Evaluation Metrics (Subject #101)

Walk Run Nordic Walk Stairs Ascend Stairs Descend Mean

RMSE CORR RMSE CORR RMSE CORR RMSE CORR RMSE CORR RMSE CORR

SynSigGAN [26] 0.355 0.581 0.340 0.601 0.342 0.599 0.369 0.563 0.366 0.566 0.355 0.582
Conv2LSTM [36] 0.269 0.697 0.297 0.659 0.278 0.685 0.330 0.615 0.336 0.607 0.302 0.653
Seq2Seq-LSTM

[42] 0.205 0.784 0.244 0.731 0.219 0.765 0.257 0.714 0.274 0.691 0.240 0.737

TTS-GAN [30] 0.180 0.817 0.155 0.851 0.160 0.844 0.145 0.865 0.176 0.823 0.163 0.840
Seq2Seq-LSTM-

PE-MA 0.110 0.912 0.105 0.919 0.096 0.931 0.111 0.911 0.114 0.907 0.111 0.916

Considering the highest RMSE and lowest CORR results for each model in the most
challenging activity of stairs descend, the SynSigGAN model showed the highest RMSE
and lowest CORR with values of 0.366 and 0.566, respectively. These values are related to
the SynSigGAN model’s single-channel design, which degrades the forecast across the rest
of the channels. A slight improvement is achieved with the Conv2LSTM and the Seq2Seq-
LSTM model, with an RMSE of 0.336 and 0.274 and a CORR of 0.607 and 0.691, respectively.
More consistent results were obtained with the two models that involve a transformer
attention module, with an RMSE and CORR of 0.176 and 0.823 for the TTS-GAN model.
Finally, our proposed network overcame this prior GAN model obtaining an RMSE value of
0.114 and a CORR percentage of 0.907. Our framework shows a clear performance improve-
ment against traditional deep learning models such as the Conv2LSTM and Seq2Seq-LSTM
and even the recent TTS-GAN model.
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Figure 4 illustrates the forecasting results of the actual multichannel signals for the
activity of the Nordic walk. Figure 4a shows the input for all the models. Figure 4b
illustrates the forecasting result for the SynSigGAN model, where forecasted multichannel
signals in color are superimposed over the ground truth signals with a notable absence
of peak values. Figure 4c shows the Conv2LSTM model failing to predict the trends and
peak values of the signal. Although this model achieves better results against SynSigGAN,
reaching an RMSE of 0.278 and a CORR of 0.685, the noise degenerates the output signals,
making it harder to interpret. Figure 4d shows the Seq2Seq-LSTM output signal, showing
less noise and predicting the signal features with an RMSE error of 0.219 and a CORR of
0.765. Despite the patterns located at the end of the window being kept, peak features at
the beginning section are lost, creating a flat signal at the beginning of each epoch due to
the fixed attention size of the context layer in the Seq2Seq-LSTM model. Figure 4e shows
the TTS-GAN output, where the forecasted signals make prediction improvements against
the prior models by correctly predicting the signal patterns and features. However, the
model still presents difficulties, such as the absence of high-frequency components in some
channels. Finally, Figure 4e shows the Seq2Seq-LSTM-PE-MA model results with an RMSE
of 0.096 and CORR of 0.931. This model produces the best prediction by matching the
ground truth signals due to the positional encoding and the multi-head attention layers.

Figure 4. Forecasted signals of the Nordic walk activity by (b) SynSigGAN, (c) Conv2LSTM,
(d) Seq2Seq-LSTM, (e) TTS-GAN, and (f) Seq2Seq-LSTM-PE-MA using the (a) Input Past Signals.

To demonstrate the performance of the proposed forecaster, we have used the same
epoch input of 2.56 s from Subject #101 to obtain the predicted signals across all the
selected daily activities, as shown in Figure 5. The proposed model shows its capacity by
predicting the signal patterns and relevant features from the signal, such as those shown
in the activities of run and stairs descent. In addition, the model presents the capacity
to predict all the peak values across all the channels of the IMU sensor compared to the
forecast models that do not present a multi-head attention mechanism. This capacity
allows to differentiate between each activity channel, making it possible to predict future
activities precisely.
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Figure 5. Forecasted signals for all five activities by the Seq2Seq-LSTM-PE-MA model.

Table 2 shows the forecasting performance of the proposed Seq2Seq-LSTM-PE-MA
from the five subjects. The average result for each activity shows that the maximum RMSE
error of 0.127 ± 0.029 is obtained in the run activity with a CORR of 0.888 ± 0.039. In
contrast, the activity of stairs ascend has the best prediction among the subjects, with a
total CORR of 0.913 ± 0.007 and an RMSE of 0.109 ± 0.005. Finally, the rest of the activities
across all the subjects show similar performance, reaching an overall mean and standard
deviation for RMSE error of 0.118 ± 0.006 and a CORR of 0.901 ± 0.009.

Table 2. Activity signal forecasting results by the Seq2Seq-LSTM-PE-MA model from the five subjects.

Selected
Subjects

Seq2Seq-LSTM-PE-MA

Walk Run Nordic Walk Stairs Ascend Stairs Descend

RMSE CORR RMSE CORR RMSE CORR RMSE CORR RMSE CORR

#101 0.110 0.912 0.105 0.919 0.096 0.931 0.111 0.911 0.114 0.907
#102 0.118 0.901 0.177 0.822 0.133 0.881 0.106 0.917 0.125 0.891
#105 0.142 0.868 0.107 0.916 0.099 0.927 0.102 0.923 0.096 0.931
#106 0.132 0.882 0.122 0.896 0.123 0.894 0.111 0.911 0.122 0.895
#107 0.111 0.910 0.127 0.889 0.117 0.903 0.116 0.904 0.105 0.918

Mean ±
SD

0.123 ±
0.014

0.895 ±
0.019

0.127 ±
0.029

0.888 ±
0.039

0.113 ±
0.016

0.907 ±
0.021

0.109 ±
0.005

0.913 ±
0.007

0.113 ±
0.012

0.908 ±
0.016

3.4. HAP Performance

The proposed HAP model is tested through the Bi-LSTM model with the forecasted
epochs of 2.56 s. Figure 6 shows a sample of confusion matrices for the five activities
of Subject #101. Figure 6a shows the confusion matrix obtained using the ground truth
measured IMU motion signal as input for the Bi-LSTM module, where all the activities
show an accuracy higher than 98.29%. Figure 6b,c present the sample confusion matrices of
the Bi-LSTM classifier using as input the result from three of the five baseline forecasters
used in this work, the Conv2LSTM, the Seq2Seq-LSTM, and the proposed Seq2Seq-LSTM-
PE-MA model, respectively. Regarding that, both models obtained an accuracy of 75.216%
and 83.81%; misclassification still occurred for certain activities such as Nordic walk and
walk, stairs descend, and run due to the resemblance in signal data among each activity.
Therefore, most confusions are mainly due to errors in the forecasted signals and classifier
capacity. As a result, the Conv2LSTM and Seq2Seq-LSTM forecaster cannot predict the
signals with their representative features generating similar signals on different channels,
creating confusion and hindering the classification. In addition, compared to the prior
results, the SynSigaGAN forecaster achieved the lowest accuracy prediction of all the
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models reaching only 57.121%. Meanwhile, the TTS-GAN structure outperformed the
Conv2LSTM and the Seq2Seq-LSTM models, reaching a maximum accuracy of 89.091%.

Figure 6. Sample confusion matrices results of HAP for walk (W), run (R), Nordic walk (NW), stairs
ascend (STASC), and stairs descend (STDSC) using: (a) Ground Truth data and the forecasted activity
data from (b) Conv2LSTM, (c) Seq2Seq-LSTM, and (d) Seq2Seq-LSTM-PE-MA.

In contrast, Figure 6d shows the confusion matrix result for the proposed model
Seq2Seq-LSTM-PE-MA, where an average accuracy of 97.96% is achieved. Finally, in terms
of accuracy, the proposed model shows an improved performance of 41.69% with respect
to the SynSigGAN model, 23.21% to the Conv2LSTM, 14.44% to the Seq2Seq-LSTM, and
9.053% against the TTS-GAN model. Therefore, the Seq2Seq-LSTM-PE-MA model is the
unique structure capable of obtaining results over 97% and reaching a similar performance
using the ground truth signal as input.

The overall performance of HAP with the proposed prediction system across the
five subjects is summarized in Table 3. This table compares the obtained result from the
BILSTM classifier using the forecasted signals and ground truth data as input. The overall
accuracy, precision, and F1-score performance are summarized. Across the five subjects, the
minimum accuracy reached was 97.698% for subject #102, with precision and an F1-score
of 97.599% and 97.953%, respectively. Meanwhile, the maximum accuracy of 98.221% was
achieved, with subject #105 reaching a precision of 98.145% and an F1-score of 98.109%.
As a result, the proposed HAP framework achieves an average accuracy, precision, and
F1-score of 97.96% ± 0.228, 98.14% ± 0.247, and 97.87% ± 0.316 reaching a minimum
difference of 0.33%, 0.23%, and 0.26% compared with the results using the ground truth
signal as input.

Table 3. Evaluation of the HAP results using the forecasted data of the proposed model for the five
selected subjects against the ground truth data.

Selected
Subjects

Seq2Seq-LSTM-PE-MA Subject Results

Accuracy (%) Precision (%) F1-Score (%)

Model Result Ground Truth Model Result Ground Truth Model Result Ground Truth

#101 97.981 98.125 97.969 98.012 97.953 97.975
#102 97.698 97.901 97.599 97.992 97.953 97.975
#105 98.291 98.340 98.145 98.028 98.109 98.350
#106 97.799 98.193 97.725 98.014 97.315 98.134
#107 98.025 98.903 98.145 98.714 98.015 98.204

Mean ± SD 97.96 ± 0.228 98.29 ± 0.376 97.92 ± 0.247 98.15 ± 0.314 97.87 ± 0.316 98.13 ± 0.160
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4. Discussion

This paper presents a novel HAP system based on the forecasted IMU activity signals
from two tri-axial accelerometers in the subject’s chest and left ankle. The proposed HAP
system is composed of a time series forecaster and a pre-trained classifier. A novel deep
learning forecaster is built using a Seq2Seq-LSTM model with MA and PE layers as attention
mechanisms. Meanwhile, a Bi-LSTM model is used as a classifier to label the predicted
activities based on the forecasted motion signals.

Regarding forecasting of IMU activity signals, the proposed Seq2Seq-LSTM-PE-MA model
was compared against four state-of-art time series forecasters, SynSigGAN, Conv2LSTM,
Seq2Seq-LSTM, and TTS-GAN, as depicted in Figure 4. The proposed Seq2Seq-LSTM-
PE-MA model achieved the best results in forecasting the signals with an RMSE error
under 0.111 and a CORR over 0.916 between the ground truth and forecasted signals
for all tested activities. Similar works in forecasting time series signals have used RNN
and transformer variations to improve model retention. In [21], a neural network mixed
with Fourier transform was used, achieving an RMSE value of 0.134, predicting a total of
0.6 s ahead using 1 s of input data. Meanwhile, in [22], an adversarial training based on a
transformer Generator, a CNN Critic Network, and an action classifier achieved an RMSE
value of 0.180 between the forecast and ground truth signals in fatigue prediction future
0.8 s. Compared to these works, our model can handle multivariate signal forecasting
signals up to 2.56 s compared to prior studies. Due to the majority of prior works for
time series, forecasters are used in applications such as weather, asset prediction, or data
augmentation, and the lack of forecasters used for human activity prediction is not possible
to directly compare prior models with the structure proposed in this work. Therefore,
we have added two forecasters based on GAN networks, the SynSigGAN [26] and the
TTS-GAN [30] model. We retrained and tested these models using the five subjects from
the PAMAP2 dataset using the same input of 2.56 s, obtaining an average RMSE error of
0.351 and 0.169 for the SynSigGAN and TTS-GAN, respectively. In contrast to the added
GAN models, our approach does not have the inherent drawbacks of the GAN networks,
such as mode collapse and training instability. In terms of average RMSE, our model
achieved a value of 0.111, obtaining an improvement of 17.16%, 38.33%, 56.87%, and 35.55%
compared to the two related models and the adapted GAN models, respectively.

Regarding human activity prediction in the proposed system, an average accuracy
and precision of 97.961% and 97.920% were achieved using the forecasted signals, reaching
a minimum difference of 0.329% and 0.230% compared to the classification results using
the ground truth data. Concerning HAP performance, prior attempts have shown results in
predicting future actions based on a long signal record using attention layers. However, few
works have been used for multiclass classification, especially for daily activity tasks. In [43],
activity prediction and action transition are presented using a self-recorded dataset reaching
a precision and F1-score of 95.0% and 97.8% in daily activities such as walking and running.
Although this model could obtain intention prediction results, it is related to the complete
sequence of actions followed by the subject and not only the current activity. In [22], a
multiclass fatigue prediction up to 0.8 s is carried out using the forecasted IMU signals,
achieving an average accuracy of 83% with a correlation coefficient of 92%. Compared
to these prior works, our HAP system only uses 2.56 s of IMU data instead of the hold
record to perform the activity prediction, achieving an average accuracy of 97.981% and a
precision improvement of 3.13%.

Despite the importance of HAP, most prior works have focused only on videos as input
data instead of time series sensors. Prior video-based HAR works based on adversarial
learning and recurrent network models such as Rolling-LSTM, HARD-Net, and CGAN
achieved accuracies of 83.5%, 87.54%, and 80.9%, respectively, for daily activities such as
washing the dishes, moping the floor, or handshaking [14–16]. Compared to these video-
based systems, our approach can obtain an improved performance of at least 10.441% of
accuracy in predicting future activities. State-of-art HAR systems using the same PAMAP2
dataset [44–46] for multiclass classification have shown accuracy results of 93,75%, 94.29%,
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and 99.64%. Compared to these works, the proposed HAP system can reach an accuracy
of 97.96% at predicting future activities up to 2.56 s ahead. The proposed HAP system is
open for future improvements. First, additional sensors in various positions, such as the
wrist or head, should be considered to recognize more complex activities that use more
parts of the body. Second, multi-modal sensors and their prediction should be investigated
by involving various sensors in the prediction, such as gyroscopes, temperature, light
detectors, or even ECG, since these sensors are invaluable in healthcare monitoring and
smart homes assistance to implement more robust and complete prediction applications
aimed for healthcare assistance. Third, to generalize the HAP system, studying more
activities using different subjects from more datasets is necessary. Finally, optimizing and
embedding the proposed HAP model into an edge device will make the HAP system
portable and capable of running in real time.

5. Conclusions

In this study, we present a novel HAP system based on forecasted IMU activity
signals. Our system consists of two main components: (i) a deep Seq2Seq forecaster
model based on a transformer multi-head self-attention module and positional encoding
layers for IMU motion signal prediction and (ii) a Bi-LSTM model as a deep classifier
to label the next activity using the forecasted signals. Using two IMU accelerometer
sensors, our HAP system accurately predicts five daily human activities, achieving an
accuracy of 97.960%, precision of 97.920%, and F1-Score of 97.870% up to 2.56 s ahead.
Our findings across the selected subjects demonstrate the feasibility of implementing a
sensor-based HAP system capable of being used with unseen data. This HAP capability
holds significant importance for applications that require an early or anticipated response,
such as fall detection, healthcare monitoring, sports performance monitoring, assistive
robots in industrial or rehabilitation, and smart home assistance.
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